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Abstract— This paper addresses the problem of controlling
the predator-prey like model of the interaction among CD4+

T-cell, CD8+ T-cell and HIV-1 by an external drug agency.
By exploring the dynamic properties of the system, the origin
system is £rst regrouped into two subsystems, then a nonlinear
global controller is presented by designing two controllers
over two complimentary zones: a local controller on a £nite
region and a global boundary controller over its compliment.
The local controller is developed to guarantee the nonnegative
properties and avoid control singularity problem within the
neighborhood of origin Ω. The complimentary controller is
designed via backstepping for both the subsystems respectively
over the complimentary region. The closed-loop system is
globally stable at nominal values, the resulting controller is
singularity free and guarantee the nonnegative properties.
Simulation results are demonstrated to show the effectiveness
of the proposed methods.

I. INTRODUCTION

Over last few years, the understanding of HIV-1 infection
has been greatly advanced. There are six reverse transcrip-
tase inhibitors (AZT, ddI, ddC, d4T, 3TC and nevirapine)
and three protease inhibitors (saquinavir, indinavir and
ritonavir) in the current approval by Food and Drug Admin-
stration [1][2]. These potent drugs inhibit viral replication
and lead to a rapid decline in viral abundance. Highly active
antiretroviral therapy (HAART), composed of multiple anti-
HIV drugs, is prescribed to many HIV-positive people [3].
HAART inhibits the replication of HIV-1, has proven to be
extremely effective at reducing the amount of virus in the
blood and tissues of infected patients. In the development
of a better understanding of the dynamics of the immune
system, much can be learnt from the approaches and tools
used by the ecologist to explore the population dynamics
and evolution of single and multi-species communities.

It is well known that HIV-1 production in infected indivi-
tuals is largely the result of a dynamic process [4][5].Several
mathematical models that incorporate the effects of therapy
on HIV-infected individuals has been developed. In a series
of papers [6][7][8], the timing, frequency and intensity of
AZT treatment are investigated. Descriptive models for the
competitive interaction of AZT-sensitive and AZT-resistant
strains of HIV has been analyzed in [9]. In [10], it proposed
that the short term effect of AZT treatment is due to the
predator-prey like interaction between virus and host cells
and that the CD4 cell increase following drug treatment is
responsible for the resurgence of virus. In [11], a nonlinear
dynamic model is presented for HIV-1 in the human body
and investigated the interplay between CD4+ T-cells and
CD8+ T-cells. The increase in the number of cases of AIDS
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has led to the development of new mathematical models
which describe the dynamical behavior of the viral load
on CD4+ T-cells counts as well as the effects of treatment
strategies [12][13]. On the other hand, some cases were
related to improvements in CD4+ T-cells and destruction
of the viral load. Intense clinical research has been carried
out [14][15].

As a matter of fact, the feedback control of HIV-1 is a
problem which is made dif£cult by the inherent nonlinear
nature of the involved mechanisms. The origin system is not
in the strict-feedback form. By noticing that the inherent
structures of both CD4 equation and CD8 equations are
identical, the original system is regrouped into two subsys-
tems, for which backstepping design and its variants can be
applied. Our studies in this paper focus on those solutions
evolving in the nonnegative sets Rn

≥0, where the subsystems
are analyzed on two separate compact set Ω ⊂ Rn

≥0 and its
compliment Ωc = Rn

≥0 − Ω ⊂ Rn
≥0 respectively.

The main contributions of the paper lie in:

(i) The introduction of two complement regions for global
control system design that enable us to handle the
singularity and nonnegativity problem individually;

(ii) The recomposition of the original system such that
each subsystem is in strict feedback form, for which
backstepping design can be applied; and

(iii) The design of a novel bridging virtual control which
serves as a bridge to stabilize the two subsystem
simultaneously.

The organization of this paper is as follows. Some
mathematical preliminary results and a detailed presentation
predator-prey like model of HIV-1 [11] is introduced in
Section III. In Section III, a new Lyapunov based method
is presented to design a controller for both subsystems over
two complementary regions. Section IV contains the nu-
merical experiment of the controlled HIV-1 model. Finally,
some concluding remarks are given in Section V.

