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Abstract— We present a game-theoretic treatment of dis-
tributed power control in CDMA wireless systems using outage
probabilities. We prove that the noncooperative power control
game considered admits a unique Nash equilibrium (NE) for
uniformly strictly convex pricing functions and under some
technical assumptions on the SIR threshold levels. We analyze
global convergence of continuous-time as well as discrete-
time synchronous and asynchronous iterative power update
algorithms to the unique NE of the game. Furthermore, a
stochastic version of the discrete-time update scheme, which
models the uncertainty due to quantization and estimation
errors, is shown to converge almost surely to the unique NE
point. We further investigate and demonstrate the convergence
and robustness properties of these update schemes through
simulation studies.

I. INTRODUCTION

The primary objective of uplink power control in code
division multiple access (CDMA) wireless networks is to
achieve and maintain a satisfactory level of service, which
may be described in terms of signal-to-interference ratio
(SIR). Since in CDMA systems signals of other users
can be modeled as interfering noise signals, there is a
tradeoff between the individual objectives of mobiles and
the overall system performance. If mobiles have different
preferences for the level of service or varying SIR require-
ments, then the power control problem can be posed as
one of resource allocation. Furthermore, under a distributed
power control regime the mobiles cannot have detailed
information on each other’s preferences and actions due
to communication constraints inherent to the system. It is,
hence, appropriate to address CDMA uplink power control
within a noncooperative game theoretic framework, where
Nash equilibrium (NE) provides a relevant solution concept.
The power control game can also be extended by making
use of pricing. A pricing scheme not only enhances the
overall system performance by limiting the interference [1],
but also results in battery energy preservation.

Several studies exist in the literature that use game
theoretic schemes to address the power control problem [1]–
[6]. The power control game leads to distributed power
control algorithms as a mean to maintain service level
under varying channel conditions. An important aspect of
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a distributed power control scheme is the convergence
properties of algorithms, which plays a significant role in
performance of the system. The study [7] has presented
a standard power control algorithm, and has established
its synchronous and asynchronous convergence under some
conditions on the interference function. In [8], stochastic
power control schemes have been investigated, and the
converge of stochastic algorithms in terms of mean-squared
error has been proven. Another study [9] has shown the
convergence of a coupled power control scheme based on
minimum outage probability and multiuser detection by
making use of standard interference functions of [7]. In [5],
two update algorithms, namely, parallel update and random
update have been shown to be globally stable under specific
conditions. Finally, in [6] the global convergence of the
dynamics of the power control game to a superset of Nash
equilibria has been established for any handoff scheme
satisfying a mild condition on average dwell time.

In this paper, we consider a power control game similar
to the one in [6], which incorporates a pricing mechanism
limiting the overall interference and preserving battery
energy of mobiles. We capture the preferences of mobiles
using a utility function, which is defined as the logarithm
of the probability that the SIR level of the mobile is greater
than a predefined individual threshold level. This utility
function can also be described in terms of outage probabil-
ities [9]. The noncooperative power control game obtained
admits a unique Nash equilibrium under uniformly strictly
convex pricing functions and some technical assumptions
on the SIR threshold levels. Furthermore, we investigate
global convergence of a continuous-time as well as discrete-
time synchronous and asynchronous iterative power update
algorithms to the unique NE of the game. A stochastic
version of the discrete-time update scheme, which models
the uncertainty due to quantization and estimation errors, is
shown to converge to the NE almost surely under some con-
ditions. The convergence and robustness properties of these
schemes are demonstrated through MATLAB simulations.

The next section describes the model adopted and the cost
function. Section III discusses the existence and unique-
ness of the Nash equilibrium. We present in Section IV
system dynamics and stability analysis of a continuous-
time update scheme. In Section V, convergence properties
of both deterministic and stochastic discrete-time update
algorithms are investigated. Section VI contains results of
the simulation studies. The paper concludes with a summary
of the completed work and directions for future research in
Section VII.



