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Abstract— Control allocation (CA) is the distribution of  Effector limits result from either or both of (1) effectorrda
control effort among a set of (possibly redundant) effectas to  ware design and (2) effector degradation or failure. Rasiti
achieve a desired objective. In the case of aerospace vebgl and rate limits are an inherent part of hardware design,

CA is the selection of effector commands in order to induce d th It of a trade-off bet £ ight, and
a set of commanded moments (torques) on an aerospace ana are the resuit or a trace-olt between cost, weight, an

vehicle. These moment commands are typically generated by Vehicle capability. These effector limits define the vedil
an autopilot/attitude control law that operates in closed bop attainable moment set (AM$) or, the set of all moment

with a guidance (attitude command) law as well as a CA law vectors that are achievable within the control constraints
and the vehicle itself. (e.g., position limits on the control surfaces)[7][11].

In this paper several quadratic programming (QP) based . .
CA laws in the context of control for an X-33 based next Recent advances in computational power and software

generation aerospace vehicle model are examined. ThesePerformance permit the use of on-line solutiongoédratic
laws include Least Squares (no inequality constraints in programming (QP) optimizations in CA. Quadratic pro-
QP), direction preserving CA, sign-preserving CA, frequerty  gramming maximizes, or minimizes, a quadratic cost func-
weighted CA and combinations thereof. These methods are tion subject to linear equality and/or inequality consttsi

evaluated in the context of both nominal and failed effector - . . .
behavior so that reconfiguration behavior can be examined. [2]' Addlng the Complex_lty of constraints and the opti-
Our simulation results to date indicate that a CA law based Mization of a cost function, the QP method for CA has
on frequency-weighted sign preserving QP problem provides the potential to account for redundancy in the moment
superior performance to the other methods examined. generating power of the effectors and the constraints that
| INTRODUCTION limit _each effe_ctor. Within QP, CA Igws can use f[he_z cost
function to weight, or penalize certain effectors withire th
The role of control allocation (CA), in the terms of gystem, while forcing the system to follow other constraint
aerospace engineering, is to compute a ve6toe IR"* |y this paper, several quadratic programming techniques
of effector commands that induce desired body-frame M@ye examined and compared, e.g. Direction Preserving,
mentst = [ L M N | (roll, pitch and yaw torques) Sign Preserving, Frequency Weighted, Frequency Domain
on a vehicle, compensating for and/or responding to inacc&haping, and combinations of these algorithms.
racies in off-line nominal CA calculations, effector fais The results of the previous a|gorithms are Compared
and/or degradations (reduced effectiveness), or efféioter ysing a high fidelity simulation of the X-33 Reusable
itations (position saturation). The command veatomay  Launch Vehicle (RLV). The X-33 is a wedge shaped RLV
govern the behavior of, e.g., aerosurfaces, reactiontmsjs ijth 12 effectors: four engines, right/left flaps, righttle
engine gimbals and/or thrust vectoring. rudders, right/left inboard elevons, and right/left owghb
In the past, the CA problem has been approached withleyons. Because the original X-33 was not capable of
simple methods such dsast squares [1] or ganging [2]. achieving orbit, we doubled the ISP (specific impulse) for
The ganging CA method associates effector combinatiogr simulation examples. This fictitious vehicle is callbd t
to respective moments, such as using opposite left and riglguper X-33
aileron deflections to produce a specific roll moment. The
least squares method uses a pseudo-inverse of a reference Il. SOLUTIONS TO THECA PROBLEM
model and determines the effector deflections as a functionThe control allocation problem is to identify a set of
of the commanded, or desired, moments. vehicle effector commands. such that the achieved body
Although these methods are easily implemented andrquesr, acting on the vehicle match or closely approx-
computationally efficient, they do not reconfigure in eféect imate the torques commanded, by the autopilot. Fast,
failures, nor do they consider effector command limitsreliable methods for CA are becoming more important as
 This Research was funded by NASA-NGT8-52004 controllaple vehicles become more complex, and online
*Graduate Student, Auburn University computation becomes less expensive. There are three gen-
**Faculty, Dept. Electrical and Computer Engineering eral classes of CA in current common use: direct CA,
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generalized inverses, and daisy chaining [2], [5], [8] pseudo-inverse is often used because it results in a minimum

Euclidean norm solution (vector of effector commands),

therefore the use of a pseudo-inverse minimizes the move-
Direct control allocation, proposed by Durham [7], is arment of the effector deflection commands.

approach based on the concept of the attainable moment o .