II. PRELIMINARIES AND DYNAMIC MODEL

A. Mathematical Preliminaries

In order to study the dynamical properties of system (2),
some standard notations to be used are listed below [16]:

(i) R≥0=nonnegative real numbers;
(ii) Rn

+=n-column vectors with entries on R+; similarly
for R≥0;

(iii) Rn
0 =boundary of Rn

≥0, set vectors x ∈ R≥0 such that
at least one element of x = 0.

De£nition 1: [16] Set S ⊂ Rn is said to be forward
invariant with respect to the differential equation ẋ = f(x)



if with x(0) ∈ S each solution x(t) ∈ S for all positive t
in the domain of de£nition of x(·).

It is clear to note that the forward invariant property of
a nonlinear system depends on the initial state x(0).

Let Lfhj := (∂hj/∂x)f(x) denote the directional
derivative (Lie derivative) of a scalar function hj with
respect to the vector £eld f(x) [17]. Further, let Li

fhj :=
Lf (Li−1

f hj)∀ j = 1, 2, . . . ,m, with L0
fhj := hj .

The following Lemma is essential in solving the control
problem proposed in the paper, in particular, the control
problem without virtual control.

Lemma 1: [18], [19] Let function V (t) ≥ 0 be a contin-
uous function de£ned ∀t ∈ R+ and V (0) bounded. If the
following inequality.

V̇ (t) ≤ −c1x
2(t) + c2y

2(t), constants c1, c2 > 0 (1)

holds and y(t) is square integrable, then x(t) is also square
integrable. In addition, if ẋ is bound, then x → 0 as t → ∞.

B. Dynamics and Properties of the HIV-1 System

In this paper, we shall investigate the problem of control-
ling the predator-prey like model described as [11]:

ẋ1 = p1(x10 − x1) − p2x1x3

ẋ2 = p3(x20 − x2) + p4x2x3

ẋ3 = x3(p5x1 − p6x2),
(2)

where x1, x2 and x3 are the states, p1, p2, . . . , p6 are posi-
tive constants and their detailed explanations are explained
in [11][20]

The system has two equilibriums: one is on the boundary
of R3

≥0 stands as a saddle point, the other is an interior
equilibrium that is attractive within R3

+ (see [21]). The
class of systems which we consider is basically ‘forward
invariant’ as de£ned in [16]. The forward invariant provides
a method to guarantee the nonnegative properties of the
biomedical system. These de£nitions are useful, as our
study will be focused on the solution of (2) that evolves
in R3

≥0.
Lemma 2: [16] Both R3

0 and R3
+ are forward-invariant

sets with respect to system (2).
These properties are simple consequences of the fact that,

because the ith component of the solution of (2) will satisfy
ẋi(t) ≥ 0 whenever xi(t) = 0.

Lemma 3: [16] For each ξ ∈ R3
≥0, there is a unique

solution x(t) of (2) with x(0) = ξ, de£ned for all t ≥ 0.

III. CONTROLLER DESIGN

Let x0 denotes the nominal healthy value. For the con-
venience of control design, choose the state variables as

y =

⎡
⎣ y1

y2

y3

⎤
⎦ =

⎡
⎣ x1 − x10

x2 − x20

x3

⎤
⎦ (3)

so that the desired equilibrium point is located at the origin
of the state space. Consequently, the control objective is to

force x converge to x0. As de£ned in [20], we introduce
the external control agent u to reduce the viral load. The
state equation is

ẏ1 = −p1y1 − p2(y1 + x10)y3

ẏ2 = −p3y2 + p4(y2 + x20)y3

ẏ3 = y3[p5(y1 + x10) − p6(y2 + x20)] − u,
(4)

where y1 + x10 = x1 > 0, y2 + x20 = x2 > 0, and y3 =
x3 ≥ 0.

Remark 1: From the £rst two equations, we £nd that

(i) if y1(0) < 0, then y1(t) < 0 ∀t > 0.
(ii) if y2(0) > 0, then y2(t) > 0 ∀t > 0.

These are easily veri£able as follows. Because x1 = y1 +
x10 > 0, y3 > 0 and all the parameters p1 and p2 are
positive constants, we know that ẏ1(t) < 0 whenever y1(t)
approach 0. Similarly, because x2 = y2 + x20 > 0, y3 > 0
and all the parameters p3 and p4 are positive constants,
we know that ẏ2(t) > 0 whenever y2(t) approach 0. The
observation is not only useful for control system design, but
also the case in reality. In an HIV infected human lymphatic
system, CD4 count is much less than the nominal value,
i.e., y1(t) < 0, and CD8 count is much more than the
nominal value , i.e., y2(t) > 0.

