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Abstract— Control allocation (CA) is the distribution of
control effort among a set of (possibly redundant) effectors to
achieve a desired objective. In the case of aerospace vehicles,
CA is the selection of effector commands in order to induce
a set of commanded moments (torques) on an aerospace
vehicle. These moment commands are typically generated by
an autopilot/attitude control law that operates in closed loop
with a guidance (attitude command) law as well as a CA law
and the vehicle itself.

In this paper several quadratic programming (QP) based
CA laws in the context of control for an X-33 based next
generation aerospace vehicle model are examined. These
laws include Least Squares (no inequality constraints in
QP), direction preserving CA, sign-preserving CA, frequency
weighted CA and combinations thereof. These methods are
evaluated in the context of both nominal and failed effector
behavior so that reconfiguration behavior can be examined.
Our simulation results to date indicate that a CA law based
on frequency-weighted sign preserving QP problem provides
superior performance to the other methods examined.

I. INTRODUCTION

The role of control allocation (CA), in the terms of
aerospace engineering, is to compute a vectorδc ∈ IRna

of effector commands that induce desired body-frame mo-
mentsτ =

[

L M N
]T

(roll, pitch and yaw torques)
on a vehicle, compensating for and/or responding to inaccu-
racies in off-line nominal CA calculations, effector failures
and/or degradations (reduced effectiveness), or effectorlim-
itations (position saturation). The command vectorδc may
govern the behavior of, e.g., aerosurfaces, reaction thrusters,
engine gimbals and/or thrust vectoring.

In the past, the CA problem has been approached with
simple methods such asleast squares [1] or ganging [2].
The ganging CA method associates effector combinations
to respective moments, such as using opposite left and right
aileron deflections to produce a specific roll moment. The
least squares method uses a pseudo-inverse of a reference
model and determines the effector deflections as a function
of the commanded, or desired, moments.

Although these methods are easily implemented and
computationally efficient, they do not reconfigure in effector
failures, nor do they consider effector command limits.
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Effector limits result from either or both of (1) effector hard-
ware design and (2) effector degradation or failure. Position
and rate limits are an inherent part of hardware design,
and are the result of a trade-off between cost, weight, and
vehicle capability. These effector limits define the vehicle’s
attainable moment set (AMS)T or, the set of all moment
vectors that are achievable within the control constraints
(e.g., position limits on the control surfaces)[7][11].

Recent advances in computational power and software
performance permit the use of on-line solution ofquadratic
programming (QP) optimizations in CA. Quadratic pro-
gramming maximizes, or minimizes, a quadratic cost func-
tion subject to linear equality and/or inequality constraints
[2]. Adding the complexity of constraints and the opti-
mization of a cost function, the QP method for CA has
the potential to account for redundancy in the moment
generating power of the effectors and the constraints that
limit each effector. Within QP, CA laws can use the cost
function to weight, or penalize certain effectors within the
system, while forcing the system to follow other constraints.
In this paper, several quadratic programming techniques
are examined and compared, e.g. Direction Preserving,
Sign Preserving, Frequency Weighted, Frequency Domain
Shaping, and combinations of these algorithms.

The results of the previous algorithms are compared
using a high fidelity simulation of the X-33 Reusable
Launch Vehicle (RLV). The X-33 is a wedge shaped RLV
with 12 effectors: four engines, right/left flaps, right/left
rudders, right/left inboard elevons, and right/left outboard
elevons. Because the original X-33 was not capable of
achieving orbit, we doubled the ISP (specific impulse) for
our simulation examples. This fictitious vehicle is called the
“Super X-33.”

II. SOLUTIONS TO THECA PROBLEM

The control allocation problem is to identify a set of
vehicle effector commandsδc such that the achieved body
torquesτb acting on the vehicle match or closely approx-
imate the torques commanded,τc by the autopilot. Fast,
reliable methods for CA are becoming more important as
controllable vehicles become more complex, and online
computation becomes less expensive. There are three gen-
eral classes of CA in current common use: direct CA,



generalized inverses, and daisy chaining [2], [5], [8].

