
Interior Point-based Optimization for Joint Admission Control
and Routing in IP Networks

Kalyan Kuppuswamy and Daniel C. Lee

Abstract— For MPLS-like IP networks, we propose a novel
and practically implementable optimal Joint Admission Con-
trol and Routing (JACR) mechanism for incoming trunk traffic
classes with distinct QoS requirements. We base our proposed
mechanism on Interior Point-based optimization techniques
to solve the admission control/routing problem in large ser-
vice provider networks. The significant contributions of our
proposed mechanism are a) an efficient resouce allocation
mechanism that i) simultaneously satisfies both user QoS
requirements and network provider’s capacity and routing
constraints and ii) engineers the usage of network resources
efficiently by load-balancing and preventing hotspots from
developing in the network, b) computationally efficient to
make decisions within real-time call (flow) setup durations, c)
scalability to network size and complexity and d) lends itself
to a distributed implementation. The proposed mechanism
runs in two distinct phases - Phase-1 is the admission control
and feasible route determination step and Phase-2 is the
optimal routing step. This structure provides flexibility to
the service provider to implement this mechanism in its
complete form or even implement it solely as an admission
control/feasible route determination algorithm (i.e. use Phase-
1 only). Experimental results on large-size service provider
network with 56 nodes, 117 links and 14 LSPs between an
ingress-egress pair demonstrate that, for incoming traffic with
diverse QoS requirements, the proposed mechanism is very
efficient in determining admission and allocating network
resources by optimal routing, all within real-time call setup
times.

I. INTRODUCTION

Efficient resource allocation is a key requirement for
optimizing operational efficiency of MPLS-like IP networks
[1]-[2]. In this paper, we propose a novel and practically
implementable Joint Admission Control and Routing (JACR)
mechanism for trunk traffic sessions that are injected into
the service provider’s network. Our JACR is an efficient
network resource allocation mechanism based on Interior
Point optimization techniques, and it takes into account
the QoS requirements of the incoming traffic, and equally
importantly, the network provider’s capacity and routing
constraints. This mechanism also engineers the allocation of
network resources efficiently by load-balancing and prevent-
ing hotspots from developing in the network. Furthermore,
if we view each ’call’ as a trunk reservation request, our
JACR mechanism could also guide a service provider in its
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Service Level Agreements (SLAs) with a subscriber (which
could be another network provider itself) that requests for
a trunk reservation.

With these objectives in mind, we propose the Joint Ad-
mission Control and Routing mechanism with the following
key characteristics. These, we believe, are the novel and
significant contributions of our work.

• Optimal resource allocation mechanism - the admis-
sion control/routing problem for large service provider
networks with user and network constraints is solved
based on Interior Point optimization techniques, which
leads to optimal network resource allocation and steers
the network towards improved operational efficiencies.

• Fast computational requirements of the algorithm - the
trunk traffic requests are presented to different ingress
points in the network for admission, and the admission
control and routing decisions must be made within
real-time call setup time durations. Interior Point-based
optimization methods have been found to be very
efficient (superlinear to quadratic rate of convergence)
for solving large non-linear optimization problems [9]-
[12].

• Scalability to large network size and complexity -
since our proposed algorithm is based on Interior Point
methods that exhibit good scaling property to the size
of the optimization problem (number of iterations grow
much more slowly as the problem dimension grows
[11]), it makes them ideal candidates for large-scale
networks.

• Distributed implementation - Different ingress nodes
run the admission control and routing algorithm inde-
pendently of each other and make decisions using the
globally available topology information of the network.

• Incorporates general cost and constraint functions - the
algorithm incorporates general, non-linear convex cost
functions and constraint sets (incoming trunk traffic
(user) QoS requirements, network routing and capacity
constraints), which allows for flexible and richer set
of user and network constraints to be imposed, and
solved.

• Structural advantages of the algorithm - the algorithm
runs in two distinct phases - Phase-1 is the admission
control step (it also determines a feasible route i.e. a
feasible rate on the LSP routes to the egress that sat-
isfies incoming traffic QoS requirements and network
capacity and routing constraints) and the next phase,
Phase-2 is the optimal routing step that determines



optimal rates on the LSP routes to egress based on
minimizing a link cost function. This structure provides
flexibility to the service provider to implement the
algorithm in its complete form, or even implement it
as an admission control/feasible route determination
algorithm solely (i.e. use Phase-1 only). An example
scenario could be in a lightly loaded network, the
service provider might be just interested in admission
control step, and may choose to skip the optimal
routing step.

