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Abstract— A TCP Vegas flow adapts its sending rate to
maintain a constant backlog in its path. The stability of
nonlinear adaptation has been analyzed based on linearization
and only accounted for a small signal. In this paper, we
extend the error model of TCP-like flow to a state-dependent
coefficient form with nonlinear state feedback. The nonlinear
feedback is here approximated by a saturation function. Using
a quadratic Lyapunov function approach, we find a domain
of attraction to show that the unique equilibrium point of the
system is asymptotically stable in the domain.

I. FLOW-LEVEL MODEL FOR TCP VEGAS

Congestion avoidance algorithm of TCP Vegas [1]

is modelled as a flow-level dynamics by [6], [5], [2].

For a general network of Vegas, [6], [5] show that the

equilibrium is weighted proportionally fair. Sufficient

conditions for the local asymptotic stability of Vegas and

its modification in the presence of heterogenous feedback

delays are derived in [2]. The work accounts for local

behavior around equilibrium.

On the global stability, however, there are very few

studies have been done because the coupling between

primal and dual variables complicates the analysis. See

[7], [3], [11], [10] on nonlinear stability analysis for other

congestion control algorithms. We examine the global

stability of a Vegas-like protocol in this paper, under

the assumption that there is no feedback delay in source

dynamics nor in link dynamics.

Recall the Vegas model of a single-source and single-

link network in continuous-time scale. The window size of

TCP Vegas sourcew is adapted at the feedback of the link

congestion measurep. p is queuing delay. Then a dynamic

model in continuous-time scale consists of the time-average

variables of bothw andp.

ẇ(t) = −
1

T (t)
sign [x(t)p(t) − αd]

+
w(t) (1)

ṗ(t) =
1

c
[x(t) − c]

+
p(t) (2)

x(t) =
w(t)

T (t)
(3)

T (t) = p(t) + d (4)

where w(t) is the window size of TCP flow,p(t) is

queuing delay at the link,x(t) is the flow rate, andc

andd are the link capacity and the flow propagation delay

respectively. And

[x]
+
a =

{

x if a > 0

max {x, 0} if a = 0
.

We assume that the subspace such thatw(t) > 0 and

p(t) > 0 is in our interest, then the dynamic model ofx(t)

andp(t) is like this:

ẋ(t) = −
1

T (t)2
sign (x(t)p(t) − αd)

−
x(t) (x(t) − c)

cT (t)
(5)

ṗ(t) =
1

c
(x(t) − c) (6)

In this model, the flow rate update equation has an

addition term−x(t)(x(t)−c)
cT (t) , compared with that in [2]

where the time derivative ofq(t) is assumed negligible.

Given the link capacityc and the propagation delayd,

the equilibrium point of TCP Vegas is(x∗, p∗) = (c, µd)

[6], [5], whereµ = α
c

is the ratio of the margin of server

sending rate allowed in the link queueα to the available

bandwidthc. It is easy to show that the equilibrium point

is unique in the the domain of our interest. Without

loss of generosity, we set an equivalent error model of

TCP Vegas to move the equilibrium point to zero. And

we approximatesign (u) to saturation functionsat
(

u
ǫ

)

,

where the approximation is reasonable for a sufficiently

small ǫ > 0 as Figure 1 shows.
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Fig. 1. Sign function is approximated to saturationf(u) = sat

(

u

ǫ

)

.

Then the error model can be set in state-dependent

coefficient form with a saturated nonlinear input. Let

z =

[

z1

z2

]

=

[

x − x∗

p − p∗

]

Given a finite queue sizeQ < ∞, the delay-based

algorithm is meaningful only in the feasible domain which

is free from any packet loss event. To avoid packet loss,

the backlog of the Vegas flow should not exceedQ, i.e.

(z1 + c) (z2 + µd) ≤ Q. (7)

Thus the feasible domainD(z) is finally defined as

D :=
{

z ∈ R
2|z1 ∈ (−c, xmax − c],

z2 ∈
[

−µd, Q
xmax−c

− µd
]} (8)

where it is assumed thatx(t) has an upper-boundxmax.

Figure 2 illustrates the domainD.

The network model of a TCP Vegas-like flow and a

Drop-Tail bottleneck is driven to a state-dependent coef-

ficient form with nonlinear saturation input as follows.

ż = A(z)z + B(z)sat (F (z)z) (9)

where

A(z) =

[

− (z1+c)
(1+µ)cd

0
1
c

0

]

, (10)

B(z) =

[

− ω
(z2+(1+µ)d)2

0

]

, (11)

F (z) =
[

z2+2µd
2ǫ

z1+2c
2ǫ

]

. (12)

Here ω > 0 is a parameter for step size in flow rate

update. This system under saturation feedback is the same
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Fig. 2. The feasible domainD(z) with (c, d) = (100pkts/ms, 100ms),
Q = 3000pkts andxmax = 200pkts/ms.

framework of [4], but the difference is that system matrices

A(z), B(z), andF (z) are state-dependent.