A. Direct Control Allocation

Direct control allocation, proposed by Durham [7], is an
approach based on the concept of the attainable moment
set (AMS). The AMST is the set of all moment vectors
that are achievable within a set of control constraints. This
method, while computationally expensive, allows the entire
attainable moment set to be used. Direct control allocation
maps the control space, defined by all possible deflection
commands{∆c}, into the attainable moment spaceT . To
do this, three basic steps are followed; (1) Determine the
AMS, (2)Scale the desired, or commanded torque vector to
the boundary of the AMS, (3) Solve for the intersection of
the AMS and the scaled desired torque vector, and (4)Scale
the result by the inverse of the original scaling coeffi-
cient from step (2). Computation of the AMS is the most
computationally expensive step in direct control allocation.
Methods for computation of the AMS are discussed further
in [6], [7] and [8].

B. Generalized Inversion Solution

A generalized inverse solution to CA is described by
Durham and Bordignon [3] as the selection of a constant
matrix F (x) that satisfiesG(x)F (x) = I according to
τb = G(x)δ, where τb are the three orthogonal vehicle
moments andδ is the vector of effector commands[8].
The effector commands are then directly obtained from
a generalized inverse in response to a desired moment,
τc where δc = F (x)τc. The generalized inverse is more
flexible and preferred with modern aircraft, since most
vehicle effectors do not act on the vehicle in just one axis.
We can further define this generalized inverse solution as a
matrix F (x) : IRn → IRm such thatF (x)G(x) = In [3],
[4].

The most common technique for choosing the generalized
inverse matrixF (x) is to choose an inverse such that, in
certain specified directions of the moment space, the inverse
will yield an inversion allowing the solution to coincides
with the attainable moment set (AMS). This can be done
by the computation of the solution to a geometric problem
where an intersection of the control space and the subset
of a constrained control space maps to the required point(s)
in moment space. Durham describes this technique and a
solution to this geometric problem in [6].

Another method for the computation of the generalized
inverse use in this solution, is using a weighted pseudo-
inverse. This is done by introducing a weighting matrix
when calculating a pseudo-inverse. First, a pseudo-inverse
is described byF = G(x)

T
[G(x)G(x)

T
]−1. After placing

the arbitrary weighting matrixN into the pseudo-inverse,
the problem is described as

F = NG(x)N
T
[G(x)N(G(x)N)

T
]−1

where the values of the matrix N are tailored to emphasize,
or to deemphasize, a certain set of controls [13]. The

pseudo-inverse is often used because it results in a minimum
Euclidean norm solution (vector of effector commands),
therefore the use of a pseudo-inverse minimizes the move-
ment of the effector deflection commands.

C. Daisy Chaining Solution

Daisy Chaining is a fairly new method for the solution
of the control allocation problem[3]. The method works off
of a solution obtained by partitioning the control vector,δ
and the linear effector authority matrix,G(x) into different
groups. These groups are then employed in succession as
each previous group of controls are saturated [8]. If you
split the two vectors (δ andG(x)) into k groups, then the
new vectors appear as

G(x) = [G(x)1G(x)2 · · ·G(x)k] andδT = [δ1δ2 · · · δk]

where G(x)i, i = 1, . . . , k are considered full rank and
invertible. Each invertedG(x)i has a correspondingF (x)i

such thatG(x)iF (x)i = I. The controls are taken similarly
as in the generalized inversion solution, but each control,
δj, 1 ≤ j ≤ k, are only employed if one or more control in
the previousi < j groups are saturated. The subsequent
groups only make up for saturation from the preceding
groups [6].

III. M ORE RECENT DEVELOPMENTS

Because the CA problem has become more pertinent
for new technological developments in aircraft and the
issue of computational expense is becoming a less promi-
nent challenge, mathematical programming techniques have
made their way into CA approaches. Two of the most
prominent methods of mathematical programming are lin-
ear programming (LP) and quadratic programming (QP).
These techniques are similar in that they both minimize
a cost function subject to a set of equality and inequality
constraints.

