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Abstract—In this paper, we examine the well known Dis- provided that there exists a feasible solution to the power
tributed Power Control (DPC) algorithm proposed by Foschini  control problem [1]. Later, several other fully distributed
and Miljanic [1] and show via simulations that it may fail power control algorithms were proposed in [7], [8]. The
to converge in the presence of time-varying channels and . . L
handoff, even when the feasibility of the power control problem glgorlthms [1]_[8.] did not takg thg possibility of handoffs
is maintained at all times. Simulation results also demonstrate iNt0 account, which was studied in [9], [10]. Although the
that the percentage of instability is a function of the vari- research reported in [1]-[10] addressed several important

ance of shadow fading, interference and the target signal to aspects of power control, they all assumed that the link
interference plus noise ratio. In order to better explain these gains were constant.

observations and provide a systematic framework to study the
stability of distributed power control algorithms in general, we In reality, the channel is changing rapidly due to various
present the problem in the context of switched systems, which factors, including fading, handoff, user mobility, etc. In this
can capture the time variations of the channel and handoffs. . .
This formulation leads to interesting stability problems, which paper, we study the well knoyvn_ DPC algorlth_m [1] in thg
we address using common quadratic Lyapunov functions and context of these channel variations. The obvious question
M-matrices. that arises is: Given this rapid variation in channel gains
and handoffs, would the distributed algorithm of [1] still
track the equilibrium power (which would also be time—
varying due to channel variations), or at least be bounded?
In this paper, we show that the answer is indeed no in some
I. INTRODUCTION cases. In order to better explain our observation, we present
the problem in the context of switched systems which can
Controlling transmitted power in a wireless network iscapture the time variations of the channel and handoffs. We
important to mitigate the near—far effect, meet minimunstudy the DPC algorithm using this model and show that it
quality of service requirements and prolong battery life ofnay diverge even if the stability condition of the algorithm
mobile users. A common goal of any power control algomentioned in [1], namely the feasibility of the power control
rithm is to maintain an acceptable signal to interference plyzoblem, is satisfied at all times.
noise ratio (SINR) for individual users while minimizing
the total transmitted power. This objective can be met bM

using centralized power control algorithms [2], [3], [4]'the distributed algorithm proposed in [1]. In Section llI,

However, centralized algorithms are not practical as the\)oe propose a switched system model to study distributed

requrlelz cg_nlplgtf |dnform§1t|on foPhthe Imlk gi'r?s' Therefc;r? Eower control algorithms under time—varying channels and
partiafly distributed version of these algorithms was State, b goffs. Using this model, we analyze a two mobile, two

in [5], [6]. base station scenario in Section IV and examine the possible
A completely Distributed Power Control (DPC) algorithmeffects of shadow fading and handoffs on DPC. Finally, we

was first proposed by Foschini and Miljanic in [1]. Un-present the conclusions and discuss some future work in

like [5], [6], this algorithm takes into account the receiverSection V.

thermal noise and is implemented in a fully distributed

fashion, that is, each user updates its transmitted power [l. PROBLEM DESCRIPTION

using only local measurements of its own achieved SINR

and its past transmitted power. It is shown that this al- We consider a network d¥ mobile users communicating

gorithm converges to a unique equilibrium power vectoon the same channel. We assume thatithemobile user
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The rest of the paper is organized as follows. In Section
we briefly describe the power control problem and



is connected to the'* base stationj = 1,...,N. If two  plane, implying that (4) is stable [1], [12]. In that case, the
mobile users, say and j are assigned to the same basg@ower vector converges to the unique equilibrium

station, then the indicesand ; refer to the same physical . 1

base station. We study only the uplink, although the results pr=5"1>0 @)
are applicable to downlink as well. All values are in linear

under static channel conditions [1].
scale unless otherwise mentioned.

As discussed in the Introduction section, most available
power control algorithms assume constant link gains [1]-
[10]. However, wireless channels are highly time—varying
due to fading, handoff and user mobility; therefore both
B(t) andn(t) in (4) are functions of time. In such time—

gii(H)pi(t) varying cases, the simple requirement that all eigenvalues of
1) = S ) T ) () B(#) are in the right half planei.¢., B(t) is an M/-matrix)
JFEII ' at all times is not a sufficient condition for the boundedness
wherev;(t) is the thermal noise at thé" receiver. of the power vector.

