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Abstract— This paper deals with the congestion control prob-
lem in computer networks which is viewed as a resource
allocation problem constrained by the additional requirement
that the queue sizes need to be bounded. We propose a distributed
algorithm which converges to the max-min fair allocation of
resources among the users of the network and at the same time
ensures that the buffers are either empty or track a reference
queue size. The problem is formulated mathematically and the
proposed algorithm is shown analytically to fulfil the design
objectives. The local asymptotic stability of the equilibrium point
is established. The problem can be viewed as a hybrid system with
changing affine dynamics in different regions of the state space.
The transient performance of the proposed algorithm is evaluated
through simulations using Matlab. The algorithm can form
the basis for the development of an end-to-end communication
protocol since it requires no maintenance of per flow states within
the network. 1

I. I NTRODUCTION

The last few years, the problem of congestion control in
computer networks offering a single class of best effort service,
has attracted a lot of attention within the research community.
The Internet is the main application which has stimulated
this interest. Congestion control mechanisms currently serving
the Internet are expected to lead to underutilization of the
network and degradation of the quality of service provided
to the users due to the increasing complexity of the system
and due to increasing bandwidth-delay products. In order to
resolve these problems, the research community has explored
new design procedures utilizing analytical tools from the field
of control theory. This design approach leads to solutions with
analytically provable performance characteristics as opposed
to the intuitive ad-hoc design methods where performance
could only be evaluated through excessive simulations and
actual implementation. Although there is still a big gap be-
tween solutions emanating from theoretical considerations and
practical implementation, this gap is expected to shrink as new
protocols (e.g. ECN) and emerging network technologies (e.g.
UMTS Radio Access Network ,wireless and ad-hoc networks,
sensor networks) offer new implementation capabilities.

The principal aim of any best-effort congestion control
algorithm is to provide low-delay, low-loss services to each
user and in the case where the demand for resources exceeds
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availability, to distribute the available resources in a fair way
among the users while at the same time achieve high network
utilization. Here, we consider store and forward networks such
as the Internet, which offer buffering capability at each link in
order to absorb statistical fluctuations of the sending rates. In
order to avoid excessive delays and losses it is also necessary
for the congestion control algorithm to guarantee that the
queue size at each buffer is bounded. So, the congestion
control problem can be decoupled in two subproblems: a queue
size control problem and a resource allocation problem where
the resources under consideration are the link bandwidths. In
this paper, we assume deterministic models for the queue-
ing dynamics and demonstrate how both objectives can be
achieved by attempting to track a reference queue size at each
link.

The paper is organized as follows. In section II we give an
overview of what has been done so far from an optimization
perspective, in section III we describe our model and formulate
the problem mathematically, in section IV we describe the
algorithm and prove all its properties, in section V we give an
example and demonstrate the functionality of the algorithm
through simulations and finally in section VI we offer our
conclusions and future directions.

II. FAIRNESS

As discussed in the previous section, the optimal allocation
of the available resources should be characterized by high
network utilization, fairness and bounded queue sizes. The
problem of allocating finite resources to competitive users has
been studied extensively in the fields of political science and
political economics and a rich mathematical framework has
been developed in order to formulate and solve the problem.
Tools from this framework can be utilized to solve network
problems. So, concepts like pareto-efficiency and welfare are
directly related to the concepts of high network utilization
and fairness respectively. In order to develop these ideas it is
necessary to assign to each user autility function ui, which
basically shows the preference of that user to a particular
resource allocation. These individual utility functions are
then aggregated in some sense through awelfare function
W (u1, u2, ..., un) which is required to be strictly increasing
in all of its arguments. An allocation of the resources is then
said to be fair in the sense of the welfare function chosen,



if it solves the problem of maximizing the function over the
set of all feasible allocations. The optimal solution is pareto-
efficient. This immediately demonstrates how the congestion
control problem can be formulated as a convex optimization
problem. The bounded queue size requirement does not alter
the nature of the problem. It simply adds further constraints
on the formulated optimization problem. A nice discussion of
fairness issues is presented in [1]. In the rest of this section
we analyze two fairness criteria which have dominated the
literature and discuss proposed congestion control algorithms
which achieve the desired fairness and at the same time aim
at bounding the queue sizes.

