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An Approach to the Optimal Scanning Measurement Problem
Using Optimum Experimental Design

Dariusz Uchski and Michael A. Demetriou

Abstract—We address the problem of activating discrete Ordinarily, the task is reduced to examining a given
scanning sensors so as to maximize some quantitative observ-finite set of possible candidate locations. Then we seek
ability measure for a given distributed parameter system. In the best subset of locations from among all the possible

contrast to the classical approach based on a direct application - . - .
of non-linear programming algorithms, the key idea here is to  O"€S- Numerical algorithms for the construction of optimum

operate on the density of sensors per unit area instead of the Sensor configurations by searching over a list of candidate
positions of individual sensors. Mathematically, this procedure locations customarily involve an iterative improvement of

involves searching for a family of “optimal” probability mea-  the initial sensor configuration. The combinatorial nature
sures defined on subsets of the set of feasible measurementof the problem so formulated implies that with a long list

points. The method proposed for solving the problem so . ) . . .
formulated, originates from an extremely efficient approach of candidate points and the DPS discretization involving a

which is based on directly constrained design measures that high-dimensionality of the lumped representation, compli
are used in optimum experimental design theory. As a result, a cated search algorithms can readily consume appreciable

fast iterative procedure is obtained whose each step reduces to computer time and space. In contrast to this approach, the
replacing less informative sensor locations with points which ey jdea here is to operate on the density of sensors per unit
furnish more information about the system state. . o o
area instead of the positions of individual sensors. Suah co
. INTRODUCTION ditions allow us to relax the discrete optimization problem
_ . in context and to replace it by its continuous approximation
This paper seeks to study a problem which has relﬁ‘\?lathematically, this procedure involves looking for a fami

t|\r/1ely| dOftin bien adc;irr]eslsed tl|n r:he ?Or:trm Ilrterrr?tﬁ:@wn o; ‘optimal’ probability measures defined on subsets of the
should one choose he locallons of measurement SENSQg ¢ faasible measurement points. In spite of its somewhat
for a given distributed parameter system (DPS) so as t

) . . o as Wnstract assumptions, the resulting algorithm of exchange
increase its degree of observability quantified by a suﬁabltype is very easy to implement. The underlying concepts

observab|||t}/. measuraiCertainly the selectl_on el have already been applied in the context of sensor location
sensor positions may have such a dramatic effect on t}?g

Where to the best of the authors’ knowledge the approach

past approaches are surveyed e.g. in [1], [2]. However, ﬂEJeased on sensor densities has not been employed yet.
results communicated by most authors are rather limited to

the selection of stationary sensor positions. A gener@iza [I. PROBLEM FORMULATION

which imposes itself is to apply sensors which are capablg Observability in a Quantitative Sense

of tracking points providing at a given time moment best Given a linear DPS described by a partial differential

:c?éoLn;ii'lonﬂ?:torr:;hstﬁf/eart?osnt"gethn?igﬁulﬁ;’e'; hmaqusljtie Ieequation model, consider its finite-dimensional approxima
q y . Y pri 'Pifon (e.g. obtained via the finite-element method) in the
sensors whose positions are already specified and it

| . . . . .
desired to activate only a subset of them during a givefngrm of the following system of linear ordinary differentia

time interval while the other sensors remain dormant [3]. Aequat|ons.

reason for not using all the available sensors could be the dy(t) = A)y(t), teT = [to,t/] 1)
reduction of the observation system complexity and the cost de v 0251

of operation and maintenance [1]. Such a scanning strategy y(to) = Yo, (2)

of taking measurements can be also interpreted in terms g&ch thaty
several sensors which are mobile. This line of research h
drawn some attention of both scientists and engineers, b
the existing methods are still of little use in practice.