IV. I NFEASIBLE CA PROBLEMS

LP and QP based CA techniques are gaining increasing
attention due to their ability to respond on-line to effector
limits (position, rate) through adjustment of the inequality
limits δ−, δ+, and vehicle health information (such as
degraded or unresponsive effectors) through adjustment of
the gain-scheduled linear affine effector model matrixG(x).
An LP or QP problem is consideredfeasible if there is a
vectorδ ∈ ∆ that satisfies the linear constraintG(x)δ = τc.
Otherwise the problem is considered to beinfeasible. An
infeasible problem arises whenτc is outside of the AMS
T . Two techniques are presented in this paper that address
infeasible QP problems: the direction preserving method
and the sign preserving method [12].

V. CA PROBLEM SPECIFICATION

We will assume the existence of an off-line computed
nominal linear affine CA function

δc = F (x)τc + δ0(x) (1)



whereτc is the commanded torque vector,x is a vehicle
state vector,δ0 is a trim (neutral torque) vector andF (x) is a
matrix of nominal CA gains. One may interpret the columns
of F (x) as a set of gains defining “ganged” effectors for
each control axis. Ideally, the control allocation matrixF (x)
would be chosen to be the pseudo-inverseG(x)† of the
Jacobian Matrix

G(x) =
[

∂τb,i

∂δj

]
∣

∣

∣

x
∈ IR3×na (2)

where na is the number of effectors; that is the optimal
design ofF (x) produces

G(x)F (x) =





1 0 0
0 1 0
0 0 1



 (3)

so that the induced body-frame vehicle torquesτb match
the commanded body torquesτc.

The linear affine nominal CA law (1) by itself is inade-
quate for the CA problem for four reasons:

1) It fails to respond to torque allocation errors that can
be detected on-line.

2) It fails to take into account saturation issues.
3) It fails to respond to on-line detected failures in

effectors, and,
4) It fails to provide a framework to work with discrete-

valued (on-off) effectors such as reaction thrusters.
We use Hodel and Callahan’s dynamic CA (DCA) ap-

proach [10] to compensate for the effects of failures that
are unknown to the CA system. Our simulations use a PI
control law for the DCA component. CA reconfiguration for
known failures and degradations is achieved by modification
of the appropriate entries of the effector linear-affine model,
e.g., by scaling the appropriate column of the Jacobian
matrix G(x)). For complete failure of an effector, the
corresponding column ofG(x) is zeroed out to eliminate
the effector from the CA solution. For partial failure, each
column is scaled by a percentage of failure (i.e. 100% scales
a column ofG(x) by 0). This is proved in [10] as a viable
solution to reconfiguration in an unconstrained CA solution
(e.g. no effector limits).

Within this paper, we will use the reconfiguration routine
mentioned above and several novel and existing quadratic
programming techniques to prove the advantages of a
reconfigurable quadratic programming control allocation
solutions in a variety of optimization perspectives, e.g.
frequency component reduction, guaranteed feasibility. The
Least Squares algorithm, which is the least complicated
CA solution, will be compared to existing and new QP
algorithms, e.g. Direction Preserving, Sign Preserving, Fre-
quency Weighted, Frequency Domain Shaping, and a com-
bination of Frequency Weighted Sign Preserving.

A. Least Squares Problem

The Least Squares (LS) solution is determined using an
optimization of some cost function subject to an equality
constraint.

min
δc

1

2
δc

T Qδc + cT δc (4)

subject to G(x)δc = τc

As defined in the aerospace CA problem, the unknown
parameter in the LS solution is the command vectorδc.
The weighting matrices,Q andc correspond to penalties on
the quadratic and linear components of the cost function.
Without inequality constraints (i.e. effector position limits),
we consider the LS solution to be the most simplistic
programming CA solution. In fact, the LS solution is
reduced to a weighted pseudo-inverse (a.k.a Generalized
Inverse Solution) for specific weighting matrices (c is zero).
For the purposes of this paper, the LS solution is clipped
with the assumption the simulation will only accept effector
commands within the position constraints (δ− and δ+).
More recent solutions to the Least Squares active constraint
problem have been proposed by Härkegard which incorpo-
rates the inequality constraints in a Least Squares solution
by iteration [9]. For this paper, the inequality constraints are
implemented in a Quadratic Programming solution, which
allows for specific weighting and optimizations.