The sum of utilities criterion corresponds to the classical
utilitarian welfare functionW (u1, u2, ...un) =

∑
i ui. The

consideration of this function in the analysis of rate control
algorithms in computer networks was triggered by [2] where it
was pointed out that elastic applications can be characterized
by strictly increasing and concave utility functions and that
the network objective is to satisfy the needs of all users by
maximizing the total efficacy. It should be noted that there
had been similar problem formulations long before that in
[3]. Motivated by the work of Shenker the congestion control
problem was then formulated as a concave maximization
problem over linear constraints in [4]. The problem was then
decomposed into Network and User subproblems. Primal and
dual distributed algorithms were then proposed in [5] to solve
relaxations of the original optimization problem which were
formulated by introducing appropriate penalty functions to
the original primal and dual costs. A similar approach was
adopted in [6] where the original dual problem was solved
using a gradient projection algorithm. The distributed nature
of the solution is indeed striking. The fact that the proposed
algorithm, can lead to large queue sizes and thus to excessive
feedback delays led to a modification in [7] which guarantees
that at equilibrium all buffers are empty. The stability of the
latter was investigated in [8].

The second fairness criterion considered is themax-min
criterion which corresponds to the Rawlsian welfare func-
tion W (u1, u2, ...un) = min(u1, u2, ...un). Algorithms which
achieve max-min fair allocation of sending rates among com-
petitive users have been proposed by a number of researchers
in different contexts ([3], [9], [10], [11], [12]). A very popular
design procedure is to develop congestion update algorithms
at each link and sending rate update algorithms at each source
using the single bottleneck link case and then extend these to
the multiple link case by considering at each source a feedback
signal which is equal to the minimum of the congestion
signals found, as a packet traverses from source to destination.
Approaches which aim at bounding the queue sizes and adopt
the design procedure described above, formulate the problem
as a queue tracking problem for the single bottleneck link case
([13], [14], [15], [16]). In this paper we follow a different
approach. It was observed in [10] that the utilitarian welfare
function does not result in the same resource allocation as the
Rawlsian function. In fact the difference arises when there
are more than 1 bottleneck links along a particular path.

Motivated by the ’absolute fairness’ provided by the max-
min fair allocation, we have explored ways with which the
congestion control algorithms developed using the utilitarian
function can be modified to produce max-min fair solutions
with bounded queue sizes. It was found in [10] that if
the communication among the links is changed so that the
summation of prices is replaced by the maximum, max-min
fair resource allocation is achieved. The problem considered
in [10] can actually be viewed as a tracking problem where
at each link we aim at tracking the available capacity. In this
paper, we demonstrate that if instead of tracking the available
capacity we attempt to track a reference queue size at each
link not only do we achieve max-min allocation of resources
but we also bound the queue sizes by ensuring that at each
link the buffer is either empty or tracks a reference queue
size. The algorithm proposed is shown analytically to have
the desired characteristics and local asymptotic stability is also
established.

III. PROBLEM FORMULATION

We consider a packet switched, store and forward network
which accommodates elastic applications. The applications are
assumed to be saturated (persistent) in the sense that they
always have data to send. We develop a math model for an
arbitrary network in the fashion of [5]. The network consists
of a finite set of sources or usersU = {s1, s2, ..., sN} and a
finite set of linksR = {l1, l2, ..., lL}, wheresi denotes user
i and lj denotes linkj. Each user injects data packets into
the network. The traffic is viewed as a deterministic fluid flow
with continuous time dynamics and the time delays within the
network are neglected. Associated with each usersi, is its
sending ratexi = h(qi) which is chosen based on a function
h(.) of a feedback signalqi that denotes the presence of
congestion in the route used by usersi. The functionh(.) is
to be generated by the congestion control strategy. We use
the vectorx = [x1, x2, ..., xN ]T to denote all the sending
rates of the sourcess1, s2, ..., sN . Similarly we use the vector
q = [q1, q2, ...qN ]T to denote all the feedback signals of the
sources. We also lump the functionsh(.) to form the vector
valued function

H(q) = [h(q1), h(q2), ..., h(qN )]T (1)

We can then write:

x = H(q) (2)

To each link j we associate a buffer the queue size of
which is denoted bybj . The output capacity of the buffer is
denoted byCj . Let yj be the flow rate of data into the buffer
and let ȳj be the flow rate of data out of the buffer at link
j. The time evolution of the queue size is described by an
ordinary differential equation of the forṁbj = φ(bj , yj , Cj),
bj(0) = bj0. In this work we are assuming the following
simple integrator model for the queueing dynamics:

dbj(t)
dt

= Pr[yj(t)− Cj ], bj(0) = bj0 (3)



where the projection operator is defined as follows:

ḃj =

{
yj − Cj if bj > 0
yj − Cj if bj = 0, yj − Cj > 0
0 otherwise

(4)

We use the vectory = [y1, y2, ..., yL]T to denote all the
input flow rates at linksl1 to lN . Similarly we define the
vectors ȳ = [ȳ1, ȳ2, ..., ȳL]T , b = [b1, b2, ..., bL]T and C =
[C1, C2, ...CL]T . In addition, we lump the functionsφ(.) to
form the vector valued function