(t) € R® and A(t) € R™*", which is augmented
the sensor location parameterized counterpart of the
tput equation

z(t) = C(t:¢(1))y(), @)
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University of Zielona ®ra, ul. Pod@rna 50, 65-246 Zielona@a, Poland Where z(t) € RY, C(¢;¢(t)) € RY¥*", and the notation
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As regards a quantitative measure for state observabilitgcations may only be employed on condition that the
consider the observability Gramian Gramian constitutes the sum of some matrices, each of
ty them being completely defined by the position of only one
W(¢) = / BT (t,t0)CT (t;C(1))C(t; C (1)) B(t, to) dt, scanning sensor on one subinterial cf. (8).
to
(4) . conversion to Finding Optimal Sensor Densities

where the fundamental (or transition) matdiX¢, ¢y) obeys ) o
When the number of sensor$ is large, which is rather

d®(t, o) — A()®(t,10), (to.to) = I, (5) @ common situation in applications_ such as air pollution
dt monitoring networks or control architectures for smart ma-
I being the identity matrix. terial systems, the optimal sensor location problem besome

An optimal sensor configuration strategl can be found extremely difficult from a computational point of view. Con-
by minimizing some convex functio® defined onW({) sequently, we propose tmperate on the spatial density of

[1]. Common choices include the following: sensorsrather tharon the sensor location§his is proved
1) (W) = —Indet W, reasonable for a sufficiently larg€ and potential solutions
2) U(W) = trace W1, would be satisfactory for many technical processes.
3) (W) = — trace W, Performing such a conversion does not eliminate the
4) U(W) = Amax(W™1), discrete nature of the original formulation, and therefore

where \ax (- ) stands for the largest eigenvalue of its malhe resgltant computational problem. ig'still not amenable
trix argument. Since the last criterion is non-differentia 0 solution. Thus we relax the definition of the set of
when there are repeated eigenvalues, its use will not geimissible solutions by observing that the density of senso

considered here. over the subinterval, can be approximately described by
a probability measuré,(dz) on the spacd X, ), where
B. Scanning Problem for Optimal Observability B is the s-algebra of all Borel subsets of. As regards
Let us form an arbitrary partition of the time intervel=  the practical interpretation of the so produced solutions,
[to, t¢] by choosing pointgy < t; < --- < t;, = t; defining one possibility is to partitionX into non-overlapping sub-
subintervalsly, = [t;_1,t¢), £ = 1,..., L. We then consider domainsAX; of relatively small areas and then, on the

N scanning sensors which will possibly be changing theigubinterval7;, to allocate to each of them the number
locations at the beginning of every time subinterval, but

will be remaining stationary for the duration of each of the Ne(AX;) = {N/ fz(dx)] (11)
subintervals. Thus the sensor configuratjocan be viewed AXi
as follows: of sensors [(p] is the smallest integer p).

Thus our aim is to find probability measurés, ¢ =

C(t) = (ag,vay) forteTy, (=1....L, (§) 1,...,L over X. For notatiogal conveynience, ir?what fol-

where x; € X c R? stands for the location of thg-th lows we shall briefly write = (&,...,¢,) and call{ a
sensor on the subinterva), X being the part of the spatial design measur¢or a designfor short).
domain where the measurements can be taken. Such an extension of the concept of the sensor configu-

Assume that the consecutive rows of the maftix; ((¢))  ration allows us to replace (8) by
in (3) correspond to contributions from different sensoes,

L
ATk 1) WO =Y [ Tuw)tao) (12)
1 /X
C(t,C(t) = ; forteT,, (=1,... L, =1
VT (@ 1) A rather natural additional assumption is that the density

(7) of sensorsN,(AX;)/N in a given partAX; must not
wherey : R¥1 — R is a given function. Then we can exceed some prescribed level. In terms of the probability

decompose the Gramian as follows: measures, this amounts to imposing the conditions
LN , &(de) <w(dx), £=1,...,L, (13)
W(Q) =YD Telap), ®) o o
=1 j=1 wherew(dz) is a given measure satisfyinf, w(dz) > 1.