B. Quadratic Programming

A Quadratic Programming solution minimizes a quadratic
cost function subject to both equality and inequality con-
straints. For the aerospace problem, the determination of
the command vectorδc is determined by using QP.

min
δc

1

2
δc

T Qδc + cT δc (5)

subject to G(x)δc = τc

and δ−c ≤ δc ≤ δ+
c

Where the weighting matricesQ and c are the weights on
the quadratic and linear functions of the cost respectively.
The equality constraintG(x)δc = τc guarantees the solution
δc matches the commanded torque moment vectorτc.
Finally, the inequality constraints force the solutionδc to
be within the effector high and low position limitsδ−c and
δ+
c .
The solutions to QP will always be feasible as long as

the commanded torque vectorτc is within the attainable
moment set (AMS). When the commanded torque vector
τc is outside of the AMS, the QP solution is infeasible,
or outside of the effector position limits. Two existing
approaches have been used to modify the QP solution in
which the solution is guaranteed feasible, e.g. Direction
Preserving and Sign Preserving.

1) Direction Preserving: In order to guarantee feasibility
of the QP problem in CA applications, we elect to modify
the QP problem, Equations (5), to include variables that
have some kind of guaranteed feasibility.

min
δ,σ

1

2
δc

T Qδδc + cδ
T δc + Qσ(1 − σ)2/2 (6)

s.t. G(x)δc − στc = 0
[

δ−c
0

]

≤

[

δc

σ

]

≤

[

δ+
c

1

]



The direction preserving (DP) method preserves the direc-
tion of the moment vectorτc, while allowing the minimiza-
tion to scale the moment vector magnitude with a scaling
factorσ. By using a much higher weight on sigmaQσ than
on the deflection commandsQδ the minimization utilizes
the deflection commands over the scaling factorσ. Figure
1 represents graphically the scaling factor’sσ effect on
the magnitude of an infeasible moment vector. By scaling

AMS boundary

στc

τc

σ < 1

Fig. 1. Direction Preserving Method representation

all three moment vector components (τroll,τpitch,τyaw) to-
gether, the direction of the total moment vector is main-
tained.

2) Sign Preserving: The sign preserving (SP) method
of QP solves the minimization similarly, but allows the
scalingσ to be split amongst all three torque vector com-
ponents individuallyσroll, σpitch, and , σyaw corresponding
to τroll,τpitch, andτyaw respectively. Also the minimization
weightsQσ andQδ are chosen such that the scaling factors
are more heavily weighted (i.e.Qσ >> Qδ). For the
purposes of this paper, the scaling factor weightsQσ are
chosen to be the same forσroll, σpitch, and , σyaw. Figure
2 graphically represents the scaling effect of an infeasible
commanded moment vector.

min
δ,σ

1

2
δc

T Qδδc + cδ
T δc + 1

2
Qσ(1 − σroll)

2 (7)

+ 1

2
Qσ(1 − σpitch)2

+ 1

2
Qσ(1 − σyaw)2

s.t. G(x)δc − Στc = 0








δ−c
0
0
0









≤









δc

σroll

σpitch

σyaw









≤









δ+
c

1
1
1









where Σ =





σroll 0 0
0 σpitch 0
0 0 σyaw





By scaling all three moment vector components
(τroll,τpitch,τyaw) individually, the sign of the total moment
vector is maintained, but the direction may be modified.
This allows the CA solution to scale independently the
components of the moment vector with the least control
authority (function of statesx in “Jacobian” G(x)). In

AMS boundary

τc

σroll < 1

σpitch = 1

σyaw = 1

x, roll

z, yaw

ΣT τc

y, pitch

Fig. 2. Sign Preserving Method representation

Figure 2, theroll control authority is small, therefore the
sign preserving algorithm maintains 100% of bothpitch
andyaw while scalingroll to achieve a feasible solution.

Not only is feasibility an important issue in CA, but wear
and tear on the vehicle’s hardware, or effector, needs to
be considered. An effector command with a low frequency
component is much more desirable than a high frequency
effector command. High frequency effector commands can
produce unnecessary wear on specific hardware devices (i.e.
electromechanical actuators). One new method of QP which
addresses the issue of frequency components in effector
commands is Frequency Weighted Quadratic Programming.