II. THE MODEL

We consider a multicell CDMA wireless network model
similar to the ones described in [3], [9]. The system consists
of a set L := {1, . . . , L̄} of cells, with the set of users
in cell l being Ml := {1, . . . ,Ml}, l ∈ L, and the set
of all users is defined as M :=

⋃

l Ml. The number of
users in each cell is limited through an admission control
scheme. We associate a single base station (BS) with each
cell in the system, and define hilfilpi as the instantaneous
received power level from user i at the lth BS. To simplify
the analysis, we let a mobile connect to a single BS at any
given time. The quantities hil (0 < hil < 1) and fil (fil >
0) represent the slow-varying channel gain (excluding any
fading) and fast time-scale Rayleigh fading between the ith

mobile and the lth BS, respectively. We assume that the
factors affecting hil do not change significantly over the
time scale of this analysis, and the terms fil are unit mean
independent exponentially distributed random variables.

Let Ml,eff denote the set of users in the neighborhood
of cell l who have a nonnegligible effect on each other’s
SIR levels through in-cell and intra-cell interference. It
immediately follows that, Ml ⊂ Ml,eff ⊂ M. Without
loss of any generality, we define the set Ml,eff in this
study as

Ml,eff := Ml ∪
(

∪k∈Neighbor(l)Mk

)

,

where Neighbor(l) is defined as the set of first-tier neigh-
bors of the cell l. Furthermore, the contribution of mobiles
in other cells to the interference level of cell l is modeled
as a fixed background noise, of variance σ2

l .
The ith mobile transmits with a nonnegative uplink power

level of pi ≤ pi,max, where pi,max is an upper-bound
imposed by physical limitations of the mobile. Thus, in
accordance with the interference model considered the SIR
obtained by mobile i at the base station l is given by

γil :=
Lhilfilpi

∑

j∈Ml,eff , j 6=i hjlfjlpj + σ2
l

. (1)

Here, L := W/R > 1 is the spreading gain of the CDMA
system, where W is the chip rate and R is the data rate
of the user. The outage probability of user i, denoted
Oil, is defined as the proportion of time that some SIR
threshold, γ̄il, is not met for sufficient reception at the lth

BS receiver [9]. By a careful choice of γ̄il, a quality of
service level can be established for each user. The outage
probability, Oil = Pr(γi ≤ γ̄il), of the ith mobile at the
lth BS is defined as

Oil = Pr



hilfilpi ≤ γ̄il





∑

j∈Ml,eff , j 6=i

hjlfjlpj + σ2
l







 ,

(2)
where Pr(γi ≤ γ̄il) denotes the probability of γi ≤ γ̄il.

In the Rayleigh/Rayleigh fading environment described,
the mean power level of mobile i received at the lth BS
is defined as xil := hilpi. Let the received power level

vector of cell l be xl := [(xjll)], j ∈ Ml,eff . Then, the
system wide vector x := [x1, . . . ,xL] has the cardinality
Mx :=

∑

l∈L Ml,eff , where Ml,eff is the number of
elements of the set Ml,eff . In order to simplify the notation
we will drop the index of the BS (e.g. xi := xil) in cases
where when it is obvious from the context that mobile i
is connected to the lth BS. As a further simplification,
we let the threshold SIR for the ith mobile be defined
as γ̄i := γ̄il = γ̄ik ∀l, k ∈ L. We note that the outage
probability in (2) can be expressed in analytical form which
we present here without derivation. The derivation of it can
be found in [10], and in [11] for a simplified version of the
expression. The outage probability of the ith mobile is then
given by

Oi(x, γ̄i) = 1 − exp

(−σ2γ̄i

xi

)

∏

j 6=i

1

1 +
γ̄ixjl

xi

, (3)

where xjl =
hjl

hj
xj is the received power level of the jth

mobile at the lth BS, and hj (xj) is the channel gain
(received power level) of it at its own BS. We also note
that, for the rest of this paper, the term j 6= i implicitly
denotes j ∈ Ml,eff , l being the BS to which mobile i is
connected.