Defining J(¢) = T[W(&)], we may phrase the scanning

where . .
0 sensor location problem as the selection of
Yia) = [ gl @0y, © g m
- ¢ =arg min (9, (14)
g(l‘,t) = (I)T(t,to)’}/(i,t). (10)

whereZ(X) denotes the set of all competing designs whose
We have thus arrived at the crucial point for the presentecbmponents satisfy (13) (note thafX) is non-empty and
approach, as the proposed algorithm of finding best sensmonvex). We callg* the (¥, w)-optimal solution
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TABLE |

The idea of working with sensor densities in lieu of
FUNCTIONS DEFINING THE DIRECTIONAL DERIVATIVES

sensor positions was proposed by Fedorov [7] who sought
spatially distributed observations maximizing the accyra
of parameter estimates of a given static system (the problem | ¥[W ()] e(2,€) <€)
pertains to the general setting of optimum experimental de-
sign theory [8], [9]). Fedorov’'s ideas were then generdlize
to the context of optimum stationary [6] and scanning [5]
sensor locations for parameter estimation in dynamic DPS’s
In the sequel, we will need the following assumptions: — trace W (€) trace Yy (z) trace W (€)
(A1) X is compact,
(A2) T, € C(X;RN*N),
(A3) W is convex, In what follows, we write=(X) for the collection of all

(A4) If Wy < Wy, thenW (W) > W(Wa), ~ the designg whose components satisfy the requirement
(A5) w(dx) is atomless, i.e. for anA X C X there exists

aAX’ c AX such that

/ w(dz) </ w(dz), (15)
AX' AX . : L . -
: . The point of this definition is that the designs fréai.X)
(AB) There exists a finite real such that turn out to be vital while formulating optimality conditien

_ ) The main feature of a desighe =(X) is that for each of

{f_(flv 75L>' . . . o
its componentsg, the design domaiX can be split into two
J(§) < g < o0, &dr) < w(df)’ subsets for whicl, coincides either with the zero-measure

(=1,...,L} =E(X) #0, of with the upper bound.

—Indet W(¢) | trace[W—1(£)T,(z)] N

trace W=1(£) | trace[W =2(&)Yo(x)] | trace W—1(&)

w(AX) for AX C suppé&y,

(21)
0 for AX C X \ supp&.

§(AX) = {

(A7) For any¢ € =(X) andé € Z(X), we have IIl. CHARACTERIZATION OF OPTIMAL DESIGNS
We begin with a fundamental result regarding the form

L
dJ(&E—§) = Z/ Ye(x,8) &(dx),  (16)  of (I, w)-optimal designs.
t=17% Theorem 1:Under Assumptions (Al)—-(A7), 4¥,w)-
where the left-hand side stands for the one-sideg@ptimal design exists iE(X).
directional derivative of/ at{ in the direction¢ — &, Consequently, we can focus our attention on designs from
AdJ(&E— ) the set=(X). Our goal now is to develop a method for
J(E+MNE— ) — J(©) checking whether or not a given desigr =(X) is (¥, w)-
= lim 17) optimal. The test stated below in Theorem 2 is based on the

A0 A following notion of the separability of two sets:.
= i\p[W(@ + AW (E) = W(€))] Definition 1: Given a design¢, we will say that the
dA A=0+ function y,( - ,&) defined by (18)separatessets X; and
andy(-,§), £=1,..., L areC(X) functions. X, with respect tow(dx) if for any two setsAX; C X,

Assumption (A4) characterize§ as a linear ordering and AX, C X, satisfying
of E(X) (W; =< Wsy iff Wy — W7 is non-negative definite).
In turn, Assumption (A7) means that the directional deriva- / w(dz) = / w(dx) (22)
tive of J must be somewhat specific. Note, however, that AXy AXz
requiring ¥ to be differentiable with respect to individual we have
elements of its matrix argument, we obtain