Examining system (4), we know that it is not in the
standard backstepping design form, and the backstepping
procedure cannot be directly applied. However, it is well
known that [22] backstepping allows ¤exibility in exploiting
the properties of the physical system, i.e. avoiding cancel-
lations; stability of nonlinear systems are investigated using
Lyapunov theory fundamentally, including backstepping;
Lyapunov functions are additive, like energy, i.e., Lyapunov
functions for combinations of subsystems may be derived
by adding the Lyapunov functions of the subsystems.

The above ideas motivate us to re-group the system into
two subsystems that are in strict feedback form for the
convenience of applying backstepping design; sum up the
design procedure together for the original physical system
for the £nal control design, as will be demonstrated here
for the systematic understanding to demonstrated the main
idea.

Let us divide system (4) into two subsystems Σ1 and Σ2

in strict feedback forms:

Σ1

{
ẏ1 = f1,1(y1, y2) + g1,1(y1, y2)y3

ẏ3 = f1,2(y1, y2) − u1
(5)

Σ2

{
ẏ2 = f2,1(y1, y2) + g2,1(y1, y2)y3

ẏ3 = f2,2(y1, y2) − u2
(6)

where

f1,1(y1, y2) = −p1y1

g1,1(y1, y2) = −p2(y1 + x10)
f2,1(y1, y2) = −p3y2

g2,1(y1, y2) = p4(y2 + x20)
f1,2(y1, y2) = f2,2(y1, y2) = y3φ(y1, y2),

with φ(y1, y2) = p5(y1 + x10) − p6(y2 + x20).



For convenience of discussion, let ∗i,j denotes the jth
variable or constant of the ith subsystem, unless otherwise
de£ned.

For the control design, the following technical problems
should be addressed:

(i) Nonnegative problem: The controller should ensure
the nonnegative properties of the state variables.

(ii) Control singularity: The states converge to zero caus-
ing control singularity problem, which should be
avoided in control design.

(ii) Global control: The control design should ensure
global stability rather than a local one.

By exploring the physical properties, control system
design to be conducted in two separate zones. For ease of
discussion, let us de£ne set Ω ⊂ R3

≥0 and Ωc as follows:

Ω := {y ∈ R3
≥0 : y3 < p3/p4} (7)

Ωc := R3
≥0 − Ω. (8)

“ − ” in (8) is used to denote the complement of set B in
set A as follow

A − B := {x|x ∈ A and x /∈ B}.
As p3 and p4 > 0, Ω is not empty. We £rst focus our
study in Ω, to solve the nonnegative problem and avoid
control singularity problem. Then, we generalize our local
result to global stability via backstepping design, where no
singularity and nonnegative problem present.

In this section, the controller design is developed based
on backstepping. Backstepping design is a standard design
procedure now in handing systems in strict feedback, and
usually contains n steps [23]. The design of control law
is based on the following change of coordinates: z1 = x1,
zi = xi −αi−1, i = 2, ..., n, where αi(t) is an intermediate
control functions developed for the ith-subsystem based on
an appropriate Lyapunov function Vi(t). The control law
u(t) is designed in the last step.

By exploring the physical problem of the system, global
control is constructed over two complementary regions: Ω
and its complement Ωc. In Subsection III-A, asymptotic
control is presented using decoupled iterative Lyapunov de-
sign to overcome the nonnegativity and singularity problem.
In Subsection 3.2, we employ the backstepping design with
bridging virtual control to realize the global result in Ωc.

A. Region Control

In region Ω which includes the origin, stable control can
be easily constructed by exploiting the properties of the
system through a process of decoupled iterative Lyapunov
design on the natural description directly, without the intro-
duction of any virtual control.

For convenience of discussion, control system design is
developed in three stages – while the £rst two stages are
for each subsystems, the third stage is to sum up the results
obtained in stages 1 and 2 in order to conclude any results
for the whole system.

Stage 1: Subsystem Σ1: As subsystem Σ1 is of 2nd order,
the design consists of 2 steps.