Φ(b, y, C) = [φ(b1, y1, C1), ..., φ(bL, yL, CL)]T (5)

The queueing dynamics can then be described by the
following differential equation:

ḃ = Φ(b, y, C), b(0) = b0 (6)

Let A ∈ RL×N denote the matrix that represents the route
of each user. The entry in thei th row andj th column ofA is
denoted beaij . In this representation,A consists of elements
equal to 0 or 1. If useri utilizes link j thenaji is equal to 1.
Otherwise it is equal to 0. If we now assume thatȳ = y we
can write the following algebraic relationship:

y = Ax (7)

At each link j we associate a signal processor which
generates a signalpj which denotes the congestion status
at the link. The congestion signalpj is generated according
to a control algorithm whose inputs arebj , yj and Cj . This
control law is represented by the operatorg(.) such that
pj = g(bj , yj , Cj). The operatorg(.) is to be determined
by the congestion control scheme and it might incorporate
dynamic states. We use the vectorp = [p1, p2, ...pL]T to
denote all the congestion signals at linksl1 to lL and we lump
the operatorsg(.) to form the vector valued operator:

G(b, y, C) = [g(b1, y1, C1), ..., g(bL, yL, CL)]T (8)

We can then write:

p = G(b, y, C), (9)

The congestion signals generated at the links are com-
municated back to the sources resulting in the generation
of a feedback signalqi at each sourcesi. The relationship
between the feedback signalsq, received at the sources and
the congestion signalsp, generated at the links is represented
by a vector valued functionF (.) such that:

q = F (p) (10)

The operatorF (.) is to be determined by the congestion
control strategy. Control information can only be passed along
the same routes as the data and this imposes the following
mathematical constraint on the operatorF (.):

p=G(b,y,C)

x y

q

b, y

F(.)

H(.)

p

A

Queue Dynamics

Source Behavior

Routing Matrix

Congestion Signal Update

Feedback Communication

.
b=   (b,y,C)Φ

Fig. 1. Feedback System

Fi(.) = f(pj |jεMi) ,Mi = {j : aji = 1}. (11)

The equations indicating how the variables defined above
are coupled together are summarized below:

Plant :y = Ax (12)

ḃ = Φ(b, y, C), b(0) = b0 (13)

Controller : p = G(b, y, C), (14)

q = F (p) (15)

x = H(q) (16)

whereb ε <L, is a state vector of the system,x ε <N , y, p
ε <L, q ε <N are system signal vectors,Φ : <L×<L×<L 7→
<L is a vector field,H : <N 7→ <N , F : <L 7→ <N are static,
possibly nonlinear mappings andAε<L×N is a matrix. Fig. 1
demonstrates how equations (12)-(16) are interconnected in a
feedback system.

The objective is then to design the operatorsH(.), F (.) and
the control lawG(.) such that:

lim
t→∞

x(t) = x∗ , x∗ = max
Ax≤C

min(x1, x2, ..., xN ) (17)

lim
t→∞

b(t) = b∗ , b∗j ≤ bref , j = {1, 2, ..., L} (18)

Equation (17) indicates that at steady state the resource al-
location satisfies the max-min fairness criterion. The operators
H(.) and G(.) are block diagonal in the sense of equations
(1) and (8) and so the the desired congestion controller is said
to be decentralized.

IV. CONTROL ALGORITHM

We propose the following algorithm to fulfill the design
objectives:

p = [kp(b− bref ) + w]+,
dw

dt
= kIPr[b− bref ] (19)

q = AT
max(p) (20)

x = [K − q]+ (21)



where bref , kp and kI are design parameters,wε<L is
a state vector,Kε<N is a constant vector and[z]+ =
max{z, 0}. If z is a vector, the latter relationship applies for
each element of the vector. The projection operator is defined
in (4). If the input of the operator is a vector, (4) applies for
each element of the input vector. The operatorAT

max is defined
as follows:

q = AT
max(p) : qi = max

j
ajipj i = {1, 2, ..., N} (22)

All the elements of the vectorK are equal tok which
is a design parameter.k must be greater than the maximum
capacity in the network. At each link we are basically applying
a simple PI controller to track the reference queue sizebref

and through the projection operator we make sure that all
congestion signals are non-negative. The projection operator
applied at the integrator within the controller ensures that the
integrator state is bounded from below. This ensures that at
steady state, the congestion signals at the links which do not
control the sending rates are bounded. This will become appar-
ent in the analysis. At each source we apply negative feedback
and through the positive projection operator we ensure that
the sending rates are non-negative. The main properties of the
algorithm are outlined in the following lemmas.