1/}2(1'7 5) - C(E) - d)l(x? g)a (18) AXy JAXo
the functionsc and ¢ being respectively defined as Theorem 2:A necessary and sufficient condition for
1 o & = (&,...,€) € Z(X) to be (¥,w)-optimal is that
c(§) = — trace [‘I’(ﬁ)W(f)}, (19)  the functionsy,( -, £*) separateX; = supp&; and X \ X}
° fore=1,... L.
e(x,€) = — trace {‘I’(g)n(x)}v (20) As a companion to the above result, we next consider the
where special case where(dz) has a continuous densipy
&J(g) _ oV (W) Corollary 1: Let ¢&* € =(X) and X; = supp &y, £ =
ow W:W(E)' 1,...,L. If w(dx) = p(x)dx, where p(x) is a positive
Table | lists specific forms of the so introduced functions 1the sypport of a measuge is defined as the closed seipp &, =
for the most popular design criteria. X\ U{G: &(G) =0, G - open, cf. [10, p.80].
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continuous function, theg* is (¥, w)-optimal iff where

sup p(x,67) < inf (a7, L=1...L supp &, (a) = (X1} \ S1) (@) USE (), (28)
z€X} ze X\ X7
(24)

_ _ anda = min{1, [, o(x)dxz — 1}. Incrementk and
Corollary 2: Under the assumptions of Corollary 1, if

) ) go to Step 2.
moreo*vgratlf(W)/(?W|W_:W(£*) exists and is bounded,  thg properties of this feasible-direction-like algorithm
then¢* is (¥, w)-optimal iff can be considered in some detail, but in practice the scheme
inf ¢o(z,6) > sup el E), (=1,.... L putlined in what follows is preferred as it is much easier to
zeXy wEX\ X} implement.

(25)
According to the above result, the functiogg play B. Implementation Issues

a leading role in indicating spatial points which provide \yjthin the framework of the sensor placement, we usu-

thel most v:_:lluable information _in terms of the. adoptetgl"y deal with a constant allowable sensor dengify) =
optimality criterion¥. They constitute a good starting point ;5nst  Moreover, while implementing Algorithm 1 on a

for constructing numerical procedures of determining be%tomputer, all integrals are most often replaced by sums

sensor configurations in practice. over some finite grid elements (the grid produced by the
IV. NUMERICAL PROCEDURE OF EXCHANGE  finite-element method can be emg:loyed for that purpose).
TYPE Analogously, the sets, Xl(f), XQ(’Z \ Sf';) and Sé’;) then

simply consist of grid nodes. Thus Algorithm 1 can be
interpreted as an exchange-type algorithm (in each itera-
Corollary 2 forms a basis for an efficient numericaltion some points are deleted from the current design and
algorithm of determining ¥, w)-optimal designs. Its main replaced by the same number of vacant points). In practice,
idea is to move some measure from an area of lower value$®) is usually fixed and, what is more, one-point exchanges
of ¢e(-,¢™) to those with higher values, as we expeclare most often adopted, i.&.} — {xg’;)} and 5{¥) =
that such a procedure will improve the current desjgn. {2$%)}, which substantially simplifies the implementation.
Details regarding this scheme are summarized as follows: Taking account of the above remarks, the following
Algorithm 1: General scanning strategy algorithm: computational scheme can be developed:

1) Guess an initial desiga® € Z(X). Select a toler-

ancel <7 < 1. Setk = 0. Algorithm 2: Practical exchange-type scanning strategy
_ (k) _ (k) )
2) For¢=1,...,L separately seX,,” = supp&, and algorithm:

(k) _ (k) i o - .
X3 = X\ X}, (the bar over the symbol denoting 1y Constructa priori a sufficiently dense set of possible
a set stands for its closure), and determine sensor locationst — {:Uj}N, covering the domain