Our work differs significantly from the vast array of
existing literature on MPLS traffic engineering/resource
allocation mechanisms; e.g. [1]- [6] and references cited
therein. Our work differs from the work of [4] where
they consider revenue maximization considering the traffic
across all ingress-egress pairs, which is more centralized
approach. The present paper takes a more decentralized ap-
proach where the different ingress nodes run the admission/
routing control independently of one another, while taking
into account globally available network topology informa-
tion and link residual bandwidths for making admission and
routing decisions. The approach taken by the present paper
has an advantage of reducing signaling overheads to dis-
seminate information between ingress points and a central
admission/routing control server (that too, within a fraction
of call setup times). Additionally, the more decentralized
approach taken by the present paper can bypass the issues
with reliability and computational and network signaling
load at the server. There are other contributions [5], [6]
on constrained multipath traffic engineering schemes, but
their problem formulation is based on integer programming
techniques, and their objectives are quite different from
ours.

The present paper is organized as follows. Section 2
provides the overview of the proposed JACR mechanism.
Section 3 provides the mathematical model of the problem.
Section 4 develops the JACR algorithm based on Interior
Point methods, describes the Phase-1 (Admission Control)
and Phase-2 (Optimal Routing) steps, and finally describes
the overall JACR algorithm. Section 5 provides experimental
results to illustrate the efficiency of our proposed mecha-
nism on large-scale networks and we conclude in Section
6.

II. PROPOSED JOINT ADMISSION CONTROL AND

ROUTING (JACR) MECHANISM

We assume that in a MPLS-supported network, the LSP
path layout between different designated Ingress-Egress (IE)
pairs is pre-determined and laid out based on historic traffic
information. Additionally, it is assumed that multiple LSPs
(order of ten, for e.g.) have been pinned down between
any IE pair. The newly arriving trunk traffic sessions are
presented to the network for admission and routing at
different ingress points in the network. The sessions belong
to different service classes and have their own distinct QoS
requirements - Committed Burst Rate (CBR), Peak Data

Rate (PDR), and maximum tolerable quality degradation
(e.g. packet loss rate). We assume that if the incoming
session is admitted at an ingress node, then it can get routed
through multiple LSPs between the IE pair (i.e. the trunk
traffic can be split among the LSP routes between the IE
pair).

The ingress routers run the JACR algorithm, which is
based on Interior Point optimization methods and has the
following two phases - a) Phase-1 Admission Control -
it determines whether the incoming trunk session can be
admitted into the network by satisfying the session QoS
constraints, network capacity and routing constraints. If not,
the incoming session is rejected. If the trunk session is
admitted, this phase also determines a feasible route (i.e.
it determines a feasible rate allocation on the LSP routes to
the egress). The next step b), is Phase-2 Optimal Routing -
where the JACR mechanism determines the optimal rates on
the LSP routes based on minimizing the cost of an overall
objective function based on link cost metric. The optimal
rates are then reserved on LSP routes between the IE pair.

The link cost metric is determined by the current residual
capacity per link, which is the difference between the link
capacity and the total rate reserved for previously admitted
trunk sessions on LSP routes that pass through the link.
The ingress routers keep getting periodic updates (order
of few minutes) of the residual capacity of the links from
different routers in the network through TE extensions to
OSPF mechanism [7], etc.

Furthermore, we assume that once an incoming trunk
traffic session is admitted into the network, the LSP flow
rates determined by the JACR mechanism get reserved on
the paths and are guaranteed throughout the length of the
session. This ensures that subsequent traffic arrivals do not
impact the currently admitted traffic in meeting their QoS
requirements.