3) Frequency Weighted: We have mentioned so far the
aspects of CA which consider the absolute effector deflec-
tion limits and the rate at which they are achieved, but we
can also consider the frequency content, or bandwidth, of
the commanded effector deflections. By building on existing
QP, LP and LS algorithms, we examine modifications to
cost functions in order to reflect the frequency content of the
effector commands. The goal of this approach is to reduce
physical wear on effector actuators caused by rapid change
in the direction of motion due to “jittery” commanded
signals.

Modifying the weights of the QP problem, the solution
combines frequency content into the optimization.

min
δ

1

2
δlo

T Qloδlo + clo
T δlo + 1

2
δhi

T Qhiδhi (8)

+chi
T δhi

s.t. G(x)δc(n) = τc(n)

δ−c ≤ δc ≤ δ+
c

where δlo =
∑m

i=0
aiδc(n − i)

δhi =
∑m

i=0
biδc(n − i)

The frequency-weighted cost function approach is devel-
oped as follows. Given two FIR filters, a low pass filter
δlo(n) = a0δc(n) + a1δc(n − 1) + · · · + amδc(n − m)
and a high pass filterδhi(n) = b0δc(n) + b1δc(n − 1) +
· · · + bmδc(n − m), we modify the quadratic cost function



to penalizeδhi more heavily thanδlo. At each time step,
the δc(n − 1) . . . δc(n − m) terms are known, and can be
restated in the quadratic cost function as a constant,wlo

and whi respectively. This can be written in the form of
our standard QP (5) by setting the quadratic weighting
matrix Q =

[

a2
oQlo + b2

oQhi

]

, the linear cost vector

c =
[

aowlo
T Qlo + aoc

T + bowhi
T Qhi + bochi

T
]T

, and
maintaining the same variables. This method only modifies
the weighting matrices.

4) Frequency Domain Shaping: Another method for
introducing a filtering term in the problem is to introduce
it in the equality constraint and not the cost function alone.

min
δ

1

2
δc

T Qδc + cT δc + Qσ(1 − σ)2 (9)

s.t. G(x)[δc(n) − δc(n − 1)] = Σ[τc − G(x)δc(n − 1)]

δ−c ≤ δc ≤ δ+
c

To do this, a difference equation is used as the param-
eter in the equality constraint,δc(k) − δc(k − 1) This
incorporates frequency-domain shaping behavior in the
equality constraints. With the addition of the new term,
the equality constraint manages the difference between
the actual torque implemented on the previous time step
G(x)δc(k−1), with theσ scaled version of the same torque
ΣG(x)δc(k − 1) (whereΣ is a vector of the three sigma
values from the sign preserving method previously men-
tioned). The frequency domain shaping equality constraint
can be rewritten in the form of our standard QP problem
(5) by setting the unknown vectorδc =

[

δc(n) Σ
]T

,

the quadratic weighting matrixQ =

[

Qδ 0
0 QΣ

]

, the

linear cost vectorc =
[

cδ
T −2 ∗ QΣ

]T
, G(x) =

[

G(x) −τc + G(x)δc(n − 1)
]

, τc = G(x)δc(n − 1),

δ−c =

[

δ−c
0

]

andδ+
c =

[

δ+
c

1

]

.

VI. I MPLEMENTATION

The use of a “Super X-33” simulation from NASA’s Mar-
shal Space Flight Center, allowed for testing and compari-
son of the different algorithms. The X-33 is a single stage
vehicle with twelve effectors (right/left rudder, right/left
in/out elevons, right/left flaps, four engines). The “Super
X-33” simulation is a modified version of the X-33, which
allows the vehicle to complete the ascent phase of flight.
The ascent phase of flight goes from launch to 74,000 ft.
and reaches Mach 27. A failure of an algorithm resulted
in a loss of altitude, drastic reduction in velocity, and/oran
attitude angle exceeding 180 degrees (conservative criteria).

