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Discrete Verification of Necessary Conditions For Switched Nonlinear Optimal
Control Systems

I. Michael Ross and Fariba Fahroo

Abstract—We consider a fairly general class of state-constrained needs to be done to develop efficient algorithms to solve the result-
nonlinear hybrid optimal control problems that are based on coor- ing large, sparse, mixed-integer nonlinear programming problem, it
dinatizing Sussmann’s model. An event set generalizes the notion of o ,egile, in principle, to achieve feedback solutions by predictive
a guard set, reset map, endpoint set as well as the switching set. . . .

We present a pseudospectral (PS) knotting method that discretizes controlltechnlques. In-many applications, such as interplanetary
the continuous-time variables of the problem. The discrete event spaceflight [22], the time-constants are large enough that feedback
conditions are imposed over the PS knots leading to a large, sparse, solutions, via real-time computation, are quite feasible with current

mixed-variable programming (MVP) problem. The Karush-Kuhn- nargware [19]. In this spirit, we present a Legendre pseudospectral

Tucker conditions for the MVP are transformed in a manner that PS) knotti thod t ifv th timalit
makes them closely resemble the discretized necessary conditions (PS) knotting method as a means to verify the optimality con-

obtained from the Hybrid Minimum Principle. A set of closure  ditions associated with a purportedly optimal hybrid trajectory.
conditions are introduced to facilitate commuting the operations of A key element of the Legendre PS method is the imposition of

dualization and discretization. An immediate consequence of this closure conditions [17], [18] which allows one to commute the

is a Hybrid Covector Mapping Theorem that provides an order- . i . L
preserving transformation of the Lagrange multipliers associated with operations of dualization and discretization so that the transformed

the discretized problem to the discretized covectors associated with Lagrange multipliers can be related to the discretized covectors

the hybrid optimal control problem. associated with the Minimum Principle. This notion was exploited
in [18] for the “smooth” optimal control problem formulation and
|. INTRODUCTION the current paper extends this concept to hybrid optimal control
problems.

A fairly large class of complex control problems can be de-
scribed under a unified framework of hybrid optimal control [4]. Il. HYBRID SYSTEM
Solving a hybrid optimal control problem is an extremely chal- Although there are many ways to model a hybrid system, we
lenging task since even a smooth, nonlinear, ordinary (i.e. no@dopt Sussmann’s model [23], [24], [25] as it is readily amenable
hybrid) optimal control problem is still widely considered to beto an application of the Hybrid Minimum Principle. Since our
quite difficult to solve [26]. A significant source of difficulty arises focus is largely practical applications, we coordinatize Sussmann’s
from a need to obtain feedback solutions by solving the Hamiltorcoordinate-free descriptions by way of functional inequalities.
Jacobi-Bellman (HJB) equations. As is well-known [1], [5], [8], Except for the state- and control functions(-) and u(-), all
the HJB approach is beset with fundamental problems, such as thections are assumed to be piecewise differentiable; however, note
nonsmoothness of the value function [8] and the famous “curse ¢iat inequalities on the functions imply the inclusion of nonsmooth
dimensionality”. An alternative approach is the Hybrid Minimumobjects. We consider problems defined over a finite horizon and
(Maximum) Principle [23], [24], [25]. Although this approach is hence the time-dependent relations are assumed to hold for almost
more tractable than the HJB approach, it generates only opeal ¢ over this horizon. With these preliminaries in mind, @tbe
loop controls. The Minimum-Principle approach is also fraughe given finite set of cardinalityNo € N. The members ofQ
with fundamental computational problems due to the fact thaare called locations. For eaghc Q, consider a continuous-time
the costates are adjoint to the state perturbation equations [5]. ¢antrolled dynamical system,
other words, the dynamics-adjoint equation pair typically generate .
a numerically sensitive multi-point boundary value problem that (t) = f(=(t), u(t),q) @)
may produce such wild trajectories as to exceed the numericaheref(-,q) : RV x RV¢ — R™: is a controlled vector field
range of the computer [5]. To overcome this difficulty, directindexed byQ, N(-) € N, while z € RV andu € RNu are the
methods have been employed to solve smooth optimal controbntinuous-time state and control variables respectively. Similarly,
problems arising in engineering applications [2], [9], [10]. Thewe define a (hybrid) path constraint as,
main advantage of direct methods is that they facilitate solving
the optimal control problem without requiring a development of h(z(t), u(t),q) < 0 @)
the necessary conditions such as the adjoint equations or complgkere h(-,q) : RY¢ x RMi — RY:, and < 0 implies a
switching conditions in dual space. An extension of direct collocomponent-wise inequality. Although practical problems [20] have
cation methods for solving hybrid optimal control problems haswo-sided inequality constraints with lower and upper bounds, it
been recently proposed by von Stryk and his colleagues [6], [7$uffices to consider a one-sided inequality like (2) for theoretical
[12], [27], [28] by incorporating integer programming techniquespurposes since a two-sided inequality may easily be transformed
with sparse nonlinear programming. While significant research stilb a one-sided form. Note also that (2) includes a coordinatization