set (AMS). The AMST is the set of all moment vectors C- Daisy Chaining Solution

that are achievable within a set of control constraintssThi Daisy Chaining is a fairly new method for the solution

method, while computationally expensive, allows the entirof the control allocation problem[3]. The method works off

attainable moment set to be used. Direct control allocatiodf a solution obtained by partitioning the control vectbr,

maps the control space, defined by all possible deflecti@nd the linear effector authority matrig;(z) into different

commands{A.}, into the attainable moment spa@e To groups. These groups are then employed in succession as

do this, three basic steps are followed; (1) Determine thgach previous group of controls are saturated [8]. If you

AMS, (2)Scale the desired, or commanded torque vector gplit the two vectorsq and G(x)) into k groups, then the

the boundary of the AMS, (3) Solve for the intersection ohew vectors appear as

the AMS and the scaled desired torque vector, and (4)Scal T

the result by the inverse of the original scaling coeffi- C(a) = (G G(w)z - Gla)e] andd” = [515; 6]

cient from step (2). Computation of the AMS is the mosivhere G(x);,i = 1,...,k are considered full rank and

computationally expensive step in direct control allomati invertible. Each inverted?(z); has a corresponding(z);

Methods for computation of the AMS are discussed furthesuch thaiG(z); F(x); = I. The controls are taken similarly

in [6], [7] and [8]. as in the generalized inversion solution, but each control,

95,1 < j <k, are only employed if one or more control in

the previousi < j groups are saturated. The subsequent

A generalized inverse solution to CA is described b)groups only make up for saturation from the preceding
Durham and Bordignon [3] as the selection of a constagfroups [6].

matrix F'(z) that satisfiesG(z)F(x) = I according to
m, = G(x)5, wherer, are the three orthogonal vehicle IIl. M ORE RECENT DEVELOPMENTS
moments andj is the vector of effector commands[8]. Because the CA problem has become more pertinent
The effector commands are then directly obtained frorfor new technological developments in aircraft and the
a generalized inverse in response to a desired momeissue of computational expense is becoming a less promi-
7. wheredé. = F(x)7.. The generalized inverse is morenent challenge, mathematical programming techniques have
flexible and preferred with modern aircraft, since mosmade their way into CA approaches. Two of the most
vehicle effectors do not act on the vehicle in just one axiprominent methods of mathematical programming are lin-
We can further define this generalized inverse solution asear programming (LP) and quadratic programming (QP).
matrix F'(z) : IR" — IR™ such thatF(z)G(x) = I,, [3], These techniques are similar in that they both minimize
[4]. a cost function subject to a set of equality and inequality
The most common technique for choosing the generalizewnstraints.
inverse matrixF'(z) is to choose an inverse such that, in
certain specified directions of the moment space, the ievers
will yield an inversion allowing the solution to coincides LP and QP based CA techniques are gaining increasing
with the attainable moment set (AMS). This can be donattention due to their ability to respond on-line to effecto
by the computation of the solution to a geometric problerlimits (position, rate) through adjustment of the ineqtyali
where an intersection of the control space and the subdifits d~, %, and vehicle health information (such as
of a constrained control space maps to the required point@§graded or unresponsive effectors) through adjustment of
in moment space. Durham describes this technique andth gain-scheduled linear affine effector model matix).
solution to this geometric problem in [6]. An LP or QP problem is considerddasible if there is a
Another method for the computation of the generalizeectors € A that satisfies the linear constraifi{z)s = ..
inverse use in this solution, is using a weighted pseud&therwise the problem is considered to iméeasible. An
inverse. This is done by introducing a weighting matrixnfeasible problem arises when is outside of the AMS
when calculating a pseudo-inverse. First, a pseudo-iaverd - Two techniques are presented in this paper that address
is described byF = G(z)” [G(2)G(z)"]~!. After placing infeasible QP problems: the direction preserving method
the arbitrary weighting matrixV into the pseudo-inverse, and the sign preserving method [12].
the problem is described as

A. Direct Control Allocation

B. Generalized Inversion Solution

IV. INFEASIBLE CA PROBLEMS

V. CA PROBLEM SPECIFICATION

F = NG(z)N"[G(z)N(G(z)N)"] We will assume the existence of an off-line computed

. . ._nominal linear affine CA function
where the values of the matrix N are tailored to emphasize,