The ith user’s cost function is defined as the difference
between the utility function of the user and its pricing
function, Ji = Pi−Ui, similar to the one in [5]. The utility
function, Ui(Pri(γi ≥ γ̄i), is a logarithmic function of the
probability that the SIR of the ith user is larger than the
predefined threshold, γ̄i, and quantifies approximately the
demand or willingness to pay of the user for a certain level
of service. Notice that, Pri(γi ≥ γ̄i) is equal to 1 − Oi,
where Oi is the outage probability in (3). Hence, the utility
function for the user i is defined by

Ui(x) := ui log(Pri(γi(x) ≥ γ̄i) = ui log(1 − Oi(x, γ̄i)),
(4)

where ui is a user-specific utility parameter, and

Pri(γi(x) ≥ γ̄i) = 1 − Oi(x, γ̄i)

= exp

(−σ2
l γ̄i

xi

)

∏

j 6=i

1

1 +
γ̄ixjl

xi

.

One can show that Ui is increasing in xi, its derivative is
decreasing in xi, and ∂2Ui(x)

∂xi ∂xjl
> 0 for j 6= i.

The pricing function, Pi(pi), on the other hand, is im-
posed by the system to limit the interference created by the
mobile, and hence to improve the system performance [3].
At the same time, it can also be interpreted as a cost on the
battery usage of the user. As a result, the cost function of
the ith user connected to a specific BS is given by

Ji(x) = Pi(xi) − ui log(Pri(γi(x) ≥ γ̄i)) , (5)

where we have used xi, instead of pi, as the argument of
Pi, by a possible redefinition of the latter.



III. EXISTENCE AND UNIQUENESS OF NASH
EQUILIBRIUM

Let us define xmin and xmax as lower and upper bounds
on xil ∀i, l, i.e. xmin < xil < xmax ∀i, l. If the mean
received power level of a mobile at the BS is less than
xmin, then its effect is negligible and modeled as part of
the background noise. The upper-bound xmax is further
bounded above by pmax with a possible equality in the
case of no channel attenuation. We also define γ̄min (umin)
and γ̄max (umax) in such a way that γ̄min < γ̄i <
γ̄max (umin < ui < umax) ∀i. We now make the
following assumptions on the cost function:

A1. Pi(xi) is twice continuously differentiable, non-
decreasing and uniformly strictly convex in xi, i.e.

dPi(xi)/dxi ≥ 0, d2Pi(xi)/dx2
i ≥ v > 0, ∀xi,

for some v > 0.
A2. Given the set of parameters {Ml,eff , γ̄min, γ̄max,

xmin, xmax}, v satisfies the following inequality:

v(γ̄min + 1)
x2

min

umax

+ (Ml,eff − 1)γ̄min

umin

umax

x3
min

x3
max

> 1

A3. The ith user’s cost function has the following prop-
erties at xi = xmin (xi = xmax) : ∂Ji(x : xi =
xmin)/∂xi < 0 ∀x (∂Ji(x : xi = xmax)/∂xi > 0 ∀x),
respectively.

The Nash equilibrium (NE) in a cell is defined as a set of
power levels, p∗ (and corresponding set of costs J∗), with
the property that no user in the cell can benefit by modifying
its power level while the other players keep theirs fixed.
Mathematically speaking, x

∗ is in NE, when x∗
i of any i-th

user is the solution to the following optimization problem
given the equilibrium power levels of other mobiles (in the
set Ml,eff ), x

∗
−i:

min
xmin≤xi≤xmax

Ji(xi,x
∗
−i). (6)

Note that given the channel gains the NE point x
∗ is

equivalent to p∗.
Thanks to assumption A1, the cost function Ji is strictly

convex and belongs to a fairly large subclass of convex
functions. Hence, there exists a unique solution to the ith

user’s minimization problem, which is that of minimization
of Ji, given the system parameters and the power levels of
all other users. The technical assumption A2 is needed for
the proof of existence of a unique NE. Notice that, xmin is
bounded below by definition. Hence, A2 is easily satisfied
for a large number of users M or high SIR thresholds
γ̄min even if v is small. Assumption A3, on the other hand,
ensures that any equilibrium solution is an inner one, i.e.,
boundary solutions x∗

i = xmin (x∗
i = xmax) ∀i cannot be

equilibrium points.