of the invariant set [14] (or the domainjpv : Q — 2%, given

I. Michael Ross, Associate Professor, Department of Mechanical arigly,
Astronautical Engine_ering, Code: MAE/Rc_), Naval Postgraduate School, Inv(q) = {a: c RVE h(z,u,q) < O} 3)
Monterey, CA 93943imross@nps.navy.mil VRS =

Fariba Fahroo, Associate Professor, Department of Applied Mathe-

. q
matics, Code: MA/Ff, Naval Postgraduate School, Monterey, CA 9394%ith X = RY:. Now, let (z,u) and (¢,u’) denote the
ffahroo@nps.navy.mil continuous-time state and control variables associated with two

0-7803-8335-4/04/$17.00 ©2004 AACC 1610



locations, ¢,q' € Q. When it is not an empty, the Event Set, the point-wise conditions for the hybrid problem, including the

E(q, ¢), is defined as, boundary conditions, can be succinctly evaluated as
E(qu/) = {(m7u7T7$/7ul77—/) : (mi(bi)zui(bi)vbi7wi;l(ai;1)7ui;1(ai%1)7ai-?l?
e(z,u,m,2',u',7",q,¢d) <0} 4) qi’qill) CE(d, ¢ VieN, ©6)

wheree(-,q,¢') : RN¢ x RVi x R x RV «RMY wR — RV The hybrid Bolza problem is to find a primal execution that
is called the event function [20] associated witlandg’. Similar ~ minimizes the cost function,
to the reasons argued for the path constraints, we consider one-

. . o . ) . ’ . . Ns| =
sided inequalities without loss in generality. In an event set, the Jl@(),u(), a2, b, Ny]

. . . / s ) X L~

clock is aIIowed'to be rese.t (i.e. a!lowmg;é 7') so that we can Z (E(xZ(bi)’UZ(b_)’ by, a:z+1(ai
treat the endpoint constraint set in exactly the same manner as
a switching set [24]. The clock resets also allow us to efficiently o b; .
handle certain computational complexities as described in [20] and a;11,9", q”l) + / F(z(t),u(t),q") dt) )
illustrated in [22]. The event set generalizes the notion of a Guard @i
Set,G: O x Q — 2%, and Reset MapR : @ x Q x X — 2%, as  subject to the dynamics, (1), the path constraints, (2), and the event

i=

these are given by, conditions, (6). Any primal execution that satisfies (1), (2) and (6)
, N .. , is called a primal feasible execution.
G9a.q) = {eeR:(@ura ) eSad))
, ) N L, ) IV. FIRST-ORDER NECESSARYCONDITIONS (PROBLEM H*)
R, q,2) = {x R (z,u,m 2, u,7) € 5(q,q )} A rigorous development of the necessary conditions for Problem

‘H is given by Sussmann [23], [24], [25]. The first-order necessary
conditions can be articulated as a generalized equation in primal-
S(q,q) = {(z,u,7,2",u',7") €E(q,q): dual space. This equation can be obtained by applying the gener-
r=1c ]R} alized Lagrange Multiplier Rule to Problef. For the purposes
, , ) ) of brevity, we simply state these conditions and note some key
If S(q.4") # 0, then(q, ¢') € Qx Qis an edge of a digraph whose p5ints related to the Lagrangian for Problel as it plays a
vertices are given by. Finally, for eachg € Q, we associate & cenyral role in both theory and computation. There are a number

whereS(q, ¢') C E(q,q’) is the Switching Set,

running cost, NT o Na of other “Lagrangians” associated with the problem as will be
F(,q):R7 xR™ —R apparent shortly. In the following, we also limit our discussions to
while for any pair,(¢, ¢'), we associate an event cost, normal extremals, i.e. assume that the normality condition holds.
, , For eachq € Q, we define the control Hamiltonian function,
E(,q,q) :E(q,q') — RU {oo} H, as the real-valued function,
that takes the valuso wheneveiE(q, ¢') = 0. In a practical (com- H\ x,u,q) = F(z,u,q) + A f(x,u,q) (8)

putational) setting, we handle the evaluatios, for the switching N o o )
setS(q, q'), by simply setting the corresponding element of thavherex € R™= is a covector that satisfies the adjoint equation,

adjacency matrix to zero (see [21]) so that a transition fipto . OH]t]
¢ is disallowed. Al = )
[1l. HYBRID BOLZA PROBLEM (PROBLEM H) where the notation H[t] is used as a shorthand for