III. MATHEMATICAL FORMULATION OF THE PROBLEM

A. Model

Consider the network with a set of some unidirectional
links and predefined LSP routes setup between different
designated IE pairs. Consider an IE pair with a set, P , of
LSPs available to it. Let the cardinality of set P , i.e. the
total number of LSPs be N . Let L (with cardinality L) to be
the set of links through which the LSP routes pass through
i.e., L = {l|l ∈ p, p ∈ P}. The incoming trunk traffic
session belongs to a class s ∈ S (S is the set of services
supported) and has distinct QoS requirements. The input
rate is bounded by a minimum CBR rl,s and a PDR ru,s.
The ingress router routes the incoming traffic through the
set P of LSPs, with xp denoting the rate provided through
LSP p ∈ P , such that rl,s ≤ ∑

p∈P xp ≤ ru,s. Note that
providing the PDR may not be a hard constraint.

Also associated with each service class is a qual-
ity degradation function (e.g. packet loss rate function)
ps(

∑
p∈P xp, ru,s), which is a function of actual rate ad-

mitted by the network
∑

p∈P xp and peak rates demanded



ru,s. The function ps(., .) is assumed to be a decreasing,
continuous, twice differentiable convex function of admitted
rates

∑
p∈P xp on LSPs defined in [0, ru,s] (differentiable

in (0, ru,s), it is also convex in each rate xp,p ∈ P).
It is assumed to be such that if the admitted rate equals
the peak rate, then there is no degradation (loss) for this
session. We assume that each service class imposes a max-
imum quality degradation threshold (e.g. packet loss rate
threshold) on the network, ρs. We express this constraint as
ps(

∑
p∈P xp, ru,s) ≤ ρs.

Consider a link l ∈ L that advertises its residual ca-
pacity as cl. Flow on link l is due to flows from LSP
routes that pass through the link l, and is given by xl =∑

{p|l∈p,p∈P} xp. We define a per link cost function as
Cl(xl), which is assumed to be a continuous, twice differen-
tiable, convex function in xl. We define the JACR problem
as an optimization problem, where we seek to minimize the
overall link cost with respect to the optimization variables,
LSP flow rates, xp, p ∈ P .

min
∑
l∈L

Cl(
∑

{p|l∈p,p∈P}
xp) (1)

∑
p∈P

xp ≥ rl,s (2)

∑
p∈P

xp ≤ ru,s (3)

∑
{p|l∈p,p∈P}

xp ≤ cl ∀l ∈ L (4)

xp ≥ 0 ∀p ∈ P (5)

ps(
∑
p∈P

xp, ru,s) ≤ ρs (6)

The constraints (2)-(5) are linear constraints and may be ex-
pressed in the matrix form Ax−b ≥ 0 where x is the vector
(x1, x2, . . . , xN )′ of input flow distribution among the N
LSPs (we assume ′ to be the transpose operator on a matrix).
Matrix A is of dimension m× N , where m = N + L + 2,
and is given by A =

(
e −e −R′

L×N IN×N

)′
. where

e = (11 . . . 1)′ is a N × 1 vector, IN×N is the N × N
identity matrix, RL×N is a route matrix of L×N dimension,
where an i×j entry of 1 denotes that LSP j passes through
link i, else it is 0. Vector b =

(
rl,s −ru,s −c′ 0′N

)′
where 0N is the vector (0, 0, . . . , 0)′ with N entries and c
is the vector of residual capacities (c1, c2, . . . , cL)′.

To simplify the usage of matrix A and vector b, we define
A = (a1, a2, . . . , am)′, where the entries a1, . . . , am are
N × 1 vectors, and b = (b1, b2, . . . , bm)′, where b1, . . . , bm

are scalars. Similarly, we state the non-linear constraint (6)
as ρs − ps(x, ru,s) ≥ 0.

We define F to be the convex feasible region defined
by the constraints (2)-(6). We assume it is non-empty and
bounded.

B. Interior Point Method for Joint Admission Control and
Routing

We choose Interior Point or Barrier Methods for solving
our JACR problem since they have been proven to efficiently
(fast convergence, scalable, etc.) solve large-scale non-linear
optimization problems [9]-[12]. Our JACR problem falls
in this category - it is a non-linear convex optimization
problem, and each instance of the problem has at least
N +L+3 constraints (2)-(6) with N optimization variables
(LSP flow rates between an IE pair). N is assumed to be in
the order of ten (in fact, this is on the higher side, in [3],
they quote ”two to five LSPs per IE pair is a typical setting
which exists in an operational ISP network that implements
MPLS”). The constraint set size is assumed to be typically
in the order of hundred for a large-scale network.