Theorem III.1. Under A1-A3, the multicell power control
game defined admits a unique inner Nash equilibrium
solution.

IV. SYSTEM DYNAMICS AND STABILITY ANALYSIS

We consider a dynamic model of the power control game
similar to the one of [6] where each mobile uses a gradient
algorithm to solve its own optimization problem (6). Hence,
the following analysis is similar to the one in [6]. The power
update algorithm of the ith mobile is:

ṗi =
dpi

dt
= −∂Ji

∂pi

,

for all i ∈ M. This can also be described in terms of the
received power level, xi, at the lth BS:

ẋi = h2
i

(

∂Ui(x)

∂xi

− dPi(xi)

dxi

)

:= φi(x), ∀i. (7)

By taking the second derivative of xi with respect to time,
we obtain

ẍi = h2
i

(

−ai −
d2Pi(xi)

dx2
i

)

ẋi + h2
i

∑

j 6=i

bi,j ẋjl := φ̇i(x),

(8)
where ai and bi,j are defined as

ai := −∂2Ui(x)

∂x2
i

= ui

2σ2
l + γ̄i

x3
i

+ ui

∑

j 6=i

1 +
2xi

γ̄ixjl
(

xi +
x2

i

γ̄ixjl

)2 ,

and
bi,j :=

∂2Ui(x)

∂xi ∂xjl

= ui

γ̄i

(xi + γ̄ixjl)2
.

Notice that, both ai and bi,j are positive.
We establish the stability of the power update scheme (7)

under some sufficiency conditions. The set of feasible
received power levels is invariant by assumption A3, which
immediately follows from a boundary analysis. When xi =
xmin for some i ∈ M, we have ẋi > 0 under A3. Hence,
the system trajectory moves toward inside of X . Likewise,
in the case of xi = xmax for some i ∈ M, ẋi < 0,
and hence, the trajectory remains inside the set X . Let us
define the candidate Lyapunov function V : R

Mx → R as
V (x) :=

∑

i∈M(1/h2
i )φ

2
i (x), which is in fact restricted to

the domain X . Note that because of the uniqueness of the
NE, x

∗, φi(x) = 0 ∀i if and only if x = x
∗. Hence, V is

positive for all x except for x = x
∗. Let us now change

assumption A2 as follows:
A2

′

. Assume that the following inequality holds:

v(γ̄min + 1)
x2

min

umax
+ (Ml,eff − 1)γ̄min

umin

umax

x3
min

x3
max

> Meff − 1 ∀l.

Remark IV.1. A2’ can be satisfied by choosing γ̄min and/or
v sufficiently large.

Then, under A2’, we have V̇ (x) < 0, uniformly in
the xi’s on the trajectory of (7). Thus, V is indeed a
Lyapunov function, and it readily follows that φi(x(t)) =
ẋi(t) → 0, ∀ i. This in turn implies that xi(t)’s converge



to the unique Nash equilibrium. Hence, the unique NE
point (Theorem III.1) is globally asymptotically stable on
the invariant set X with respect to the update scheme (7)
under the assumptions A1, A2

′

, A3 by Lyapunov’s stability
theorem (see Theorem 3.1 in [12]).

V. ITERATIVE POWER CONTROL ALGORITHMS

We investigate stability properties of synchronous and
asynchronous iterative power control schemes as they are
of practical importance. We first analyze gradient based
synchronous and asynchronous update algorithms of the
power control game in Section III. Consequently, we study
convergence of stochastic iterations to the unique NE so-
lution by taking communication constraints and estimation
errors into account.