Let g = [¢°,¢",...,¢"*] be a discrete-variable matrix that H(A(t), z(t),u(t),q). The D-form of the Lagrangian of
represents a finite sequence of locations whegree Q for the Hamiltonian,H, is defined as [13],

i€ No ={0,1,...,N;} and Ns € Z; is the number of Hp, A\ z,u,q) = HX, z,u,q) + ph(z, u, q) (10)
switches. Leta = [ag, a1, ...,an,] andb = [bo, b1,...,bn,] be N o . N
real-valued matrices representing finite sequences of real numb¥@erep € R7 satisfies the complementarity condition,
associated withy such thatla;, bi], a; # b;, are compact subsets 0<pu()L-h[f]>0 (11)

of R. We define the initial timefo = ao, and the final time as

t; = by,. Usually, we will havea;+1 = b; (as in the case of where the notation, L,” means thatu™ (¢)h[t] = 0 in addition

a switch), but it is not necessary to make this assumption. THe the stated inequalities. Note that the covectorsand p are
freedom in not making this assumption is particularly helpful inmplicit functions of ¢ similar to the state or control variables.
practical problem solving via discretization as noted in [20] and he gradient normality condition associated with the Hamiltonian
exploited in [22]. Letz(-) : ¢t — (°, 2*,... 2™*) andu(-) : t —  minimization condition is simply given by,

(u®,ul,. .. uNS) represent the continuous-time state and control of
functions associated witly. The tuple,(z(-), u(-),q,a, b, N,), 9u = © (12)
i Il rimal execution. Followin mann [25] w fin . .
;c:sed a primal execution. Following Sussmann [25] we de Equatlons (11) and (12) are essentially the Karush-Kuhn-Tucker
T i+ 1 i < N, (KKT) conditions associated with the minimization of the Hamil-
it = if (5) tonian. Now, for eachy, q € Q, we define an event Lagrangian,
0 i = N, E, associated with the paifE, e), as,
. T ’ / ’ / / ’ / !
This operation simply allows us to wrap indices sicg for i = E(v,z,u,r 2 u',7,q.q) =E(zurz, v, 7 qq)
0,1,...,N, is equal tog"™*, for i = N,,0,1,..., N, — 1. All +1/Te(m,u,7',x/,u',7/,q, q') (13)
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wherev € RNé”l satisfies the complementarity condition, wherey; are the values of/' (¢{) and y(-) denotes a generic
continuous-time variable. Once these basis functions are chosen,
various operations on the continuous-time variable are commuted
According to the Sussmann’s Hybrid Minimum (Maximum) Prin-with the approximation implied in (18). Thus, for example, inte-
ciple [23], a putative optimal execution satisfies the switchingration is approximated as,

OSV J—_e(wzu77—,wl7ula7_l7q7ql) ZO (14)

conditions, . N b Nt
)N (0 = OB 0B g / y(t)dt = yi / gi(t)dt = wiy;  (19)
v dit1 o oz (b)) Ozt (a;1,) _ “ =0 =0
o A wherew;
OE[i] OEJi] b b;
—Hlbi], Hla,; s 1 i Rt
O (16) it = [ s
where we have used the shorthand notatlon: form weights for a discrete 1-form (inner product). Similarly,
Eli] = EW',z'(b),u'(b;), b,z (a,71), we approximate the derivative af(t) by the derivative of the
i i i approximation,
u+1(ai;1),ai;1,q 7q+1) PP
Hlai] = H(Xai), z(a:), u(ai), q)

o - _ o (1) =g (1) =D widi(t) (20)