Step 1 Let us £rst consider the £rst equation of Σ1, i.e.,

ẏ1 = f1,1(y1, y2) + g1,1(y1, y2)y3.

Choose the following Lyapunov function candidate

V1,1 =
1
2
y2
1 . (9)

Its derivative is given by

V̇1,1 = y1ẏ1 = −p1y
2
1 − p2(y1 + x10)y1y3 (10)

= −p1y
2
1 − p2y3y

2
1 − p2x10y1y3,

Using Young’s inequality,

−p2x10y1y3 ≤ ε1y
2
1 +

p2
2x

2
10

4ε1
y2
3 , ε1 > 0, (11)

we have

V̇1,1 ≤ −p1y
2
1 − p2y3y

2
1 + εy2

1 +
p2
2x

2
10

4ε1
y2
3 (12)

= −(p1 − ε1 + p2y3)y2
1 + k1,1y

2
3 ,

where k1,1 = p2
2x2

10
4ε1

> 0.
Remark 2: Since y3 ≥ 0, if we choose ε1 < p1, −(p1 −

ε1 + p2y3)y2
1 is a stabilizing item and there is no need to

cancel it. Unlike the argument of classical Lyapunov design
where the stabilization of y1 relies on the cancellation of the
coupling term y1y3 in V̇1 in the next step, the stabilization of
y1 relies on the proof of the stability of y3 in the following
step. If we could prove that y3 is square integrable, then
the stability of the y1 is ensured, according to Lemma 1.

Step 2 In this step, we will design a controller u1 that
make y3 square integrable. This is fundamentally differ-
ent from the commonly understood backstepping designs,
where control system design is carried out for the trans-
formed system in z space, rather than in the y space directly.
Consider the Lyapunov candidate

V1,2 =
1
2
y2
3 . (13)

Noticing the 2nd equation of Σ1 in (5), its derivative is
given by

V̇1,2 = y3ẏ3 = y3[f1,2(y1, y2) − u1]. (14)

Considering the following controller

u1 = k1,2y3 + f1,2(y1, y2), (15)

with constant k1,2 > 0, equation (14) can be rewritten as

V̇1,2 = −k1,2y
2
3 ≤ 0. (16)

Since V̇3 is negative semi-de£nite, it follows from y3 is
square integrable. Applying Lemma 1 backward to equation
of y1, we know that y1 is also bounded, and moreover,
limt→∞ |yi| = 0, for i = 1, 3.

Stage 2: Subsystem Σ2: As the structure of Σ1 is identical
to that of Σ2, similar analysis can be carried out without
any problem. For detail explanation, see [21].



Stage 3: Additive Lyapunov Design: Fundamentally, we
only need to stabilize the third equation of (4), i.e., the 2nd
equation of both subsystem Σ1 and Σ2. Further noticing that
the choice of Lyapunov functions for the second equations
in the previous analysis, we have chosen the same Lypunov
function for both subsystem Σ1 and Σ2 , i.e., V1,2 = V2,2. It
should be a good Lypunov function candidate for the third
equation of the original system (4) as well.

Accordingly, let us consider the Lyapunov function can-
didate

V =
1
2
y2
3 . (17)

From stage 1 and stage 2, we have

V̇ = y2
3φ(y1, y2) − uy3. (18)

Considering the regional control law

u = ur = y3φ(y1, y2) + k3y3, k3 > 0, (19)

we have
V̇ = −k3y

2
3 , ∀y ∈ Ω, (20)

which shows that the origin (y=0) is asymptotically stable.
As y is continuous, hence, a direct application of Barbalat’s
Lemma [24] gives that limt→∞ |y(t)| = 0, which implies,
in particular, that limt→∞ |x(t) − x0| = 0. We summarize
our conclusion in the Theorem 1.

Theorem 1: Consider the closed-loop system (4) with the
compact set (7. If the control law (19) is applied, then,
∀y(0) ∈ Ω, y(t) ∈ Ω ∀t ≥ 0, and y → 0 as t → ∞.

Proof: The proof can be easily completed by following
the previous design procedures from Stage 1 to Stage 3. ∆

B. Complementary Control

In this subsection, within Ωc, no nonnegativity problem
exists. Because the virtual control law should be same for
the second equations of subsystems Σi, i=1, 2, we shall
develop the control system in distinct steps as backstepping
design, but with more complexity.