Lemma 4.1:At steady state the algorithm proposed con-
verges to a vectorx∗ which satisfies (17), i.e. it satisfies the
max-min criterion, and to a vectorb∗ whose elements are equal
to bref or 0.

Proof:
We are assuming thatp∗ is unique. It follows from (3) and

(19) that at equilibrium the following are true:

b∗j = bref , p∗j > 0 when y∗j = Cj (23)

b∗j = 0, p∗j = 0 when y∗j < Cj (24)

The above can be summarized in the following equations
which describe pareto optimality:

p∗T [y∗ − C] = 0 (25)

b∗T [y∗ − C] = 0 (26)

The proof for the max-min fairness of the solution is omitted
due to lack of space.

Lemma 4.2:The equilibrium point is locally asymptotically
stable.

Proof:
Let nmn, m 6= n, denote the number of users utilizing both

links m andn. Let nmm denote the number of users utilizing
link m but are not utilizing linkn for n < m. Let nj be the
total number of users utilizing linkj.

At each time t, without loss of generality, change the
indexing of the links so that the vectorp is rearranged in
descending order of its elements:p1 ≥ p2 ≥ p3.... ≥ pL.
Sincep1 is the maximum value it means that all sources which
utilize that link will send data with a rate of[k − p1]+. We

neglect all projection operators at first and examine their effect
later. So at link1 the following equations hold:

y1 = n1(k − p1) (27)
db1

dt
= n1(k − p1)− C1 (28)

dw1

dt
= kI(b1 − bref ) (29)

p1 = kp(b1 − bref ) + w1 (30)

After some algebraic manipulations the above equations can
be expressed in the following matrix form.

d

dt

[
b1

w1

]
=

[ −n11kp −n11

kI 0

] [
b1

w1

]

+
[

n1k + n1kpbref − C1

−kIbref

]
(31)

Now, all sources utilizing link2 but not utilizing link 1 will
send data with a rate of[k − p2]+. So, again neglecting the
projection operators we derive the following set of equations:

y2 = n21(k − p1) + n22(k − p2) =
= n2k − n21p1 − n22p2 (32)

db2

dt
= y2 − C2 (33)

dw2

dt
= kI(b2 − bref ) (34)

p2 = kp(b2 − bref ) + w2 (35)

The above, together with the set of equations for link1 can
be put in the following matrix form:

d

dt




b1

w1

−
b2

w2




=




n1k + n1kpbref − C1

−kIbref

−−−−−−−−
n2k + n2kpbref − C2

−kIbref




+




−n11kp −n11 | 0 0
kI 0 | 0 0
− − − − −

−n21kp −n21 | −n22kp −n22

0 0 | kI 0







b1

w1

−
b2

w2




(36)

The block lower triangular structure of the state transition
matrix is evident. The procedure that we have described for
the first two links, is applied up to a linkm where n11 +
n22 + ... + nmm = N . Now for links r such thatr > m, the
following equations are true.

yr = nr1(k − p1) + ... + nrm(k − pm) (37)
dbr

dt
= yr − Cr (38)

dwr

dt
= kI(br − bref ) (39)

pr = kp(br − bref ) + wr (40)



The above together with the set of equations derived for the
links 1, 2, ..., m can be summarized in the following matrix
equation:

d

dt




z1

z2

...
zm+1

...
zL




= M




z1

z2

...
zm+1

...
zL




+




K1

K2

...
Km+1

...
KL




(41)

whereM has the form shown below:




A11 0 0 0 0 · · ·
A21 A22 0 0 0 · · ·

...
Fm+1,1 · · · Fm+1,m Gm+1,m 0 · · ·

...
FL,1 · · · FL,m 0 · · · GL,L




and

zj =
[

bj

wj

]
, Kj =

[
njk + njkpbref − Cj

−kIbref

]
,

Aji =
[ −njikp −nji

0 0

]
j 6= i,

Aji =
[ −njikp −nji

kI 0

]
j = i,

Fji =
[ −njikp −nji

0 0

]
, Gji =

[
0 0
kI 0

]

or in more compact form:

d

dt

[
zc

zu

]
=




Ac | 0
− − −
Fu | Gu




[
zc

zu

]
+

[
Kc

Ku

]
(42)

The fact that at equilibrium,0 < p∗j < k for j =
{1, 2, ..., m} can be established by contradiction. Ifp∗j ≤ 0,
then x∗i for some i would be greater than the maximum
capacity in the network which would contradict queue stability
for some link j. If p∗j ≥ k then x∗i = 0 for some i
which contradicts the max-min fair property of the solution
at equilibrium. The inequality0 < p∗j < k establishes
that for small perturbations of the state vectorzc about the
equilibrium point, the projection operators can be neglected.
So, the following is true:

dδzc

dt
= A∗cδzc (43)