A. Synchronous and Asynchronous Update Schemes

Consider a discrete-time counterpart of the update
scheme in (7) in a system with M mobiles where each
mobile uses a gradient algorithm to solve its optimization
problem (6):

pi(n + 1) = pi(n) − λi

∂Ji

∂pi

∀i ∈ M ,

where n = 1, 2, . . ., denotes the update instances and
λi is the user-specific step size constant. For notational
convenience this can also be defined as a mapping from
the received power levels at the BS to the updated power
levels, x(n + 1) = T (x(n)), i.e.

xi(n + 1) = Ti(x(n)) := xi(n) − λ
∂Ji

∂xi

∀i ∈ M . (9)

In the case of synchronous update algorithm each mobile
updates its power level at the same time instance. We study
sufficient conditions for convergence of the system to the
unique NE, x∗, under the synchronous update. This analysis
follows lines similar to those in the proof of Proposition
1.10 of [13, p. 193]. Let x ∈ X = {x ∈ R

Mx : xmin ≤
xil ≤ xmax ∀i, l} and define a function gi(τ) : [0, 1] → R

for the ith mobile by

gi(τ) = τxi + (1 − τ)x∗
i + λφi(τx + (1 − τ)x∗),

where φi is defined in (7). We then have

|Ti(x) − Ti(x
∗)| = |gi(1) − gi(0)| =

∣

∣

∣

∣

∫ 1

0

dgi(τ)

dτ
dτ

∣

∣

∣

∣

≤
∫ 1

0

∣

∣

∣

∣

dgi(τ)

dτ

∣

∣

∣

∣

dτ ≤ maxτ∈[0,1]

∣

∣

∣

∣

dgi(τ)

dτ

∣

∣

∣

∣

,

where x
∗, the NE, is the fixed point of the mapping T . We

bound
∣

∣

∣

∣

dgi(τ)

dτ

∣

∣

∣

∣

above by

∣

∣

∣

∣

dgi(τ)

dτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

xi − x∗
i − λ

∑

j∈Ml,eff

∂φi

∂xj

· (xj − x∗
j )

∣

∣

∣

∣

≤
∣

∣

∣

∣

1 − λ
∂φi

∂xi

∣

∣

∣

∣

|xi − x∗
i | +

∑

j 6=i λ
∂φi

∂xjl

∣

∣

∣xjl − x∗
jl

∣

∣

∣ .

Imposing the condition λ∂φi/∂xi < 1, we have

∣

∣

∣

∣

dgi(τ)

dτ

∣

∣

∣

∣

≤



1 − λ





∂φi

∂xi

−
∑

j 6=i

∂φi

∂xjl







 ‖x − x
∗‖ ,

where ‖x‖ := maxi |xi| is the maximum norm. Define

Ki := max
x∈X

∂φi(x)

∂xi

and ρi := 1 − λ





∂φi

∂xi

−
∑

j 6=i

∂φi

∂xjl



 ,

which leads to |Ti(x) − x∗
i | ≤ ρi ‖x − x

∗‖ for each i.
Let ρ := maxi ρi and K := maxi Ki. We obtain then
‖T (x) − x

∗‖ ≤ ρ ‖x − x
∗‖, if λK < 1. An upper bound

on K in terms of system and cost parameters is

K̄ := max
i

d2Pi(xmax)

dx2
i

+
2(Meff − 1)γ̄maxxmax

(γ̄min + 1)x3
min

+
2σ2γ̄max

x3
min

.

Imposing the condition ρ < 1, it readily follows that
for arbitrary x ∈ X , T n(x) → x

∗ as n → ∞, since
‖Tn(x) − x

∗‖ ≤ ρn ‖x − x
∗‖. Furthermore, the condition

ρ < 1 is satisfied if

∑

j 6=i

γ̄2
i x2

jl + 2γ̄ixixjl

x2
i (xi + γ̄ixjl)2

− γ̄i

(xi + γ̄ixjl)2
> 0 ∀i.

