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Abstract— In this paper, we examine the well known Dis-
tributed Power Control (DPC) algorithm proposed by Foschini
and Miljanic [1] and show via simulations that it may fail
to converge in the presence of time–varying channels and
handoff, even when the feasibility of the power control problem
is maintained at all times. Simulation results also demonstrate
that the percentage of instability is a function of the vari-
ance of shadow fading, interference and the target signal to
interference plus noise ratio. In order to better explain these
observations and provide a systematic framework to study the
stability of distributed power control algorithms in general, we
present the problem in the context of switched systems, which
can capture the time variations of the channel and handoffs.
This formulation leads to interesting stability problems, which
we address using common quadratic Lyapunov functions and
M–matrices.
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I. I NTRODUCTION

Controlling transmitted power in a wireless network is
important to mitigate the near–far effect, meet minimum
quality of service requirements and prolong battery life of
mobile users. A common goal of any power control algo-
rithm is to maintain an acceptable signal to interference plus
noise ratio (SINR) for individual users while minimizing
the total transmitted power. This objective can be met by
using centralized power control algorithms [2], [3], [4].
However, centralized algorithms are not practical as they
require complete information on the link gains. Therefore a
partially distributed version of these algorithms was stated
in [5], [6].

A completely Distributed Power Control (DPC) algorithm
was first proposed by Foschini and Miljanic in [1]. Un-
like [5], [6], this algorithm takes into account the receiver
thermal noise and is implemented in a fully distributed
fashion, that is, each user updates its transmitted power
using only local measurements of its own achieved SINR
and its past transmitted power. It is shown that this al-
gorithm converges to a unique equilibrium power vector

provided that there exists a feasible solution to the power
control problem [1]. Later, several other fully distributed
power control algorithms were proposed in [7], [8]. The
algorithms [1]–[8] did not take the possibility of handoffs
into account, which was studied in [9], [10]. Although the
research reported in [1]–[10] addressed several important
aspects of power control, they all assumed that the link
gains were constant.

In reality, the channel is changing rapidly due to various
factors, including fading, handoff, user mobility, etc. In this
paper, we study the well known DPC algorithm [1] in the
context of these channel variations. The obvious question
that arises is: Given this rapid variation in channel gains
and handoffs, would the distributed algorithm of [1] still
track the equilibrium power (which would also be time–
varying due to channel variations), or at least be bounded?
In this paper, we show that the answer is indeed no in some
cases. In order to better explain our observation, we present
the problem in the context of switched systems which can
capture the time variations of the channel and handoffs. We
study the DPC algorithm using this model and show that it
may diverge even if the stability condition of the algorithm
mentioned in [1], namely the feasibility of the power control
problem, is satisfied at all times.

The rest of the paper is organized as follows. In Section
II, we briefly describe the power control problem and
the distributed algorithm proposed in [1]. In Section III,
we propose a switched system model to study distributed
power control algorithms under time–varying channels and
handoffs. Using this model, we analyze a two mobile, two
base station scenario in Section IV and examine the possible
effects of shadow fading and handoffs on DPC. Finally, we
present the conclusions and discuss some future work in
Section V.

II. PROBLEM DESCRIPTION

We consider a network ofN mobile users communicating
on the same channel. We assume that theith mobile user



is connected to theith base station,i = 1, . . . , N . If two
mobile users, sayi and j are assigned to the same base
station, then the indicesi and j refer to the same physical
base station. We study only the uplink, although the results
are applicable to downlink as well. All values are in linear
scale unless otherwise mentioned.

Let gij(t) represent the channel gain between thejth

transmitter and theith receiver, andpi(t) denote the power
transmitted by theith user. The achieved SINR for theith

user can then be expressed as

γi(t) =
gii(t)pi(t)∑

j 6=i gij(t)pj(t) + νi(t)
, (1)

whereνi(t) is the thermal noise at theith receiver.