We formulate our problem JACR using Logarithmic Bar-
rier function as follows.

B(x, µ) =
∑
l∈L

Cl(
∑

{p|l∈p,p∈P}
xp) − µ

m∑
i=1

log(a′
ix − bi) (7)

−µ{log(ρs − ps(x, ru,s))}
where µ is called barrier parameter and is strictly positive.

We seek the unconstrained minimizer of (7) as µ ap-
proached 0, and this solves the constrained minimization
problem JACR (1) [9]-[12]. The iterative procedure for
solving (7) is detailed in the next section.

C. KKT Conditions for Optimality

We formulate the Karush-Kuhn-Tucker (KKT) condi-
tions for finding the unconstrained minimizer of B(x, µ).
The gradient ∇B(x, µ) is given by ∇B(x, µ) =
g(x) − µ

∑m
i=1

ai

a′
i
x−bi

− µ
∇ps(x,ru,s)

ps(x,ru,s)−ρs
, where g(x) is

a N × 1 vector with kth element given by g(xk) =∑
{p|l∈p,p∈P}

∂Cl(
∑

{p|l∈p,p∈P} xp)

∂xk
. Assume x∗(µ) is the

unconstrained minimizer for B(x, µ) for a given µ. The
first order KKT condition is -

∇B(x∗(µ), µ) = 0 (8)

The second order KKT condition for optimality is that the
Hessian ∇2B(x(µ), µ) must be positive definite at x∗(µ).

The Hessian ∇2B(x(µ), µ) is given by
∇2B(x(µ), µ) = H(x(µ)) +

∑m
i=1

µ
(a′

i
x(µ)−bi)2

aia
′
i +

µ
∇ps(x(µ),ru,s)∇ps(x(µ),ru,s)

′

(ρs−ps(x(µ),ru,s))2 + µ
∇2ps(x(µ),ru,s)
ρs−ps(x(µ),ru,s)

where H(x(µ) is the Hessian of the cost function of the
objective function. Evaluated at x∗(µ), each of the terms
in the RHS of the Hessian is positive definite due to the
convex properties of the cost function and the constraint
functions. Hence ∇2B(x(µ), µ) is also positive definite and
the second-order KKT optimality condition is satisfied.

IV. ALGORITHM FOR JOINT ADMISSION CONTROL AND

ROUTING

In this section, we develop an iterative interior point
algorithm to solve for JACR problem. For each iteration



k ≥ 1, starting with a given barrier parameter µ0, we reduce
the barrier parameter µk by a cut factor γ ∈ (0, 1) and
solve for the minimizer x∗(µk) for B(x, µk) as the barrier
parameter µk converges to 0. The next subsection outlines
the Newton’s Method for solving the KKT equation (8) for
x∗(µk). We subsequently develop the JACR algorithm.

A. Newton’s Method for Solving KKT Equation

Consider any iteration k ≥ 1, and the barrier parameter to
be µk. We seek to solve for unconstrained minimizer x∗(µk)
for B(x, µk). We call k as an index of major iteration.
Define m ≥ 1 to be minor iteration index, which denote
the iterations carried out to solve for x∗(µk). We shall
denote the iterates to be xk,m. Define initial feasible point
xk,0 = x∗(µk−1) for k > 1 (the minimizer obtained in
previous major iteration k−1) and for k = 1, xk,0 is set to
the chosen initial strict feasible point. Furthermore, define
∆xk,m = xk,m−xk,m−1. Newton’s method for solving the
KKT equation (8) is given by

∇2B(xk,m, µk)∆xk,m = −∇B(xk,m, µk) (9)

The equation (9) can be solved iteratively in minor index
m (by standard line search methods) to obtain the uncon-
strained minimizer x∗(µk). The sequence of minimizers
for each iteration k, x∗(µk) converge to the constrained
minimizer x∗ of JACR problem as µk → 0 (we have
rigorously proved this convergence, but the proof is long
and has been omitted in this paper due to lack of space).
However, we prove an important proposition that is a key
to the convergence proof.