=1

A. General Algorithm

a;(l’z) = arg min o(z, R, X, whereN’ > N. For each node of this grid, deter-
veXyy (26) mine and store the matricéb,(z?), £ = 1,..., L.
(0 -
Iglz) = arg max dg(z, ™). Se!ectN—eIement_ s_,gtle(K) Cc X, /! = 1,...,L _
zex i which constitute initial guesses regarding best sites
*®) k) 8 k) for locating sensors over the consecutive subintervals
It (g, E") > dolay,, ) —n for all £ = T,. They will possibly be improved in what follows.
1,...,L, then STOP. Setk = 0.
3) For £ = 1,...,L proceed as follows: If ) Assemble the Gramian
do(ary) €1) > polayy), €)1, then x5y (o) = .
S5, = 0. Otherwise defineS],’(a) as the inter- (k)
W = T 29
section ole(f) and the ball centered atglz) with ; Z;(k) (=) 29)
a radius adjusted so th@fg<k>(a) p(r)dz = a, and rEX
1¢
similarly, let 5.¥ () be the intersection ok} and and compute
the ball centered aké’;) with a radius adjusted so oW (W)
as to satisfy [, , p(x)dz = «. Then construct G = — ‘ . (30)
(k+1) (kk)gzé ((g)) k) (k) oW =
E+1) _ =
3 = ((g)l (@™),.... & (@) € E(X) by For¢=1,...,L separately, determine
choosinga'®) so that
(k) _ : (k)
xy, = arg min traceiG'Y"/Ty(x)7,
Y EP @), ..., €0 ) e = arg iy, trace{GTT(r)) o
= min Y[W( %k)(a),..., (Lk)(a))], 27) xg;) =arg max trace{G(k)Te(x)}.
ae(0,a] ‘LEX\XI(Z)
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If trace{G(k‘)Tz(xg’;))} < tI‘aCG{G(k)Tg(ZL';?))}f”I),
where0 < 5 < 1, then sets\¥) = {z{¥)1 ands{}) =
{81, otherwise fixs\¥ = s{b — ¢

3) If trace{G(k)Tg(:E(llz))} > tI’aCG{G(k)Tg({L'é]Z))} -
forall £=1,...,L, then STOP. Otherwise, set

0.8

0.6

041

0.2

- (K - sl
X =@ susy. Gy

-0.4r

Incrementk and go to Step 2. o6l

The integration required for determining the matr sl

Y,(z7) can be performed using common quadratures. ) S N N U SN SO S S
Algorithm 2 performs well and turns out to be extrerr T TER 7T 0B 06 A ez 002 08 06 08 1 a2 s
fast despite the high dimensionality of the original protl Fig. 1. Spatial domaif2 and an unstructured mesh on it.
Switching from the formulation in terms of seeking
best sensor locations to that in terms of determining vest
sensor densities makes it possible to avoid the complitsitiowhich describes the diffusion of heat over the time interval
caused by the inherent combinatorial nature of the sens®r= [0, 1] in a body represented geometrically by the spatial
location problem. domain{2, whereu = 0.1 is the diffusion coefficient. The
Apart from the decided advantages of the approacliorm of 2, which can represent e.g. a metal block with two
two issues should be addressed as potential shortcominggcular cracks or cavities, is given in Fig. 1.
First of all, note that one-point exchanges in Algorithm 2 Equation (33) is supplemented with the zero Dirichlet
being a simplified version of Algorithm 1 correspond toboundary conditions on the outer boundaries (bfand
the situation in which alle(®)’s are the same, while the the zero Neumann conditions on both the inner circular
convergence of the proposed scheme is guaranteed only fmundaries. Using the PDE Toolbox which provides a
a sequence of properly selected)’s, cf. (27). As a result, powerful and flexible environment for the study and solution
some minor oscillations of the quantify{1¥(¢(*))] may be of partial differential equations in MATLAB, the triangula
observed after the initial stage of a monotonic decrease iesh of 243 nodes shown in Fig. 1 was built on the domain
its values. In practice, however, if the grid is sufficiently 2 using the graphical user interface implemented in the
dense, the reduction in the value of the performance inderutinepdet ool . The mesh nodes which do not lie on the
is so significant that we may hope that the obtained desigositer boundary (there were 189 such nodes) were treated as
do not deviate too much from the optimal ones. candidates for locatingy = 90 pointwise sensors, i.e. they
Another delicate question concerns the memory manag@rmed the sefX in Algorithm 2. The observation horizon
ment, as the storage of large dense matriteér’) for 7" was partitioned into four subintervals
all pointsz?, 5 = 1,...,N' and all time subintervalgd?,