Step 1 : Let us consider Subsystem Σ1 £rst. De£ne
z1,1 = y1. Its derivative is given by

ż1,1 = ẏ1 = −p1z1,1 − p2(z1,1 + x10)(z1,2 + α), (21)

where z1,2 = y3 − α, and α will be de£ned later. Choose
the following Lyapunov function candidate

V1,1 =
1
2
z2
1,1. (22)

Its derivative is given by

V̇1,1 = z1,1ż1,1 = z1,1[−p1y1 − p2(y1 + x10)]y3

= −p1z
2
1,1 − p2z1,1(z1,1 + x10)(z1,2 + α).(23)

As subsystems Σ1 and Σ2 should be fundamentally simulta-
neously stabilized using one single input, the virtual control
α should be the same for the £rst equations of the two
systems, so that the transformed coordinates in the next

step for the two subsystems are the same, i.e., z1,2 = z2,2.
Consider the virtual control

α = α1 + α2, (24)

where αi is used to stabilize the subsystem Σi. Noticing
(24), (23) can be rewritten as

V̇1,1 = −p1z
2
1,1 − p2z1,1(z1,1 + x10)α1 (25)

−p2z1,1(z1,1 + x10)(z1,2 + α2).

Apparently, by choosing α1 = c1,1y1
y1+x10

and noticing that
z1,1 = y1, we have

V̇1,1 = −(p1 + c1,1p2)z2
1,1 (26)

−p2z1,1(z1,1 + x10)(z1,2 + α2).

The £rst term is stabilizing because both p1, p2 > 0, and the
second term −p2z1,1(z1,1 +x10)(z1,2 +α2) will be handled
in the next step. The closed-loop form of (21) with (24) is

ż1,1 = −(p1+c1,1p2)z1,1−p2(z1,1+x10)(z1,2+α2). (27)

Similar analysis can be carried out for subsystem Σ2. for
complete deduction, see [21]

Step 2: For convenience, let us de£ne

g(y) = Ly1α1 + Ly2α2. (28)

The derivative of z1,2 is expressed as

ż1,2 = ẏ3 − g(y). (29)

For subsystem (21) and (29), we now design a control law
u1 to render the time derivative of a Lyapunov function
negative de£ne. Following the standard backstepping de-
sign, consider the Lyapunov function candidate

V1,2 = V1,1 +
1
2
z2
1,2. (30)

Its derivative for (29) is

V̇1,2 = V̇1,1 + z2ż2 (31)

= z1,2

(
f1,2 + u1 − g(y)

)
− (p1 + c1,1p2)z2

1,1

−p2z1,1(z1,1 + x10)(z1,2 + α2)
= −(p1 + c1,1p2)z2

1,1 − p2z1,1(z1,1 + x10)α2

+z1,2

(
f1,2 − u1 − p2z1,1(z1,1 + x10) − g(y)

)
.

Since within Ωc, z1,2 = y3 − α > p3/p4 > 0, it is easy to
see that the choice of control

u1 = c1,2z1,2 + f1,2(y) − g(y) (32)

−(1 +
α2

z1,2
)p2z1,1(z1,1 + x10),

which is well de£ned, leads to

V̇1,2 = −(c1,1p2 + p1)z2
1,1 − c1,2z

2
1,2, (33)

which means that the equilibrium z = 0 is globally
asymptotically stable, since V̇1,2 is negative, it follows from
LaSalle-Yoshizawa theorem [24]. Note that u1 and α are



smooth function and satisfy u(0) = 0, and α → 0 as
t → ∞, ∀y(0) ∈ R2

+. Thus, we can conclude that y = 0 is
globally asymptotically stable.