Proposition : The cost function for JACR is monotoni-
cally non-increasing with increasing iterations k, i.e. all k,
we have the following relations that hold good -

∑
l∈L

Cl

⎛
⎝ ∑

l∈p,p∈P
x∗

p(µk+1)

⎞
⎠ ≤

∑
l∈L

Cl

⎛
⎝ ∑

l∈p,p∈P
x∗

p(µk)

⎞
⎠

(10)
where x∗

p(.) is the pth component of vector x∗(.).
Proof: By definition, we have,

∑
l∈L

Cl(
∑

l∈p,p∈P
x∗

p(µk)) − µk

m∑
i=1

log(a′
ix

∗(µk) − bi) −

µklog(ρs − ps(x∗(µk), ru,s)) ≤
∑
l∈L

Cl(
∑

l∈p,p∈P
x∗

p(µk+1)) −

µk

m∑
i=1

log(a′
ix

∗(µk+1) − bi) − µklog(ρs − ps(x∗(µk+1), ru,s))

and,

∑
l∈L

Cl(
∑

l∈p,p∈P
x∗

p(µk+1)) − µk+1

m∑
i=1

log(a′
ix

∗(µk+1) − bi) −

µk+1log(ρs − ps(x∗(µk+1), ru,s)) ≤
∑
l∈L

Cl(
∑

l∈p,p∈P
x∗

p(µk)) −

µk+1

m∑
i=1

log(a′
ix

∗(µk) − bi) − µk+1log(ρs − ps(x∗(µk), ru,s))

Multiplying the first inequality by µk+1
µk

, and adding to
the second, we get the following -

∑
l∈L

Cl(
∑

l∈p,p∈P
x∗

p(µk+1))
(

1 − µk+1

µk

)
≤ (11)

∑
l∈L

Cl(
∑

l∈p,p∈P
x∗

p(µk))
(

1 − µk+1

µk

)

Since 0 < µk+1 < µk, (11) implies (10) as desired •
This proposition suggests that the minimizer in each

iteration k, x∗(µk) successively improves (or retains) the
previous cost function for JACR and the cost function
progresses towards the minimum (i.e. x∗(µk) tends towards
x∗) with increasing k.

Next, we use the above method for developing the
JACR algorithm. The algorithm developed in two phases.
Phase-1 (Admission Control) determines whether a feasible
solution exists to the JACR problem, and if so, Phase-2
(Optimal Routing) then determines the optimal solution to
the problem. Together, they constitute the Joint Admission
Control and Routing algorithm.

B. Phase-1 - Admission Control

The admission control attempts to find a feasible point
in the constraint set, the convex region F (which satisfies
the incoming trunk traffic session QoS requirements and
the network capacity and routing constraints). If it fails to
find a feasible point, then the admission criteria fails and
the incoming session is rejected. Otherwise, if a feasible
point in F , then the JACR algorithm proceeds to Phase-2,
optimal routing step. The admission control problem is a
challenging one considering that for a large-scale network,
the constraint set size is large (typically of the order of
hundred).

We may express the constraint set by the set of constraint
equations ci(x) ≥ 0, where ci(x) = a′

ix − bi for i ∈
{1, . . . , m} and cm+1(x) = ρs − ps(x, ru,s). This follows
from equations (2)-(6). We define v(x) as the vector of
constraint violations at x where the ith component is defined
as vi(x) = max(−ci(x), 0) for i ∈ {1, . . . , m}. Given an
initial infeasible point xinit, we wish to find a feasible
point in F to satisfy the admission control criteria. The
constraint violation vi(xinit) is non-zero for at least one
i, and we wish to find a feasible point x0 ∈ F such that
v(x0) = 0. We can setup this problem as minimizing the
maximum violation in order to find a feasible point in F .
Define the infinity-norm of the violation vector v(x) as
‖v(x)‖∞ = max1≤i≤m+1 |vi(x)|. Then the problem can
be cast as the following convex unconstrained problem -

min
x∈RN

‖v(x)‖∞ (12)

To solve this problem, we first define ci(x) = ri(x)−vi(x),
ri(x) ≥ 0, vi(x) ≥ 0 where ri(x) and vi(x) are the
magnitude of the positive and negative parts of ci(x) for
1 ≤ i ≤ m + 1. The original unconstrained problem
may be written as the following constrained problem:



minx∈RN max1≤i≤m+1 vi(x) such that ci(x) = ri(x) −
vi(x), 1 ≤ i ≤ m + 1, v(x) ≥ 0, r(x) ≥ 0.