The switching conditions are essentially a generalization of the 1=0

transversality conditions and the Hamiltonian value conditionsy, the second major step of the method, the equations of approxi-
All of these conditions can be derived from the generalizeghation are obtained obtained by projecting the problem equations
Lagrange Multiplier rule after constructing the Lagrangian for th?ProbIemH and™") over the node points. Since a discrete event

full problem, occurs ata; and b;, we choose the ends of the grid?, such
T (), p(),A0), z(), u(-),q a b, N, = that ¢y = a; andt’y; = b;. These are the shifted Lobatto points.
N, b, Since a_switch occurs whei+1 = b;, we have double Lobatto
Z (E[i] +/ (HIt,i] — )\T[t’i]i[u i]) dt) (17) points, ti™! = t%y: over a switch. These double Lobatto points
o a; are called PS knots [20] and facilitate distinct left- and right-hand

whose importance in terms of a sufficiency condition will belimits, precisely the type of conditions required for a switch. The

apparent shortly. In the above equation, the notalift, ;] stands ~ derivatives ofy™ () over = are evaluated from (20), where the
for H(u(t), A(t), z(t), u(t), ¢"). differentiation matrix,
Problem™* is now defined as finding a pr.imal-.dual exec.ution, D/Zi = i(th) L,k=0,1,...,N
{v(),n(), (), z(-),u(-),q,a,b, Ns} that is primal feasible
and satisfies the adjoint equation, (9), the first order HamiltoniaBrovides a rapid procedure for evaluating the derivatives at the
minimization condition, (12), the switching conditions, (15) andnode points.
(16), and the complementarity conditions, (11) and (14). In the Legendre PS method, which is the focus of the current pa-
per, the grid points are the shifted Legendre-Gauss-Lobatto (LGL)
points where the “shift” is achieved by mapping the physical
The details of the pseudospectral (PS) knotting method awomain, [a;,b;] > t', to a computational domaif—~1,1] > 7,
described in [16], [20]. Here we briefly summarize the mairby the affine transformation,
points of the PS method as it pertains to the hybrid system _ 2 — (bs + as)
model developed in the previous sections. The goal of the PS Tt = F ot
knotting method is to solve Probleri? by approximating it (bi — ai)
to a mixed variable programming (MVP) problem in a mannewhere we have abused notation in usingto imply both the
that permits the discretization to commute with dualization. Thigransformation as well as the transformed variable. The LGL
means that a putative optimal execution must automatically satisfyeights and the differentiation matrix,

V. THE PSEUDOSPECTRALKNOTTING METHOD

the discretized necessary conditions. Solving hybrid problems by ; b — a; 1 ;
this approach is far simpler than developing and solving for the Wy = Ni(Nt + 1) [Ly: (7)]2 k=01,....N
necessary conditions. Lo (e k

A general PS method [3] consists of two major steps. In the LZ’\V];(T?) -T;ifli k#1
first step, for eachi‘e N, we select N* + 1) cardinal functions,

7, L=0,1,..., N*, over the time intervalja;, b;], such that they ‘ 9 _ Ni(NP41) E—=1=0
satisfy the Kronecker delta condition, Dy = ; 4

i — G4 o

where the grid pointsg’ = {t{,ti,...,t}:}, are called nodes. 0 otherwise

The nodes are chosen in a manner consistent with approximation
theory (e.g. shifted Gauss points). The continuous-time primal angith =i,k = 0,1,..., N’ denoting the LGL nodes [3] satisfy

dual variables are approximated as Lagrange interpolants, a discrete form of integration by parts that is explicitly used in
Ni the derivation of the main theorem of this paper (details omitted,
y(t) gle t) = Zy%;:(ti) (18) but plea_se see [18]) . The integration-by-parts lemma can be
P summarized as,
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Lemma 1:For eachi € N, the elements of the Differentia- is a discrete controller that determines the sequence of locations
tion Matrix, D}, and the LGL weights?, satisfy a discrete q by way of the equation,

integration by parts condition, a=Q+A, AcUpc {0, 1}NQx(N,+1) @7)

i N i Nt i
wpDig +w Dy, =0 kl=1,...,N' =1 (21) whereUp is the set of allowable discrete controls that represent
a transcription of the switching set§(q,q’) ¥V (¢,q') € Q@ x Q.

In addition, the Lobatto terms satisfy a normality condition,” . .
fy y In incorporating (27) under Probleit™, we now treatA as a