Let g;;(t) represent the channel gain between e
transmitter and thé'" receiver, ang;(t) denote the power
transmitted by th&*" user. The achieved SINR for th#
user can then be expressed as

The objective of power control in a wireless network is
to update the power leve}s(t) in a distributed fashion, so  !ll. SWITCHING BASED PROBLEM FORMULATION

that the actual SINR for each user exceeds an acceptable
level. i.e. In this section, we pose the distributed power control

vi(#) =7, i=1,...,N, @) problem in the f_ramework of a swnch.ed sy§tem. Wire-

less communication channels vary rapidly with time due

where v is referred to as the target SINR. Foschini ando fading and user mobility. Furthermore, the link gain
Miljanic proposed a distributed algorithm to satisfy thebetween a mobile user and its assigned base station changes

above inequalities for all users [1]. The algorithm, which ionsiderably with a handoff. Thus the propagation matrix

referred to as DPC, can be represented in continuous—tini¥t) is a function of channel fading, mobile user location

as and base station assignment. To capture all these variations,
pi(t) = — [1 _ Zt)} pi(t), i=1,...,N, (3) in this paper we modify (4) as
Yi
. . . (t) = —B(x(t),t)p(t t),1), 8
or equivalently using vector notation, B(t) (x(®) )p(t) +n(x(®),?) ®
o wherex(t) is a switching signal that characterizes the hand-
p(t) = =B(t) pt) + n(t), ) off decision. The system matriB( x(t), t) assumes values
where p(t) = [p1(t),p2(t),....pn(t)]T is the transmitted from the set{Bi(t), By(t), ..., Bk (t)}, which represents
power vector;n(t) = [ni(t),n2(t),....,nn(t)]T is the all K possible base station assignments where éx¢h) is

normalized noise vector with;(t) = ~ v;(t)/gi;(t); and @ continuously time-varying matrix that models the effects
B(t) = [bi;(t)]nx is the normalized propagation matrix, of path loss, shadowing, multi—path fading and user mobility

whose components are given by for a particular base station assignment. Similayly(¢), ¢)
o can take values from the sdt7,(t), 75(¢),. .., 7x(t)},
a L ifi=]j which represents the possible thermal noise vectors.
bij(t) L gii(t) ifi | )
oL ' In this paper, we would like to examine the stability

properties of (8), given the special structure of the system

Under static channel conditionisg., whenB(t) = Band  magrix B( y(¢),¢). To this end, consider the homogenous
n(t) = n are constants, a necessary and sufficient condltlcgw stem

for the stability of the DPC algorithm is that all eigenvalues 5(8) = —B( (). )n(t 9
of B are in the right half plane. When the power control p(t) (x(®): )p(®)- ©
problem is feasiblej.e, if there exists a positive power Unfortunately, stability properties of (8) may not immedi-
vector p such that the inequalities in (2) are satisfied, wetely follow from the stability properties of the homogenous

have system in (9). To illustrate this, consider the following time—
Bp =n. (6) varying system [14]
. 1
Due to the special structure of the matd i.e., b;; = @(t) = 112 z(t) + f(t), (10)

1 > 0,b;; <0,i # j, and the fact that it satisfies (6) _ . _

for some positive vectors andn imply that B is an M—  Wherex(t) is the state of the system arfdt) is the input.

matrixt. Hence, all of its eigenvalues are in the right halfFor the unforced system (witffi(t) = 0), the solution is
given by

1A real Nx N matrix B = [b;;] is said to be an M—matrix ib;; £ = 2

0, ¢ # j and if all principle minors ofB are positive [11], [12], [13] ( ) Tt +92

Zo,
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where z is the initial condition [14]. Clearly, the system
is stable for all initial conditions. However, the complete
solution of the system with the inpyi(t) = 1 is

1 2 5
x(t) o+ -(t+2)— ——
and lim;_. ., 2(t) = oo [14]. Therefore, the output of the

T t+27° 2 t+2
system is seen to be unbounded although the homogenot
system is stable angi(¢) is bounded. i

IS

(®and p,0

P

The above example illustrates some of the challenges ir ,
studying the stability properties of the time—varying system
in (8). To gain further insights into the problem, we first .
assume that the matrices;(t),..., Bk (t) and the noise
vectorsy;(t), ..., nx (t) are constants and study the possible o . - - - - ot
effect of hard handoff on the stability of the system. Handoff fime
is the activity of changing the controlling base station for
a particular mobile user to maintain satisfactory quality of
service. In hard handoff, a mobile user is controlled by a
single base stathn at any given time and connecuqn W'tgiability of the individual subsystems in (12) is not sufficient
a new base station can be made only after breaking ttP& the stability of (11).
connection with the previous controlling base station [15].
An extension of hard handoff is soft handoff where the Example 1: Consider the switched system in (11) with
mobile can communicate with more than one base statiol = 2, K = 2, 1 = n2 = 0 and the system matrices
at a given time [16]. However, in this paper, we focus on 1 17
hard handoff only. B, = [ 04 1

The stability problem might then be restated as follow
Consider the switched system

Fig. 1. System state response in Example 1

} and By, = BY.