Let xmax = αxmin for some α > 0. Then, a sufficient
condition for ρ < 1 is α < 1 +

√
1 + γ̄min, which follows

from a straightforward algebraic derivation. This leads to
the following theorem:

Theorem V.1. Let xmax = αxmin for some α > 0 and
X := {x ∈ R

Mx : xmin ≤ xil ≤ xmax ∀i, l}. The
synchronous power update algorithm

pi(n + 1) = pi(n) − λi

∂Ji

∂pi

∀i ∈ M

converges to the unique NE point of the power control game,
p∗ := [x∗

1/h1, . . . , x
∗
M/hM ], on the set X if λK̄ < 1 and

α < 1 +
√

1 + γ̄min.

A natural generalization of the synchronous update is the
asynchronous update scheme, which is in fact more realistic
since it is difficult for the mobiles to synchronize their exact
power update instances in a practical implementation. In this
particular case, however, the convergence analysis above
also applies to the asynchronous update algorithm. Define
a sequence of nonempty, convex, and compact sets

X(k) := [x∗
1 − δ(k), x∗

1 − δ(k)] × [x∗
2 − δ(k), x∗

2 − δ(k)]

× . . . [x∗
M − δ(k), x∗

M − δ(k)],

where δ(k) := ‖x(k) − x
∗‖. Since by Theorem V.1, δ(k +

1) < δ(k), we have

. . . ⊂ X(k + 1) ⊂ X(k) ⊂ . . . X.

We next consider the two well known sufficient conditions
for asynchronous convergence of a nonlinear iterative map-
ping x(n + 1) = T (x) [13, p. 431], namely synchronous



convergence condition and box condition. Both are satisfied
in our case by definition of X(k) and Theorem V.1.
Therefore, it immediately follows from asynchronous con-
vergence theorem [13, p. 431] that the asynchronous coun-
terpart of the power update algorithm in (9) converges to
the unique NE point of the power control game.

B. A Stochastic Update Scheme

In a real life implementation of the power control scheme,
communication constraints, approximations, estimation and
quantization errors are not negligible, and have to be taken
into account in the convergence analysis. Hence, a mobile
does not have access to the exact values of the system pa-
rameters such as its own channel gain or the feedback terms
provided by the BS. These uncertainties can be captured by
defining a stochastic update algorithm for analysis purposes.
For each i ∈ M, let ξi(n) n = 1, 2, . . . be a sequence of
independent identically distributed (iid) random variables
defined on the common support set [1 − ε, 1 + ε], where
0 < ε < 1. We further assume that for each i ∈ M
the sequence ξi is independent of the past of ξj , j 6= i,
that is Pr(ξi(n + 1)|ξj(s), s ≤ n, j ∈ M, j 6= i) =
Pr(ξi(n + 1). Using these random sequences, we model
the aggregate uncertainty in the term ∂Ji/∂pi of (9) due to
quantization, estimation, and multiplicatively approximation
errors. Thus, the stochastic counterpart of the synchronous
update algorithm is given by

pi(n + 1) = pi(n) − λiξi(n)
∂Ji

∂pi

∀i ∈ M, (10)

which can also be described in terms of received power
levels at the base station as

xi(n + 1) = xi(n) − λξi(n)
∂Ji

∂xi

=: Ti(x(n); ξi(n)) ∀i ∈ M.

(11)

Following steps similar to those in the previous subsec-
tion for the convergence analysis, we arrive at the following
theorem (details can be found in the longer version of the
paper, available from the authors).

Theorem V.2. Let xi(n) (ξi(n)) be random (random iid)
sequences for all i, where ξi is associated with the prob-
ability density function fξi

(ξi) defined on the support set
[1 − ε, 1 + ε], 0 < ε < 1, and the random vector x

takes its values on the set X := {x ∈ R
Mx : xmin ≤

xil ≤ xmax ∀i, l}. Furthermore, let α > 0 be defined as
α := xmax/xmin. The stochastic power update algorithm

pi(n + 1) = pi(n) − λξi(n)
∂Ji

∂pi

∀i ∈ M,

converges almost surely to the unique NE point of the power
control game, p∗, if

α <
1

2

√
γ̄min +

1

4

and λ(1 + ε)K < 1 hold, where

K = max
i

d2Pi(xmax)

dx2
i

+
2(Meff − 1)γ̄maxxmax

(γ̄min + 1)x3
min

+
2σ2γ̄max

x3
min

.