or to deemphasize, a certain set of controls [13]. The de = F(x)71: + do(x) Q)
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where 7. is the commanded torque vectar,is a vehicle min %&:TQéc + 75, (4)
state vector), is a trim (neutral torque) vector add(z) is a ¢
matrix of nominal CA gains. One may interpret the columns
of F(x) as a set of gains defining “ganged” effectors folAs defined in the aerospace CA problem, the unknown
each control axis. Ideally, the control allocation maffik:)  parameter in the LS solution is the command veciar
would be chosen to be the pseudo-invesgr) of the The weighting matrices andc correspond to penalties on
Jacobian Matrix the quadratic and linear components of the cost function.
Glz) = { 7y ” c IR3X"a @ Without ir_1equa|ity constrain_ts (i.e. effector position_ﬂts),. .
93 . we consider the LS solution to be the most simplistic
wheren, is the number of effectors; that is the optimalProgramming CA solution. In fact, the LS solution is
design of F(z) produces reduced to a weighted pseudo-inverse (a.k.a Generalized
Inverse Solution) for specific weighting matricesg zero).

subject to G(z)o. = 7o

100 For the purposes of this paper, the LS solution is clipped
G(z)F(z)=| 0 1 0 () with the assumption the simulation will only accept effecto
001 commands within the position constraints_( and d).
so that the induced body-frame vehicle torqugsmatch More recent solutions to the Least Squares active constrain
the commanded body torques problem have been proposed by Harkegard which incorpo-
The linear affine nominal CA law (1) by itself is inade-rates the inequality constraints in a Least Squares salutio
quate for the CA problem for four reasons: by iteration [9]. For this paper, the inequality constraiate
1) It fails to respond to torque allocation errors that cafimplemented in a Quadratic Programming solution, which
be detected on-line. allows for specific weighting and optimizations.
2) It fails to take into account saturation issues. B. Quadratic Programming

3) It fails to respond to on-line detected failures in

A Quadratic Programming solution minimizes a quadratic
effectors, and, Q g 9 d

cost function subject to both equality and inequality con-

4 1t flalls(,jto pro:c/fldeﬁa frtameworrl]( to Worktwlthtglscrt'ete- straints. For the aerospace problem, the determination of
valued (on-off) effectors such as reaction thrusters. the command vectaf, is determined by using QP.

We use Hodel and Callahan’s dynamic CA (DCA) ap- yeT .

proach [10] to compensate for the effects of failures that i 20" Qoc + ¢ dc (5)

are unknown to the CA system. Our simulatio_ns use a PI subject to G(2)s, = T

control law for the DCA component. CA reconfiguration for and  5- <. < s+

known failures and degradations is achieved by modification ¢ —Te—= e

of the appropriate entries of the effector linear-affine elpd Where the weighting matrice@ andc are the weights on

e.g., by scaling the appropriate column of the Jacobiaie quadratic and linear functions of the cost respectively

matrix G(x)). For complete failure of an effector, the The equality constrair®(x)J. = 7. guarantees the solution

corresponding column ofi(z) is zeroed out to eliminate . matches the commanded torque moment veetor

the effector from the CA solution. For partial failure, eachFinally, the inequality constraints force the solutiénto

column is scaled by a percentage of failure (i.e. 100% scalés within the effector high and low position limits~ and

a column ofG(x) by 0). This is proved in [10] as a viable ;.

solution to reconfiguration in an unconstrained CA solution The solutions to QP will always be feasible as long as

(e.g. no effector limits). the commanded torque vecter is within the attainable
Within this paper, we will use the reconfiguration routingmoment set (AMS). When the commanded torque vector

mentioned above and several novel and existing quadratie is outside of the AMS, the QP solution is infeasible,

programming techniques to prove the advantages of & outside of the effector position limits. Two existing

reconfigurable quadratic programming control allocatio@pproaches have been used to modify the QP solution in

solutions in a variety of optimization perspectives, e.gwhich the solution is guaranteed feasible, e.g. Direction

frequency component reduction, guaranteed feasibilig T Preserving and Sign Preserving.

Least Squares algorithm, which is the least complicated 1) Direction Preserving: In order to guarantee feasibility

CA solution, will be compared to existing and new QPof the QP problem in CA applications, we elect to modify

algorithms, e.g. Direction Preserving, Sign Preserving; F the QP problem, Equations (5), to include variables that

quency Weighted, Frequency Domain Shaping, and a coriave some kind of guaranteed feasibility.

bination of Frequency Weighted Sign Preserving. min %&:TQ(;(SC +¢5T6. + Qo1 — 0)2/2 (6)

d,0

A. Least Squares Problem st G(2)d, — o =0
The Least Squares (LS) solution is determined using an 5 Se 5+
optimization of some cost function subject to an equality { 6 ] < [ o ] < [ f ]

constraint.
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Orotl < 1
The direction preserving (DP) method preserves the direc- Opiten = 1

tion of the moment vector.., while allowing the minimiza- Tyaw =1
tion to scale the moment vector magnitude with a scaling
factoro. By using a much higher weight on sigma, than
on the deflection command3; the minimization utilizes

T
the deflection commands over the scaling faetoiFigure /r%\z T/TT

1 represents graphically the scaling factos’seffect on -
the magnitude of an infeasible moment vector. By scaling '
JS boundary

o<1

z,'yaw

.