The objective of power control in a wireless network is
to update the power levelspi(t) in a distributed fashion, so
that the actual SINR for each user exceeds an acceptable
level, i.e.,

γi(t) ≥ γ, i = 1, ..., N, (2)

where γ is referred to as the target SINR. Foschini and
Miljanic proposed a distributed algorithm to satisfy the
above inequalities for all users [1]. The algorithm, which is
referred to as DPC, can be represented in continuous–time
as

ṗi(t) = −
[
1− γ

γi(t)

]
pi(t), i = 1, . . . , N, (3)

or equivalently using vector notation,

ṗ(t) = −B(t) p(t) + η(t), (4)

where p(t) = [p1(t),p2(t), ..., pN (t)]T is the transmitted
power vector;η(t) = [η1(t), η2(t), ..., ηN (t)]T is the
normalized noise vector withηi(t) = γ νi(t)/gii(t); and
B(t) = [bij(t)]N×N is the normalized propagation matrix,
whose components are given by

bij(t) ,
{

1, if i = j,
−γ

gij(t)
gii(t)

, if i 6= j.
(5)

Under static channel conditions,i.e., whenB(t) = B and
η(t) = η are constants, a necessary and sufficient condition
for the stability of the DPC algorithm is that all eigenvalues
of B are in the right half plane. When the power control
problem is feasible,i.e., if there exists a positive power
vector p such that the inequalities in (2) are satisfied, we
have

Bp = η. (6)

Due to the special structure of the matrixB, i.e., bii =
1 > 0, bij ≤ 0, i 6= j, and the fact that it satisfies (6)
for some positive vectorsp and η imply that B is an M–
matrix1. Hence, all of its eigenvalues are in the right half

1A real N× N matrix B = [bij ] is said to be an M–matrix ifbij ≤
0, i 6= j and if all principle minors ofB are positive [11], [12], [13].

plane, implying that (4) is stable [1], [12]. In that case, the
power vector converges to the unique equilibrium

p? = B−1η > 0 (7)

under static channel conditions [1].

As discussed in the Introduction section, most available
power control algorithms assume constant link gains [1]–
[10]. However, wireless channels are highly time–varying
due to fading, handoff and user mobility; therefore both
B(t) and η(t) in (4) are functions of time. In such time–
varying cases, the simple requirement that all eigenvalues of
B(t) are in the right half plane (i.e., B(t) is anM–matrix)
at all times is not a sufficient condition for the boundedness
of the power vector.

III. SWITCHING BASED PROBLEM FORMULATION

In this section, we pose the distributed power control
problem in the framework of a switched system. Wire-
less communication channels vary rapidly with time due
to fading and user mobility. Furthermore, the link gain
between a mobile user and its assigned base station changes
considerably with a handoff. Thus the propagation matrix
B(t) is a function of channel fading, mobile user location
and base station assignment. To capture all these variations,
in this paper we modify (4) as

ṗ(t) = −B(χ(t), t)p(t) + η(χ(t), t), (8)

whereχ(t) is a switching signal that characterizes the hand-
off decision. The system matrixB(χ(t), t) assumes values
from the set{B1(t), B2(t), ...., BK(t)}, which represents
all K possible base station assignments where eachBi(t) is
a continuously time–varying matrix that models the effects
of path loss, shadowing, multi–path fading and user mobility
for a particular base station assignment. Similarly,η(χ(t), t)
can take values from the set{η1(t), η2(t),. . . ,ηK(t)},
which represents the possible thermal noise vectors.

In this paper, we would like to examine the stability
properties of (8), given the special structure of the system
matrix B(χ(t), t). To this end, consider the homogenous
system

ṗ(t) = −B( χ(t), t)p(t). (9)

Unfortunately, stability properties of (8) may not immedi-
ately follow from the stability properties of the homogenous
system in (9). To illustrate this, consider the following time–
varying system [14]

ẋ(t) = − 1
t + 2

x(t) + f(t), (10)

wherex(t) is the state of the system andf(t) is the input.
For the unforced system (withf(t) = 0), the solution is
given by

x(t) =
2

t + 2
x0,



wherex0 is the initial condition [14]. Clearly, the system
is stable for all initial conditions. However, the complete
solution of the system with the inputf(t) = 1 is

x(t) =
2

t + 2
x0 +

1
2
(t + 2)− 2

t + 2

and limt→∞ x(t) = ∞ [14]. Therefore, the output of the
system is seen to be unbounded although the homogenous
system is stable andf(t) is bounded.