VI. SIMULATIONS

The power control game based on outage probabilities is
simulated in MATLAB for a wireless network consisting
of six arbitrarily placed base stations and 20 mobiles.
The channel gain of the ith mobile is determined by the
log-normal shadowing path loss model given by hi =
(0.1/di)

2.5 + Y −1
σ , where di denotes the distance to the

BS and log(Yσ) is a zero-mean Gaussian random variable
with a standard deviation of σ = 0.1. The loss exponent
is chosen as 2.5 which corresponds to a low density urban
environment. Each mobile connects to a single BS, which
happens to be in the closest geographical location. Hence,
the cells in the network are irregularly shaped polygons. The
system parameters are chosen as L = 128 and σ2

l = 1 ∀l.
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Fig. 1. Locations of base stations and the paths of mobiles.

The mobiles are initially distributed randomly in the
network, and their movement is modeled after a two-
dimensional random walk with a speed of 0.0001 units
per update. Assuming an update frequency of 100Hz and
geographical unit size of 1000m, they move with a speed
of 10m/s or 36km/h. Figure 1 depicts the locations of the
BSs and the path of all mobiles.

The cost function for the ith user (mobile) is chosen as
Ji(x) = 0.5αix

2
i − ui log(Pri(γi(x) ≥ γ̄i)), where pricing

and utility parameters are ui = αi = 1 and γ̄i = 100,
which are chosen to be the same for all users for comparison
purposes. We first simulate a discrete update scheme with
perfect information for the ith user:

pi(n + 1) = pi(n) + λ
σ2

l γ̄i

h2
ilp

2
i (n)

+
λ

hilpi(n)

∑

j 6=i

1

1 + hilpi(n)
hjlpj(n)γ̄i

− λαhipi(n),

(12)
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Fig. 2. Power levels of selected mobiles with respect to time.
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Fig. 3. SIR values of selected mobiles (in dB) with respect to time.

where λ = 0.1 ∀i and n denotes the time. The power
levels and SIR values of a randomly selected subset of
mobiles for the duration of the simulation are shown in
Figures 2 and 3, respectively. The power levels converge
to the equilibrium points, which shift due to handoffs in
the system. The level changes in SIR values in Figure 3
are also due to the handoffs and variations in interference
levels between different cells.

We next consider a more realistic information feedback
scheme, where we take into account the distortion in
feedback information due to quantization and other effects.
Multiplying the parameter λ in the update algorithm (12)
with ξ, which is a random variable uniformly distributed
on [0.9, 1.1], we rerun the simulation with this imper-
fect feedback algorithm. In accordance with Theorems V.1
and V.2, convergence characteristics of the system are not
significantly affected.

VII. CONCLUSIONS

In this paper, we have considered a power control game
similar to the one in [6] with a utility function, which is

defined as the logarithm of the probability that the SIR
level of the mobile is greater than a predefined individual
threshold level. Hence, we have established a relationship
between the preferences of the mobiles and outage probabil-
ities. We have proven that the noncooperative power control
game admits a unique Nash equilibrium for uniformly
strictly convex pricing functions and under some technical
assumptions on the SIR threshold levels. Furthermore, we
have established the global convergence of continuous-time
as well as discrete-time synchronous and asynchronous
iterative power update algorithms to the unique NE of
the game under some conditions. Likewise, a stochastic
version of the discrete-time update scheme, which models
the uncertainty due to quantization and estimation errors,
has been shown to converge to the unique NE point almost
surely.

Finally, through extensive simulation studies we have
demonstrated the convergence and robustness properties of
power update schemes developed. Some of the possible
future extensions of this study include the simulation of
asynchronous update schemes as well as analysis and sim-
ulation of various handoffs algorithms.
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[5] T. Alpcan, T. Başar, R. Srikant, and E. Altman, “CDMA uplink power
control as a noncooperative game,” Wireless Networks, vol. 8, pp.
659–669, November 2002.
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