-1 ¢
¢=1,...,Lrequires(N")? x L words. Consequently, suffi- T, = [T’ Z)’ t=1,...,4. (34)
ciently large random access memory should be available for ) , ,
the execution of the relevant program. For reasonably denseThe matricesly(z7) for £ =1,... 4 andj =1,...,189

grids and two spatial dimensions, the Matlab environment ere then computed in accordance with the developments of
applicable in this respect, the more so that the powerful angection IV-B. In particular, approximation of the integral
flexible Partial Differential Equation Toolbox [11] can the (9) was performed by dividing the intervdl, into seven

be employed to generate an unstructured two-dimensiorfg@iual subintervals and then using the trapezoidal rule. The
spatial mesh and the related grid of nodes (they can KeDE (5) was integrated by fixing the time steyg = 1/28
treated as potential points at which sensors may be locatedl)d employing the backward difference method.

and to form the matricesi(¢) in (1) via the finite element At this step, the stiffness and mass matrices result-
method (it is then used to produce an approximation t#8'd from applying the method of lines semidiscretization
the transition matrix through solving (5) using e.g. thevere needed. They were therefore assembled using the

backward-difference method). procedureassenpde. Computation of thel,(z7)'s took
approximately 90 s on a Pentium IV 2.40 GHz computer
V. NUMERICAL EXAMPLE equipped with 524 MB RAM and running Windows 2000.

The initial selection of sensor configurations was perfarme

The following numerical example serves as a vehiclg; rangom several times so as to avoid getting stuck in
for the display of the practical performance of the soluy |5cal minimum. Algorithm 2 was then run for each

tion technique presented in Section IV. Consider the tWQsch starting configuration for the performance indices

dimensional heat equation U, [W] = —Indet(W) and Wo[W] = — trace(W). For
p) comparison, optimal locations of stationary sensors were
y A H . . . . .
ot MRV = 0 InQxT, (33) also determined using the same technique (i.e. by setting
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Fig. 2. Optimal selection of consecutive sensor configunatidor
the criteria U1 [W] = —Indet(W) (panels (a)—(d)) andlo[W] =
— trace(W) (panels (e)—(h)).
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Fig. 3. Optimal selection of stationary sensor locationsth& criteria
U [W] = —Indet(W) (panel (a)) andls[W] = — trace(W) (panel
(b)).

As for the interpretation of the produced solution, the
scanning sensors are to occupy positions which give best
information about the initial state. As time elapses, the
candidate points close to the outer boundary provide less
relevant information since the state at them is mostly
determined by the Dirichlet boundary conditions. Thus,
intuitively, the sensors should tend toward the centef of
Such a behavior is exhibited by the solution for the criterio
U, [W], which constitutes an additional argument for its
superiority over®y[W1.

VI. CONCLUSIONS

The paper presents a new approach to the problem of
scanning sensor location for linear distributed parameter
dynamic systems based on various criteria defined on the
observability Gramian. A close connection was established
between this problem and modern optimum experimental
design theory. The main idea is to operate on the density of
sensors per unit area instead of the positions of individual
sensors. It was shown that the optimal solutions obey certai
minimax properties that lead to a rapidly convergent algo-
rithm. The technique can be extended to Kalman filtering
and robust control. A version suitable for on-line control
architectures is currently developed.
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determinant of the Gramian as the performance index.
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