St can be shown that all eigenvalues Bf and B, are pos-
itive and hence both subsystems are stable. However, if we

Y, p(t) = —=B(t)p(t) +n(t), switch among the subsystems periodically every 1.5 seconds
R B B or less, the resulting switched system of (11) is unstable for
B(t) e B={Bi,..., Bk}, n(t) €1 ={7;---,Mx},  any non-zero initial condition. Fig. 1 shows the evolution

B . (11)  of the power vector for the initial conditiop(0) = [1, 1]T
where B; and7); are the system matrices and the thermang periodic switching among the subsystems every 1 sec.
noise vectors for the subsystems Clearly the switched system is unstakle.

S0 p(t) =-Bip(t) +7;, i=12,..., K.  (12) In this paper, stability analysis of the switched system
blig' (11) will be carried out using the Common Quadratic
é‘yé@\punov Function (CQLF) approach [17], [18]. The ob-
*Fctive here is to find a quadratic Lyapunov functigip) =
pTQp where @ = QT > 0 such thatv(p) decreases

The individual subsystems of (12) correspond to all possi
base station assignments. The network is assumed to h
a feasible power vector at each time and for all hando

assignments. This implies that eagh, i = 1,..., K is an . . o
M-matrix and the associated subsyst&m i — 1,..., K along the trajectories of each subsysteEmi =1,..., K.

is asymptotically stable. Hence, the power vector converg@sltgmawely’ th? problem qulves finding neggssary_a_nd
15 for eachy; [1] sufficient conditions for the existence of a positive definite
i [1].

to it ilibri lue, given byB. "7, ; R .

0 Its equilibrium value, given bys; ;. matrix Q = Q7 > 0 such that the following linear matrix
From the above discussion, the natural question thatequalities (LMI) are satisfied:

arises is whether the stability of the individual subsystems

in (12) imply the boundedness of the power vector in (11). BfQ+QBi>0,i=1,...,K. (13)
There are two factors that may lead to undesired effects: _
(i) Switching among the subsystems, and We have the following results.

(ii) The fact that the subsystems in general have different Proposition 1:

g . . R If there exists a symmetric positive defi-
equilibrium points, given byB; "7,,i =1,..., K.

nite matrix @ such that (13) holds, then the power vector
If the subsystems have the same equilibriuie, in (11) is bounded under arbitrary switching.

B 7, = p*,i = 1,..., K, wherep” is constant, then pyq Let v(p) = p”Qp be a Lyapunov function candidate

the stability properties of (11) and (12) can be examineg, (11). We have

assumingn(t) = 0 and7; = 0, ¢ = 1,..., K. However,

even when this is true, the following example shows that the b =—p" (BTH)Q+QB®))p + 20" Qn(t)
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< = X[pl* + 220 (Q) |2l system, as per Proposition 2, is not stable under sufficiently

) fast switching.
where ||p|| is the norm of the power vectop(t); the

constantsy, and \ are given by Even though a precise condition for the existence of
B a CQLF and hence for the boundedness of second order
b = hax (71, switched systems are given in Proposition 2, these results

geeey

B are yet to be extended to higher order systems.
A= min \.(BfQ+QB)),
o IV. HANDOFF IN TWO USER CASE
Am(+) andA,s(+) denote the minimum and maximum eigen-

values, respectively. Since (13) is satisfiedfet 1, ..., K, In this section, we examine a simple scenario with two
we have) > 0. Therefore, we obtairh < 0 for ||p|| > mobiles and two base stations, and study the stability of
M (QED) O the DPC algorithm under shadow fading and hard handoff.

: . [ il My,
From Proposition 1, it follows that the solution of (11) Consider two mobile users)/, and M, and two base

. X o ; stations,B; and Bs, as shown in Fig. 2. Recall that; (¢)
will be bounded under arbitrary switching (which may .
be due to handoff) if the subsysters. i — 1.....K and g1 (t) represent the channel gains frahfy, to B; and

have a CQLF. Note that, in general, existence of a CQLEQ' respectively. Similar notationg» (t), g22(t) apply for

for the subsystems may not be necessary for the Stabl|l{w

of a switched system [19], [18]. Given the matric&s, We assume that a mobile is connected to the base station
i = 1,..., K, the existence of a CQLF can be checkedvith which its channel gain is largest at a given time [9],
numerically by solving the LMIs in (13) using MATLAB. [10]. Depending on the signal strength, fading, effective
However, without exact information about these matrice§INR, mobility, etc., there might be four possible base
the approach we pursue is to derive theoretical conditiorgation assignments with system matrices of (8) as follows:
for the existence of a CQLF by exploring the special struc-
ture of the system matrices. To this end, we first consider
second order systems and state the following results.