It was established above thatA∗c is block lower triangular
and so uniform asymptotic stability is guaranteed if the eigen-
values of the diagonal matrices have negative real parts. This

C6=70Mb/s

s1
d1

C2=50Mb/s

C1=50Mb/s

s2

s3

s4

d2

d4

d3
C7=60Mb/s

C4=100Mb\s

C3=50Mb/s

C5=100Mb\s

Fig. 2. Network Topology

can be achieved by appropriate choice of the proportional and
integral gains.

The fact thatx∗ is max-min fair establishes thaty∗j < Cj

for j = {m + 1, m + 2, ..., L}. From equations (3) and (19) it
can be deduced that:

F ∗uz∗c + G∗uz∗u + Ku < 0, p∗u = 0 (44)

So, for any small perturbations ofz the inequality is
preserved. The latter together with (43) establish that the
equilibrium pointz∗ is locally asymptotically stable.

Remarks: The vectorzc contains the system stateszjε<2

for jε{1, 2, .., m} whereas the vectorzu contains the states
zj for jε{m + 1, ...L}. Similarly we define vectorpc and
pu. We state without proof that at equilibrium there exists
a matrix R∗ε<N×m such thatx∗ = R∗p∗c . This means that
at equilibrium, the vector of sending rates is fully determined
by p∗c . So, the linksjε{1, 2, ..., m} are the ones controlling
the sending rates at steady state. For these linksp∗j andb∗j are
strictly positive. In factb∗j = bref . For the rest of the linksb∗j ,
w∗j and p∗j are equal to 0 due to the effect of the projection
operators. Another important result that follows from the local
stability proof is that as long as the ordering of the vectorp
stays the same the matrixM is constant. This means that
we can generate a state space partition{Pi}iεI and a set of
constant matrices{Di}iεI such that:

ż(t) = Diz(t) + K for z(t)εPi (45)

This indicates that the system can be viewed as an au-
tonomous switching system. Global asymptotic stability of
such a system is currently under investigation.

V. SIMULATIONS

In this section we evaluate the performance of the proposed
algorithm through simulations carried out on Matlab. The
simulation scenario considers the network topology shown in
Fig. 2. This topology can be represented using theA matrix
and theC vector shown below. The entries in theC matrix
are measured in packets/s.:

AT =




1 1 1 0 0 0 0
1 0 0 1 0 0 0
0 0 0 0 0 1 1
0 1 0 0 1 0 1


 ,

CT =
[

6400 6400 6400 12800 12800 9000 7700
]
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Fig. 4. Response of the queue size and the congestion signal at link 2

The initial conditions of all integrators are set to 0 and
the value ofk as that appears in the algorithm proposed, is
set to 15000. The proportional gainkp and the integral gain
ki as these appear in the controller are chosen to be 2 and 1
respectively and the reference queue size is set to 500 packets.
This results in closed loop poles which are real and negative
and their magnitude lies between 0 and 1. It can be observed
in Fig. 3 that the sending rates do converge to the max-min
fair allocation of ratesx∗T = [3200, 3200, 4500, 3200].

The time evolution of the queue sizeb2 and the congestion
signal p2 observed at link 2 are shown in Fig. 4, whereas
the time evolution of the queue sizeb3 and the congestion
signal p3 observed at link 3 are shown in Fig. 5. The
former demonstrates how the links controlling the sending
rates achieve good tracking of the reference queue size and
result in a strictly positive congestion signalpj , whereas the
latter demonstrates how the queue sizes and the congestion
signals for the rest of the links converge to zero. The system
also exhibits good transient properties since good damping and
speed of response are observed.
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Fig. 5. Response of the queue size and the congestion signal at link 3

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we propose a distributed congestion control
algorithm which converges to the max-min fair allocation
of the available resources between competitive users in a
computer network. The algorithm also guarantees that at each
link the buffer is either empty or tracks a reference queue
size chosen by the designer. This work was motivated by the
need to find ways with which to extend the IDCC scheme
which is presented in [17] to a general network topology
for application in the core network of UMTS systems. The
IDCC scheme considers non-linear models for the queueing
dynamics at each link. So our objective is to investigate how
these models and the proposed controllers can be integrated in
a general network model which will lead to analytical proofs
of the desired system characteristics. The no delay assumption
will also be relaxed. The performance of the resulting schemes
will be evaluated on the Ns simulator.
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