VII. R ESULTS

Each algorithm discussed in the previous section was
implemented in the “Super X-33” simulation through the
ascent phase of flight, with and without failures. The ascent
phase of flight takes the simulated vehicle from launch to
Mach 27 and 74,000 ft. The results of each algorithm were
reduced to the mean squared error of the attitude angles,
and therefore could be easily compared.

TABLE I

MSE OF ALGORITHMS WHICH COMPLETEDNOMINAL ASCENTPHASE

OF FLIGHT, cmd− experienced

Algorithm Attitude Angle Mean Squared Error
MSE = E{[cmd− experienced]2}

Average MSE
ϕ θ ψ (ϕ, θ, ψ)

FWSP 36.83 56.39 19.41 37.54
SP 60.62 20.58 38.71 39.98
FW 60.43 46.60 20.09 42.37
QP 70.32 56.27 12.40 46.33
LS (clipped) 44.57 138.82 21.45 68.28

A. Without Failures

In the nominal ascent phase of flight, without failures,
the vehicle successfully flew with all but one of the previ-
ously described algorithms. The frequency domain shaping
(FDS) algorithm failed for all cases of flight. The effector
commands produced by FDS remained saturated due to the
addition of error in the equality constraint (ΣG(x)δc(n−1)).
A list of all successful algorithms in the nominal ascent
phase of flight can be seen in Table I. From Table I the
lowest mean squared error occurs in the frequency weighted
sign preserving (FWSP) algorithm.

The purpose of the FW and FWSP methods was to match
the equality constraintG(x)δc = τc and to reduce the use
of high frequency components in the solutionδc. For this
paper, the FIR filters were chosen with a cutoff frequency
of 10Hz for both 5 tap lowpass and highpass FIR filters.
The frequency components of the nominal ascent phase
effector commands for Engine 2 were examined by taking
their Fast Fourier Transform (FFT). The FFT of the engine2

commands can be seen in Figure 3. The QP solutionδeng2
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Fig. 3. FFT of Engine2 commands for QP and FWSP, Ascent Phase

has a high frequency component (FFT indicated a 22Hz
High Frequency Component). For the FWSP solutionδeng2

the frequency at 22Hz is suppressed by the FIR filters
(cutoff of 10Hz Low- and High-pass filters).



TABLE II
MSE OF ALGORITHMS,

RIGHT ELEVON FAILURE FROM 50SECONDS– END OF SIMULATION,

F = FLIGHT FAILURE S = SUCCESSFULFLIGHT

Algorithm Attitude Angle Mean Squared Error
MSE = E{[cmd− experienced]2}

Average MSE
ϕ θ ψ (ϕ, θ, ψ)

SP 42.4 85.5 21.2 49.67 S
FWSP 39.7 89.5 20.1 49.80 S
QP 98.3 56.0 20.5 58.23 S
FW 783.2 125.6 728.5 545.8 F
LS (clipped) 249.9 217.1 2,036 834.3 F

B. With Failures

A 50 percent degradation in both inner and outer Right
elevons occurred at 50 seconds for the remainder of the
flight. The corresponding Mean Square Error results for
the attitude angles are shown in Table II. The Frequency
Weighted Sign Preserving and Least Squares methods were
the only algorithms which actually failed (F) with a right
elevon failure. The other algorithms succeeded (S) per-
formed comparable to their nominal case. Although the Sign
Preserving method did out-perform the FWSP method, the
results of the FWSP method still reduced the higher fre-
quency component. The reduction of the this high frequency
component is an acceptable result for a very small difference
in the total Mean Square error (MSE).

VIII. C ONCLUSIONS ANDFUTURE WORK

Quadratic programming, and more specifically Frequency
Weighted Sign Preserving (FWSP) QP allows the user
to define weights which give the algorithm a decision
making procedure. If the CA solution is feasible, the optimal
solution is found according to frequency components only.
FWSP method uses the slack scaling variables of the SP
method both to ensure that the QP problem is feasible and
to adjust the frequency content of the resulting effector
commands. The FWSP algorithm gives the user control
over the decision process in quadratic programming CA.
FWSP quadratic programming produces a solution with

lower frequency content, and lower Mean Square Attitude
Angle Error than other quadratic programming techniques.
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