The above example illustrates some of the challenges in
studying the stability properties of the time–varying system
in (8). To gain further insights into the problem, we first
assume that the matricesB1(t), . . . , BK(t) and the noise
vectorsηi(t), . . . , ηK(t) are constants and study the possible
effect of hard handoff on the stability of the system. Handoff
is the activity of changing the controlling base station for
a particular mobile user to maintain satisfactory quality of
service. In hard handoff, a mobile user is controlled by a
single base station at any given time and connection with
a new base station can be made only after breaking the
connection with the previous controlling base station [15].
An extension of hard handoff is soft handoff where the
mobile can communicate with more than one base station
at a given time [16]. However, in this paper, we focus on
hard handoff only.

The stability problem might then be restated as follows.
Consider the switched system

Σs : ṗ(t) = −B(t)p(t) + η(t),

B(t) ∈ B = {B1, . . . , BK}, η(t) ∈ η̃ = {ηi, . . . , ηK},
(11)

whereBi and ηi are the system matrices and the thermal
noise vectors for the subsystems

Σi : ṗ(t) = −Bip(t) + ηi , i = 1, 2, . . . , K. (12)

The individual subsystems of (12) correspond to all possible
base station assignments. The network is assumed to have
a feasible power vector at each time and for all handoff
assignments. This implies that eachBi, i = 1, ..., K is an
M -matrix and the associated subsystemΣi, i = 1, . . . , K
is asymptotically stable. Hence, the power vector converges
to its equilibrium value, given byB−1

i ηi, for eachΣi [1].

From the above discussion, the natural question that
arises is whether the stability of the individual subsystems
in (12) imply the boundedness of the power vector in (11).
There are two factors that may lead to undesired effects:
(i) Switching among the subsystems, and
(ii) The fact that the subsystems in general have different
equilibrium points, given byB−1

i ηi, i = 1, . . . , K.

If the subsystems have the same equilibrium,i.e.,
B−1

i ηi = p?, i = 1, . . . , K, where p? is constant, then
the stability properties of (11) and (12) can be examined
assumingη(t) = 0 and ηi = 0, i = 1, . . . , K. However,
even when this is true, the following example shows that the
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Fig. 1. System state response in Example 1

stability of the individual subsystems in (12) is not sufficient
for the stability of (11).

Example 1: Consider the switched system in (11) with
N = 2, K = 2, η1 = η2 = 0 and the system matrices

B1 =
[

1 −1.7
−0.4 1

]
and B2 = BT

1 .

It can be shown that all eigenvalues ofB1 andB2 are pos-
itive and hence both subsystems are stable. However, if we
switch among the subsystems periodically every 1.5 seconds
or less, the resulting switched system of (11) is unstable for
any non-zero initial condition. Fig. 1 shows the evolution
of the power vector for the initial conditionp(0) = [1, 1]T

and periodic switching among the subsystems every 1 sec.
Clearly the switched system is unstable.¤

In this paper, stability analysis of the switched system
in (11) will be carried out using the Common Quadratic
Lyapunov Function (CQLF) approach [17], [18]. The ob-
jective here is to find a quadratic Lyapunov functionv(p) =
pT Qp where Q = QT > 0 such thatv(p) decreases
along the trajectories of each subsystemΣi, i = 1, . . . , K.
Alternatively, the problem involves finding necessary and
sufficient conditions for the existence of a positive definite
matrix Q = QT > 0 such that the following linear matrix
inequalities (LMI) are satisfied:

BT
i Q + QBi > 0, i = 1, . . . , K. (13)

We have the following results.