Pt y, pitch
OTe
/M%éboundary Fig. 2. Sign Preserving Method representation

Figure 2, theroll control authority is small, therefore the
sign preserving algorithm maintains 100% of bathich
and yaw while scalingroll to achieve a feasible solution.
Fig. 1. Direction Preserving Method representation Not only is feasibility an important issue in CA, but wear
and tear on the vehicle’s hardware, or effector, needs to
all three moment vector components £;,7pizch,7yaw) to- D€ considered. An effector command with a low frequency
gether, the direction of the total moment vector is maincomponent is much more desirable than a high frequency
tained. effector command. High frequency effector commands can
2) Sign Preserving: The sign preserving (SP) methodproduce unnecessary wear on specific hardware devices (i.e.
of QP solves the minimization similarly, but allows theelectromechanical actuators). One new method of QP which
scalingo to be split amongst all three torque vector comaddresses the issue of frequency components in effector
ponents individuallys 11, Opitch, and, 0,4, cOrresponding commands is Frequency Weighted Quadratic Programming.
tO Trol1, Tpitch, ANAT, 4., respectively. Also the minimization  3) Frequency Weighted: We have mentioned so far the
weightsQ, andQ; are chosen such that the scaling factor@spects of CA which consider the absolute effector deflec-
are more heavily weighted (i.eQ, >> Qs). For the tion limits and the rate at which they are achieved, but we
purposes of this paper, the scaling factor weigits are can also consider the frequency content, or bandwidth, of
chosen to be the same fot..u, opitch, and, o,q,. Figure the commanded effector deflections. By building on existing
2 graphically represents the scaling effect of an infeasiblQP, LP and LS algorithms, we examine modifications to
commanded moment vector. cost functions in order to reflect the frequency content ef th
. effector commands. The goal of this approach is to reduce
min 307 Qs0c + csTo. + Qo (1 — oron)?  (7) physical wear on effector actuators caused by rapid change

+%Qa(1 — Opiten)? in the direction of motion due to “jittery” commanded
1001 = 7yn)? signals.
200 yaw Modifying the weights of the QP problem, the solution
s.L. G(z)de —X7. =0 combines frequency content into the optimization.
o, e ar
0 | | oo | | 1 min 16167 Quodio + c1oT 610 + 301" Qnidni  (8)
01 7| opiten | = | 1 +cni’ Oni
0 aw 1
Ty s.t. G(x)dc(n) = 1.(n)
ot 0 0 57 <6, < 6F
where Y= 0  Opiten 0 ¢ = 0c> 0,
0 0 Oyaw where 810 = >oit g aibe(n — )

. Ohi = Do bide(n — i)
By scaling all three moment vector components
(Trotl Tpiteh Tyaw) iNdividually, the sign of the total moment The frequency-weighted cost function approach is devel-
vector is maintained, but the direction may be modifiedoped as follows. Given two FIR filters, a low pass filter
This allows the CA solution to scale independently thé,,(n) = a¢d.(n) + ai10.(n — 1) + -+ + amde(n — m)
components of the moment vector with the least contr@nd a high pass filteé;;(n) = bod.(n) + b1d.(n — 1) +
authority (function of statesc in “Jacobian” G(z)). In -+ b,,0.(n — m), we modify the quadratic cost function
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TABLE |

to penalized,; more heavily thary,,. At each time step,
P 6}” y mlo P MSE OF ALGORITHMS WHICH COMPLETEDNOMINAL ASCENTPHASE

the §.(n — 1)...d.(n — m) terms are known, and can be
restated in the quadratic cost function as a constapt,
and wy,; respectively. This can be written in the form of