We further introduce a non-negative variable s such that
vi(x) ≤ s for all 1 ≤ i ≤ m + 1. Minimizing s is
then equivalent to minimizing the maximum element of
v(x). The equality constraint ci(x) = ri(x) − vi(x) can
be replaced by ri(x) − ci(x) = vi(x) ≤ s, or equivalently,
−ci(x) ≤ s since ri(x) ≥ 0, or s+ci(x) ≥ 0. The problem
may be restated as the following -

min
x∈RN ,s∈R

s (13)

s.t. ci(x) + s ≥ 0, 1 ≤ i ≤ m + 1 (14)

s ≥ 0 (15)

Note that the initial infeasible point in F , xinit and sinit =
max1≤i≤m+1vi(xinit) is feasible in the constraint region
defined by (14)-(15). We call this the Phase-1 optimization
problem. Note that this is again a convex optimization
problem and can be solved using interior point methods
as above. For the special case when the constraint set ci(x)
for 1 ≤ i ≤ m+1 is a linear set, then the Phase-1 problem
reduces to a simpler Linear Programming problem. To find
a feasible solution in F , the optimal solution of the Phase-1
problem must have sopt = 0. However, if the solution to
the Phase-1 optimization problem (13) is sopt > 0, then
the JACR problem does not have a feasible solution (i.e.
admission criteria fails).

C. Phase-2 - Optimal Routing

Let x0 be a feasible solution 1 after solving Phase-1
optimization problem. Phase-2 is an iterative process where
an initial barrier parameter µ0 is chosen. For each iteration
k ≥ 1, µk is decreased by a cut factor γ ∈ (0, 1) and
the unconstrained minimum of B(x, µk) (7), x∗(µk) is
found using Newton’s method for solving KKT equation
(9). Then, for next iteration k +1, the barrier parameter µk

is reduced by cut factor γ and x∗(µk), the previous iteration
optimal solution is used as the initial point for solving for
the unconstrained minimum x∗(µk+1) of B(x, µk+1). This
process is repeated till the barrier parameter µk → 0 (in
practice, a very small value τ , like 10−8), where in the un-
constrained minimum of B(x, µk) closely approximates the
optimal solution for the constrained optimization problem
JACR (1) (the sequence of minimizers x∗(µk) of B(x, µk)
converges to the constrained minimizer x∗ of JACR as
µk → 0). x∗ corresponds to the optimal routing of the
incoming trunk traffic through the LSP routes between the
IE pair. The overall JACR algorithm is stated next.

D. Overall Joint Admission Control and Routing Algorithm

1) Phase-1 Admission Control Step: Choose an initial
point xinit (may be infeasible in F ) and solve for

1for initiating the barrier method, we need x0 to be strictly feasible
inside F . So, in practice, in Phase-1, we solve for ci(x) ≥ δ > 0, where
δ is a very small perturbation. Equation (14) changes to ci(x)+s ≥ δ, 1 ≤
i ≤ m + 1, everything else remains the same for Phase-1 optimization
problem (13)
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Fig. 1. Network Topology 1 for Admission Control/Routing Problem

Phase-1 optimization problem (13). If no feasible
solution exists (i.e. sopt > 0 for (13), then Admission
Control fails. EXIT.

2) Phase-2 Optimal Route Computation Steps: Let
initial strictly feasible point from Phase-1 solution be
x0. Set τ . Set x1,0 ← x0. Choose µ0 and cut factor
γ ∈ (0, 1). Set µ1 = γµ0. Set iteration k ← 1.

3) while not converged // major iterations

a) Compute unconstrained minimizer x∗(µk) of
B(x, µk) (7) using Newton’s method for solving
KKT equation (9). (Minor iterations are per-
formed while solving for x∗(µk)).

b) xk+1,0 ← x∗(µk), µk+1 ← γµk, k ← k + 1.

V. EXPERIMENTAL RESULTS

A. Simulation Setup

We consider two networks topologies for our experimen-
tal analysis. Network Topology 1 (NT1) (Figure 1) consists
of a 14-node, 28-link and 10 distinct LSPs (routes shown
in Figure 1) between a chosen IE pair. Network Topology
2 is more complex (figure not shown) - we use NT1 as
subnet connecting to three other such NT1 subnets and
generating a 56-node, 117-link overall network (with a
maximum depth of 11 hops). There is a set of 14 LSPs
between the chosen IE pair. This configuration is closer to
real-world service provider networks in terms of size and
complexity of network.