Proposition1: If there exists a symmetric positive defi-
nite matrix Q such that (13) holds, then the power vector
in (11) is bounded under arbitrary switching.

Proof: Let v(p) = pT Qp be a Lyapunov function candidate
for (11). We have

v̇ = −pT
(
BT (t)Q + QB(t)

)
p + 2pT Qη(t)



≤ −λ||p||2 + 2λM (Q)ηb||p||,
where ||p|| is the norm of the power vectorp(t); the
constantsηb andλ are given by

ηb = max
i=1,...,K

||ηi||,

λ = min
i=1,...,K

λm(BT
i Q + QBi),

λm(·) andλM (·) denote the minimum and maximum eigen-
values, respectively. Since (13) is satisfied fori = 1, ..., K,
we haveλ > 0. Therefore, we obtaiṅv ≤ 0 for ||p|| >
2λM (Q)ηb

λ
. (QED) ¤

From Proposition 1, it follows that the solution of (11)
will be bounded under arbitrary switching (which may
be due to handoff) if the subsystemsΣi, i = 1, . . . , K
have a CQLF. Note that, in general, existence of a CQLF
for the subsystems may not be necessary for the stability
of a switched system [19], [18]. Given the matricesBi,
i = 1, . . . ,K, the existence of a CQLF can be checked
numerically by solving the LMIs in (13) using MATLAB.
However, without exact information about these matrices,
the approach we pursue is to derive theoretical conditions
for the existence of a CQLF by exploring the special struc-
ture of the system matrices. To this end, we first consider
second order systems and state the following results.

Proposition2: The following statements are equivalent
for a 2 user case.

(i) The switched systemΣs in (11) is bounded under
arbitrary switching.

(ii) The matrix pencil
∑K

i=1 αi(−Bi) is Hurwitz stable
for all αi ≥ 0, i = 1, 2, . . . , K and

∑K
i=1 αi = 1.

(iii) The matrix pencils α(−Bi) + (1 − α)(−Bj) are
Hurwitz stable for all α ∈ [0, 1], and all i, j =
1, 2, . . . , K, i 6= j.

(iv) A diagonal CQLF exists for every pair of subsystems
Σi andΣj , i, j = 1, 2, . . . , K, i 6= j.

(v) A diagonal CQLF exists for all of the subsystemsΣi,
i = 1, 2, . . . ,K.

Proof: Follows from Proposition 1 and the proof of Theo-
rem 1 in [20]. ¤
Remark: If B−1

i ηi = p?, i = 1, . . . , K, wherep? is con-
stant, then the equivalence of the statements in Proposition 2
will still hold when (i) is replaced by the following stronger
statement:

(i)′ The switched systemΣs in (11) is stable underarbitrary
switching.

Proposition 2 states necessary and sufficient conditions
on the stability of (11) for the special class of second order
systems. As a simple application of this result, reconsider
Example 1. It can be shown that the matrix pencilα(−B1)+
(1 − α)(−B2), α ∈ [0, 1], has eigenvalues in the right
half plane forα = 0.5 and hence the output of the switched

system, as per Proposition 2, is not stable under sufficiently
fast switching.

Even though a precise condition for the existence of
a CQLF and hence for the boundedness of second order
switched systems are given in Proposition 2, these results
are yet to be extended to higher order systems.

IV. H ANDOFF IN TWO USER CASE

In this section, we examine a simple scenario with two
mobiles and two base stations, and study the stability of
the DPC algorithm under shadow fading and hard handoff.
Consider two mobile users,M1 and M2, and two base
stations,B1 andB2, as shown in Fig. 2. Recall thatg11(t)
andg21(t) represent the channel gains fromM1 to B1 and
B2, respectively. Similar notationsg12(t), g22(t) apply for
M2.