(i) When g11 > g21 andge2 > g12, M; is connected to
By, Ms to By, and the system matrix is of the form

2 (t
Proposition2: The following statements are equivalent By — 1 " —viif&% ]
g21(t ’
for a 2 user case. —yﬁm 1
(i) The switched systent, in (11) is bounded under (i) When g21 > g11 and gs2 > g12, M; is connected to
arbitrary switching. By, Ms to By, and the system matrix is of the form
(i) The matrix pencil > | a;(—B,) is I;|<urwitz stable . )
forall; >0,i=1,2,...,K and)_;_, a; = 1. By = g (1) g(t) |
(i) The matrix pencilsa(—B;) + (1 — a)(—B;) are 0 1
Hurwitz Is(taple foralle € [0.1), and all .5 = iy When g,; > go1 and g > ga0, M, is connected to
_ e KyiFE g _ Bi1, M, to B, and the system matrix is of the form
(iv) A diagonal CQLF exists for every pair of subsystems
s andYy, i, =1,2,..., K, i # . 1 —’ygﬁgg
(v) A diagonal CQLF exists for all of the subsysteiig By = _791183 1 )
gi2

i=1,2,..., K.
(iv) When g1 > g11 andgia > ga2, M; is connected to

Proof: Follows from Proposition 1 and the proof of Theo- B,, M, to By, and the system matrix is of the form

rem 1 in [20]. ]

1 . 1 _7922(0
Remark: If B "5, = p*, i =1,..., K, wherep* is con- B, = © g (t) |
stant, then the equivalence of the statements in Proposition 2 - ZET 1

will still hold when (i) is replaced by the following stronger

It can be shown that fory < 1, the individual system
statement:

matricesB;,i = 1, ...,4, are M-matrices, hence all of their
(i)’ The switched syste, in (11) is stable undearbitrary  eigenvalues are in the right half plane (note that this is a
switching. conservative case, as even fpr> 1, the system matrices

Proposition 2 states necessary and sufficient condltlonsIght be M-matrices, if the interfering channel gain is

on the stability of (11) for the special class of second ordeP )- Hence, at each instant, for all possible base station
assignments and channel gains, the power control problem
systems. As a simple application of this result, reconsider

Example 1. It can be shown that the matrix pengi+ B, )+ 'S feasible.
(1 —a)(—B2), a € [0,1], has eigenvalues in the right In practical systems, the maximum transmitted power
half plane fora = 0.5 and hence the output of the switchedfrom a mobile is fixed; however in this paper we consider
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Fig. 3. Percentage instability as a function of standard deviation of fadir § 201 7
for D2 = 0.4 km (*) and D2 = 0.3 km (0) and various target SINR =
unconstrained DPC to show that the algorithm might d  2°f i
verge in some cases.
All values, unless otherwise noted, are in linear scal % 5 10 15 20 25 30

The path loss exponent for channel gains is assumed .. time (sec)
be 4 (note that in a practical scenario, even this parameter
may be time—varying, thereby augmenting the effect of
time—varying channel due to fading) and the lognormal
shadowing is assumed with standard deviatioa ¢ih dB).
The thermal noise is taken to be le-6.

Fig. 5. Moderate fadingo = 5); bounded power vectors

percentage instability.

) . . Figs. 4-6 show the power vectors for the mobile users
We implement the DPC algorithm and examine the effecf;, € {0.1,5,6}, D; = 300 m, D, = 400 m and

of time—varying channel gains and handoffs on the stabilit¥ — 0.9. The three figures correspond to channels with
of the algorithm. We consider several simulation scenario® very low (o = 0.1), (i) moderate ¢ = 5) and (iii) high

with 7 € {0.9,0.95}, Dy = 300 m, Doe {300 m, 400 M}, (7 _ ¢ fading. As expected, the first two cases are stable

ando € [5,8]. Monte Carlo simulations are performed and, hije for the last case, the DPC algorithm fails to converge.
the percentage of total number of simulations for which the

transmitted powers become unbounded are plotted in Fig. 3.
V. CONCLUDING REMARKS AND FUTURE WORK

It is seen that with the increase in the standard devi-
ation of the fading process, the percentage instability of In this paper, it is seen that the stability of the well
the algorithm increases, which confirms the fact that witknown DPC algorithm is jeopardized in the presence of
low channel fading, the DPC algorithm indeed tracks théme—varying channels and handoffs. Parameters that are
equilibrium power. Also, the percentage instability is aobserved to affect the dynamic properties adversely include
function of Dy (the distance of\f; from B,). The target the variance of fading process, interference levels and target
SINR also plays a major role in the stability problem. NotSINR. We have also proposed a switched system framework
surprisingly, the higher the target SINR, the higher théo analyze power control algorithms under fading channels
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and handoffs, and linked it with the CQLF concept dve-

matrices. Future research will be on extending the results’!
in this paper to higher order systems and using these ideas

to develop schemes to avoid possible instabilities.
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