In our simulations, we choose a certain IE pair in the
provider network (JACR runs concurrently on all ingress
nodes of the network). We also assume a ’snapshot’ of
the current network, i.e. the network topology shows the
residual capacity in each link (refer Figure 1). The incoming
trunk traffic session into the ingress node has the following
traffic characterization for the two network topologies. The
session demands a CBR of 1.2 Mbps and PDR of 1.5 Mbps
as it is injected into the network. The quality degradation
function is of the form ps(x, ru,s) = 10

9 (ru,s −
∑

p∈P xp)2

in [0, ru,s], and ρs = 10−3. We fix the cost metric per link
l, Cl(xl) = xl/(cl − xl), a commonly considered convex,
twice differentiable cost function based on M/M/1 queue
approximation [8].
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Fig. 2. Convergence of Optimal Flow Rates/iterations for Network
Topology 1, LSPs 1-10, Major Iterations 1 to 4 correspond to finding
a feasible solution (Admission Control) and iterations 5-13 is the Optimal
Routing stage
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Fig. 3. Computational Load: Minor Iterations per Major Iteration for
Network Topology 2

B. Simulation Results and Discussion

We demonstrate the efficient resource allocation and
performance (good convergence properties) of the JACR
algorithm. Figure 2 demonstrates how the final routing
allocation (optimal LSP flow rates) adjust themselves to
avoid bottleneck links (here L1 and L12 links) and load bal-
ance among the other links with equal residual capacities,
thus preventing hot spots from developing in the network.
Interestingly, the LSP flow rates through bottleneck routes
(L1 and L12) are identified very quickly (in 3 major
iterations) by the algorithm. Figure 2 also demonstrates the
fast convergence of flow rates in LSPs 1-10 for network
topology 1 and the optimal flow rates are found within ∼ 13
major iterations of the algorithm. The initial point xinit is
chosen to be an infeasible rate (we chose all-zero vector for
the LSP rates). 4 Major iterations were required to find a
feasible solution (Phase 1), so if the service provider wishes
to run the algorithm solely as an admission control/feasible
route determination algorithm, then the algorithm termi-
nates here. The remaining 9 major iterations are spent
on finding the optimal route through the LSPs. A feature
of the convergence is that successive iterations improve
upon previous iterations towards the optimal solution (in
Figure 2, in �2-norm, the sequence of ‖x∗(µk) − x∗‖ is

monotonically decreasing with iterations k, validating the
proposition proved previously), so every iteration produces
minimizer ’closer’ towards optimal solution.

Figure 3 demonstrates the performance efficiency of
JACR, i.e. computational load in terms of total iterations
(major and minor) required to converge to optimal solution
for the more complex network topology 2. The size of the
optimization problem is large - LSP flows, N = 14 (order
of ten) and total number of linear and non-linear constraints
are N +L+3 = 104 (order of hundred). The initial Phase-1
Admission Control step to find a strict feasible point took 6
major iterations (with a total of 48 minor iterations) starting
with an initial all-zero vector of infeasible LSP rates. The
convergence in Phase-2 Optimal routing took ∼ 15 major
iterations (with a total of 105 minor iterations). In terms
of running time, on Sun Sparc workstation with a modest
750 MHz CPU speed, our algorithm (Phase-1 and Phase-
2 total) ran in ∼ 10.8 seconds to converge to optimal
solution, which is within the real-time call setup duration,
thus demonstrating the fast convergence of our algorithm
in practice. The performance result demonstrates that our
algorithm scales well to size and complexity of the network
(and hence the size of the non-linear optimization problem),
which enhances its practical applicability even further.

VI. CONCLUSIONS

Our goal in this paper was to effectively apply opti-
mization principles towards developing an efficient network
resource allocation JACR mechanism. Experimental results
demonstrate the efficiency of our mechanism and it scales
well with the size and complexity of the network. We feel
that our proposed mechanism should be of great interest
to service providers who are looking out for efficient im-
plementation techniques to improve the overall operational
efficiency of their networks.
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