II. STABILITY ANALYSIS

To analyze the stability of the error model (9), we set a

quadratic form of Lyapunov functionV (z) = zT Pz which

satisfiesV (0) = 0 andV (z) ≥ 0,∀z ∈ R
2. For simplicity,

a diagonal matrix

P =

[

p1 0

0 p2

]

(13)

is chosen as Riccati matrix, wherep1, p2 > 0 thus P ≻

0. ThenR (P, ρ) =
{

z ∈ R
2|V (z) ≤ ρ

}

is a compact set

containing the originz = 0, for all ρ > 0 and it is clear

that the origin is the unique equilibrium inR (P, ρ). Thus,

we show the following theorem to extend [4] to the model

(9) in the state-dependent coefficient form.

Theorem 1:Given R (P, ρ > 0), suppose that

(A(z) + B(z)F (z))
T

P + P (A(z) + B(z)F (z)) ≤ 0,

∀z ∈ R (P, ρ) . (14)

Then, R (P (z), ρ > 0) is invariant under the closed-

loop system (9), if there exists a row matrixH(z) =

[h1(z) h2(z)] ∈ R
1×2 such that

(A(z) + B(z)H(z))
T

P + P (A(z) + B(z)H(z)) < 0,

∀z ∈ R (P, ρ > 0) (15)

and

R (P, ρ > 0) ⊂ L (H(z)) (16)

whereL (H(z)) is the linear region ofsat (H(z)z), i.e.

L (H(z)) :=
{

z ∈ R
2| |H(z)z| ≤ 1

}

. Furthermore, ifz =



0 is one and only point that stays forever among∀z ∈ SF

defined as

SF :=
{

z ∈ R(P, ρ > 0)| (A(z) + B(z)F (z))
T

P

+ P (A(z) + B(z)F (z)) = 0} (17)

and∀z ∈ SH defined as

SH :=
{

z ∈ R(P, ρ > 0)| (A(z) + B(z)H(z))
T

P

+ P (A(z) + B(z)H(z)) = 0} (18)

, any trajectoryz(t) of (9) with z(0) ∈ R (P, ρ > 0)

remains inR (P, ρ > 0) for all t ≥ 0 and converges to

the origin ast goes to∞.

Proof: Before determining the invariance of

R (P (z), ρ), we first make sure that (14) is satisfied under

the system (9).

(A(z) + B(z)F (z))
T

P + P (A(z) + B(z)F (z))

≤ 0,∀z ∈ R (P, ρ > 0) .

we , at first, examine the inequality atz = 0. Let

A0 = A(0)

B0 = B(0)

F0 = F (0).

Then, withP = I,

(A0 + B0F0)
T P + P (A0 + B0F0)

=

(

− ǫ(1+µ)c+ωµ

ǫ(1+µ)2d2 −ωc2
−ǫ(1+µ)2d2

ǫ(1+µ)2cd2

−ωc2
−ǫ(1+µ)2d2

ǫ(1+µ)2cd2 0

)

≺ 0.

For z 6= 0, there existsρ > 0 such that the numerator

on the left hand side of (17) turns out to be a sum of

squares of polynomials in
(

z2
1 , z1z2, z

2
2 , z1, z2, 1

)

([8], [9])

by choosing a reasonable parameter set. On the other hand,

we always haveR (P (z), ρ) ⊂ L
(

H̄(z)
)

, i.e. |H(z)z| ≤ 1,

∀z ∈ R (P (z), ρ) therefore there exists an̄H(z) ∈ R
2

which satisfies (15) and (16). Thus the sufficiency holds. It

is clear that among allz ∈ SF ∪ SH , only z = 0 satisfies

ż(t) = 0. Combining La Salle’s theorem, we can conclude

that these (14)-(16) are the sufficient conditions for the

nonlinear asymptotic stability of (9).

III. T HE REGION OF ATTRACTION

Given a network topology(c, d), we can abstract the

explicit conditions of design parametersµ = α
c

, ǫ, andω,

and the positive matrix coefficientsp1 andp2 for the Vegas-

like protocol to maximize the estimated region of attraction

defined byρ, so that it covers allz in the feasible domain

D in Figure 2.

From Theorem 1, the following inequality condition can

be derived:

(2µcdp1) z4
2 +

{

c (z1 + x∗) p1 −
(d + µd + z2)

2
p2

ω

}

z1z2

+ µcdp2z
2
2

> 0. (19)

Note that (19) is not always satisfied in the global space

R
2×2. However, it holds for a feasible setD in R, if

we chooseω and ǫ and the quadratic Lyapunov function

parametersp1 andp2 such that

2ǫ

ω

√

p2

2p1
<

c

d
. (20)

and chooseµ such that

µ ≥ s −
√

s2 − 1, (21)

wheres := ω
ǫ

√

2p1

p2

c
d
−1 > 1 is lower-bounded by (20).

IV. CONCLUSION

We have modelled a network with Vegas-like TCP as

a standard-dependent coefficient form with saturated non-

linear state feedback, and examined the nonlinear stability

of a single-link single-source model in the framework of

invariant system. The analysis derives a sufficient condition

for expanding the region of attraction to the feasible do-

main of our interest. For more general network topologies,

the nonlinear global stability of TCP Vegas or the class

of similar delay-based protocol is still an interesting open

problem. The effect of boundary constraints and delay is

also worth going into further research.
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