OF FLIGHT, cmd — experienced

) : A Algorithm Attitude Angle Mean Squared Error
our standard QP (5) by setting the quadratic weighting MSE = E{[emd — experienced]?}
matrix Q@ = [ a2Qi +b2Qn: |, the linear cost vector Av?rage l\)/ISE
T 0 9,
¢ = [ aowio” Qio + aoc” + bowni” Qni + bocri” |, and FWSP 83| 56.39 15;{)41 g037.5?1:
maintaining the same variables. This method only modifies | sP 60.62 | 20.58 | 38.71 39.98
iyhti ; FW 60.43 | 46.60 | 20.09 42.37
thi wglghtmg mgtnceg Shaping: Anoth hod 1 QP 70.32 | 56.27 | 12.40 46.33
~ 4) Frequency Domain Shaping: Another method for LS (clipped) | 4457 | 138.82 | 21.45 68.28
introducing a filtering term in the problem is to introduce
it in the equality constraint and not the cost function alone
min 307 Qe + "0 + Qo (1~ 0)? (9) A Without Failures
st. G(2)[0c(n) — dc(n —1)] = X[r. — G(z)d.(n — 1)] In the nominal ascent phase of flight, without failures,
o <4, <6+ the vehicle successfully flew with all but one of the previ-

. . L ously described algorithms. The frequency domain shaping
To do this, a difference equation is used as the pararafDS) algorithm failed for all cases of flight. The effector

eter in the equality constraiqﬁc(k) N Oc(k — 1). Th.is commands produced by FDS remained saturated due to the
incorporates frequency-domain shaping behavior in th

. . ) oy %ddition of error in the equality constrairEG(x)d.(n—1)).
equality c_onstralnts. .W'th the addition Qf the new My Jist of all successful algorithms in the nominal ascent
the equality constraint manages the difference betwe?ase of flight can be seen in Table I. From Table | the

the actual torque implemented on_the previous time St§p, oot mean squared error occurs in the frequency weighted
G(z)d.(k—1), with theos scaled version of the same torque

. ) sign preserving (FWSP) algorithm.
LG(@)0c(k — 1) (WhereE IS-a vector of the thr_ee slgma e purpose of the FW and FWSP methods was to match
\{alues from the sign preserving me_thod preylously Mehe equality constrain€(x)d. = 7. and to reduce the use
tioned). The frequency domain shaping equality constrain high frequency components in the solutién For this

can be rewritten in the form of our standard QP pr(T)blerﬂaper, the FIR filters were chosen with a cutoff frequency

(5) by setting the unknown vectai. = [ d.(n) 3 ]",  of 10Hz for both 5 tap lowpass and highpass FIR filters.

the quadratic weighting matrix) = { %‘5 0 , the The frequency components of the nominal ascent phase
_ TQE effector commands for Engine 2 were examined by taking
linear cost vectorc = [ ¢;" —2%Qs |, G(x) = their Fast Fourier Transform (FFT). The FFT of the engine

[ G(z) —7.+G(x)de(n—1) ], . = G(z)dc(n — 1), commands can be seen in Figure 3. The QP solutign,

6—:{50 ] and5+={6j}
c 0 c 1 ' FFT of QP Engine, Commands, Nominal Ascent Phase
0.5 T T T T 0 T T T
VI. IMPLEMENTATION ol ==
The use of a “Super X-33” simulation from NASA's Mar- § 0al |
shal Space Flight Center, allowed for testing and compari- § wl
son of the different algorithms. The X-33 is a single stage E
vehicle with twelve effectors (right/left rudder, righeft T ) h ]
infout elevons, right/left flaps, four engines). The “Super %% %™ ™" . F,fquency o e %
X-33" simulation is a modified version of the X-33, which FET of FWSP Engine, Commands, Nominal Ascent Phase
allows the vehicle to complete the ascent phase of flight. °° L
The ascent phase of flight goes from launch to 74,000 ft. z o¢f 1
and reaches Mach 27. A failure of an algorithm resulted £, osf 1
in a loss of altitude, drastic reduction in velocity, andéor ;i 02
attitude angle exceeding 180 degrees (conservativeiaditer & .|
V” RESULTS -050 -40 -30 " -20 -10 6 10 20 " 30 40 50

Hz, Frequency

Each algorithm discussed in the previous section was
implemented in the “Super X-33" simulation through the frig. 3. FFT of Enging commands for QP and FWSP, Ascent Phase
ascent phase of flight, with and without failures. The ascent
phase of flight takes the simulated vehicle from launch tbas a high frequency component (FFT indicated a 22Hz
Mach 27 and 74,000 ft. The results of each algorithm werdigh Frequency Component). For the FWSP solutigf,.
reduced to the mean squared error of the attitude anglese frequency at 22Hz is suppressed by the FIR filters
and therefore could be easily compared. (cutoff of 10Hz Low- and High-pass filters).
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TABLE I .
MSE OF ALGORITHMS, lower frequency content, and lower Mean Square Attitude

RIGHT ELEVON FAILURE FROM 50SECONDS~ END OF SIMULATION, Angle Error than other quadratic programming techniques.

F = FLIGHT FAILURE S = SUCCESSFULFLIGHT
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