Similarly, the analysis of subsystem Σ2 can be similarly
carried out. Due to the space limitation, the deduction is
presented in [21]. Then, we choose the control law

u2 = (1 +
α1

z2,2
)p4z2,1(z2,1 + x20) (34)

+c2,2z2,2 + f2,2(y) − g(y),

which is well de£ned.
Step 3: As Lyapunov functions are additive, the sum of

the Lyapunov functions for Σ1 and Σ2 are good candidate
for the whole system. Consider the Lyapunov function
candidate

V = V1,2 + V2,2. (35)

From the previous discussion, we have

V̇ = −
2∑

i=1

(ci,1p2i + p2i−1)z2
i,1 + zi,2[g(y) + fi,2] (36)

+
2∑

i=1

zi,2

[
− u + (1 +

αi

zi,2
)p2izi,1(zi,1 + xi0)

]

= −
2∑

i=1

(ci,1p2i + p2i−1)z2
i,1 + zi,2[g(y) + fi,2] (37)

+z1,2

2∑
i=1

[
− u + (1 +

αi

zi,2
)p2izi,1(zi,1 + xi0)

]
.

It is clear that the control law in the complement region,
uc, of the following form

u = uc = −g(y) + c1,2z1,2 + f1,2 (38)

−1
2

2∑
i=1

[(1 +
αi

zi,2
)p2izi,1(zi,1 + xi0)],

leads to

V̇ = −(c1,1p2+p1)z2
1,1−(c2,1p4+p3)z2

2,1−c1,2z
2
1,2. (39)

Since V is negative de£nite, it follows that system is
asymptotically stable at the origin.

Theorem 2: Consider the closed-loop system consisting
of (4), the set (8) and the control law (38). Then, for any
initial conditions y(0) ∈ R≥0, the solution of system (4)
y(t) → 0 as t → ∞ asymptotically.

Proof: The proof of Theorem 2 can be driven from Stage
1 to Stage 3. ∆

Remark 3: For clarity, the control law (38) is clearly
derived from (38). By examining (37), and noticing the
expression of (32) and (34), we know that the control in
(38) can be conveniently written as

u = uc =
1
2
(u1 + u2)

with uc reads as control in the complement region, and u1

and u2 are de£ned in (32) and (34), respectively.
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Corollary 1: Consider the closed-loop system consisting
of (4), the compact set (8) and the control law (38). Then,
for any initial conditions y(0) ∈ Ωc, the solution of system
(4) y(t) → Ω in a £nite time t∗ > 0 asymptotically.

In the proceeding, we have design two controllers for
states y ⊂ Ω and y ⊂ Ωc respectively. Thus, we obtain the
following proposition

Proposition 1: Consider the closed-loop system (4) and
the control law

u(t) =
{

ur y ∈ Ω
uc y ∈ Ωc

(40)

where ur and uc are de£ned in equation (19) and (38)
respectively. Then, system (4) is asymptotically stable at
the origin for any y(0) ⊂ R≥0.

IV. SIMULATION

To verify the effectiveness of the proposed approach,
the developed adaptive control is applied to system (4).
To illustrate the realistic case the values of the parameters
used are: x10 = 1000 cell/mm3, x20 = 550cell/mm3,
p1 = 0.25, p2 = 10, p3 = 0.25, p4 = 10.0, p5 = 0.01
and p6 = 0.006. Figure 1-3 show the simulation results of
applying controller (40) to system (4). The initial conditions
[y1(0), y2(0), y3(0)]T = [0, 0, 0.1]T , From Figure 1, it can
be seen that all the states evolve in a small range (−27 <
y1 < 0 and 0 < y2 < 15) and asymptotically converge to
the origin as time goes to in£nite. In Figure 2-3, we £nd
that the adaptive controller is switched at the time of 14.6
hour.

V. CONCLUSIONS

The dynamics properties of the prey-predator like HIV-
1 model has been studied in this paper. By exploiting the
system properties, the system is regrouped into two subsys-
tems, which are in strict feedback form, and is analyzed over
two complementary regions. A singularity free controller is
presented for HIV-1 system using the decoupled Lyapunov
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over Ω. A novel bridging virtual control is applied over Ωc

for backstepping design. The proposed control can drive the
all the positive states asymptotically converge to the desire
values, and guarantee the nonnegative properties of all states
in the closed-loop system. The design method make use of
the ¤exibility of the Lyapunov design and does not lead to
singular behavior with respect to the control action.

However, we know that every individual system has a
unique set of parameters that may not be known either
exactly in advance. The drugs implemented without the
prori knowledge of the parameters may caused unexpected
dangerous. In order to solve this problem, the estimation
of HIV parameters by using adaptive observers has been
proposed [25]. Adaptive control of the nonlinear HIV
system has been investigated in [26].
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