We assume that a mobile is connected to the base station
with which its channel gain is largest at a given time [9],
[10]. Depending on the signal strength, fading, effective
SINR, mobility, etc., there might be four possible base
station assignments with system matrices of (8) as follows:

(i) When g11 > g21 and g22 > g12, M1 is connected to
B1, M2 to B2, and the system matrix is of the form

B1 =

[
1 −γ g12(t)

g11(t)

−γ g21(t)
g22(t)

1

]
,

(ii) When g21 > g11 and g22 > g12, M1 is connected to
B2, M2 to B2, and the system matrix is of the form

B2 =

[
1 −γ g22(t)

g21(t)

−γ g21(t)
g22(t)

1

]
,

(iii) When g11 > g21 and g12 > g22, M1 is connected to
B1, M2 to B1, and the system matrix is of the form

B3 =

[
1 −γ g12(t)

g11(t)

−γ g11(t)
g12(t)

1

]
,

(iv) When g21 > g11 and g12 > g22, M1 is connected to
B2, M2 to B1, and the system matrix is of the form

B4 =

[
1 −γ g22(t)

g21(t)

−γ g11(t)
g12(t)

1

]
.

It can be shown that forγ ≤ 1, the individual system
matricesBi, i = 1, ..., 4, areM -matrices, hence all of their
eigenvalues are in the right half plane (note that this is a
conservative case, as even forγ > 1, the system matrices
might be M–matrices, if the interfering channel gain is
low). Hence, at each instant, for all possible base station
assignments and channel gains, the power control problem
is feasible.

In practical systems, the maximum transmitted power
from a mobile is fixed; however in this paper we consider
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Fig. 2. Simulation scenario with two mobiles and two base stations
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Fig. 3. Percentage instability as a function of standard deviation of fading
for D2 = 0.4 km (*) andD2 = 0.3 km (o) and various target SINR

unconstrained DPC to show that the algorithm might di-
verge in some cases.

All values, unless otherwise noted, are in linear scale.
The path loss exponent for channel gains is assumed to
be 4 (note that in a practical scenario, even this parameter
may be time–varying, thereby augmenting the effect of
time–varying channel due to fading) and the lognormal
shadowing is assumed with standard deviation ofσ (in dB).
The thermal noise is taken to be 1e-6.

We implement the DPC algorithm and examine the effect
of time–varying channel gains and handoffs on the stability
of the algorithm. We consider several simulation scenarios
with γ ∈ {0.9, 0.95}, D1 = 300 m, D2∈ {300 m, 400 m},
andσ ∈ [5, 8]. Monte Carlo simulations are performed and
the percentage of total number of simulations for which the
transmitted powers become unbounded are plotted in Fig. 3.

It is seen that with the increase in the standard devi-
ation of the fading process, the percentage instability of
the algorithm increases, which confirms the fact that with
low channel fading, the DPC algorithm indeed tracks the
equilibrium power. Also, the percentage instability is a
function of D2 (the distance ofM2 from B2). The target
SINR also plays a major role in the stability problem. Not
surprisingly, the higher the target SINR, the higher the
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Fig. 4. Very low fading (σ = 0.1); DPC stable
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Fig. 5. Moderate fading(σ = 5); bounded power vectors

percentage instability.

Figs. 4–6 show the power vectors for the mobile users
with σ ∈ {0.1, 5, 6}, D1 = 300 m, D2 = 400 m and
γ = 0.9. The three figures correspond to channels with
(i) very low (σ = 0.1), (ii) moderate (σ = 5) and (iii) high
(σ = 6) fading. As expected, the first two cases are stable
while for the last case, the DPC algorithm fails to converge.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, it is seen that the stability of the well
known DPC algorithm is jeopardized in the presence of
time–varying channels and handoffs. Parameters that are
observed to affect the dynamic properties adversely include
the variance of fading process, interference levels and target
SINR. We have also proposed a switched system framework
to analyze power control algorithms under fading channels
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Fig. 6. High fading(σ = 6); power vectors unbounded

and handoffs, and linked it with the CQLF concept andM–
matrices. Future research will be on extending the results
in this paper to higher order systems and using these ideas
to develop schemes to avoid possible instabilities.
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