_ i Nt ; Nt i
?;"LDZ% = —1, and 2wy, Dyiy: = 1. Finally, 374, wi discrete controller whiley takes the role of the discrete state.
For a proof of this, see [11]. VIl. DISCRETIZEDNECESSARYCONDITIONS (PROBLEM
In the following sections we will denote Hy,] the collection of HM)
the discretized continuous-time variable for=0,..., N*, i = Fori=0,...,Ns, let
0,...N.. ‘ . ‘ i
N /iy i iy N iy i iy
VI. DISCRETIZEDPRIMAL PROBLEM (PROBLEM H™) AT () = ;)‘l@(t ) pe () = ;“l(bl(t )
Fori=0,...,Ns, let Following a procedure outlined in Section V, it can be shown that,
_ Ni » Ni fori =0,...,Ns;andk = 0,...,N*, the discretized necessary
=N (1) = Z zigi(th) uV (1) = Z uigi(th) conditions are given by,
1=0 1=0 oH [ ; Azl owl g 28
Following the procedure outlined in Section V, Probléican du <”’“’ ’“’m’“’u’“q) =0 (28)
be approximated as the sparse MVP (Pvrobrbﬁ‘{) of finding 0< ui L —hlk,i] >0 (29)
the discretized primal executior{[x}], [u}],q,a,b, N.} that o N
inimi oH ioydo i i Py
minimizes, Dzl (“kvAkvwkvuk,q ) + Z Dy i =0 (30)
) ) Ns . ) mk =0
I (1], [uil, a,a, b, No) = > [E(wivuww,bi, 0<v' L—efi]>0 (31)
ifri:() it1 i it AL OE[i] _ 32
Lo ,Uo ,0;11,9,9 ) Nliaa:zllvi - ( )
Nt Y
A N i OE[i
subject to, H (ANi,a:Ni,uNi,q ) = —8817[_1] (34)
e iy _ OBl
f(@h,upq)— S Di'ai = 0 (23) 1 (N wh b ') = (39)
=0 . R — T -
hiziul,q) < 0 (24) }/(\;rrwere the notationh[, 7], E[i] ande[i] are used as a shorthand
e(z’ i,ui1-,l)i,mﬂrl,1ﬂj_rl,av~ , i, Fh < 0 (25 ’ o o )
(Eestihes by o 07D S 0@ e ) ) _
for k = 0,...,N. qndz = 0,,..., Ns. Any.dlscretlze.d prlmal. El] = E(Vi7fv§vuul)\mbz‘,fﬂéﬂ,uéﬂ,ai;hqiﬂiH)
execution that satisfies (23)-(25) is called discrete primal feasible. . ; ; 11 g1 A
In a practical implementation of this MVP, it may be necessary €Y = e(@yi,uyi,bi, o, ug 031,454 )

to define an explicit algebra associated with the €et For Thus, Problem H*¥ can now be defined as a mixed
example, if Q is generated by some finite automaton, then thgariable, mixed complementarity —problem of finding
discrete dynamics that generatgscan be easily added to the {y¢ [4i] [Ai], [@L], [ui],q,a, b, N} that satisfy (23) -
definition of Problent{" . Inspired by the work of von Stryk and (25) and (28) - (35). It is already apparent that Probefli is
his colleagues [27], [28], we illustrate this point by way of usingsignificantly easier to solve than Probler? .

a binary control variable as follows. N
We define the operationover the Cartesian produa® x {0, 1}, Vil KKT C ONDITIONS (PROBLEM ™) .
as, The KKT conditions for Problentt" can be generated quite

VgeQ easily after constructing the Lagrangian. As noted in Section V and
elsewhere [15], [17], we can use the discrete weights to construct

Let @ be a row matrix whose columns are th&, elements of the 1-form so that we can define the Lagrangian as,

Q. Let A € {0,1}Ve*(N=F1 with the property that

g*x0=0 gxl=gq

Ne JN[ﬂzv [ﬁ}c]’ [)‘;c]v [CIZ}C], [ua]quvab’NS} =
> Apsny=1lor0 forali=0,...,N, (26) n, N Ni By S
n=1 STER + Y Fah, uk, ¢ )wi + (M) wif (i, uj, q)
We defineq « A as a termwise operation so that each column=0 k=0
of ¢ *x A contains no more than one element Q. We define N Nt N ‘
¢+0 = 0+q = q so that the« operation is extended to the + > (fi}) " wih(zi, uk,¢') — > (M) wi. > DY =i | (36)
product@ = A in the usual sense of a matrix operation. This, k=0 k=0 1=0
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Wheres\j;, [t and o’ are the Lagrange multipliers associated withClearly, MY (x) ¢ M™*(x). That is, every solution to Problem
(23) - (25) respectively, and, HM is also a solution to Problert* but not vice versa.
Introducing the closure conditions,

E[z] = E(§i7w§\,i,ué\]i,bi,:c6+17u8+1,ai;1,qi,qi“) ‘
Note that the weights are not used in de_fin}.ﬁg]. Examining (36) Z,CO 0 (49)
and (17), it is very tempting to set;, = X, pi = i, andv’ = I Oni = 0 » _ S (50)
' since the approximation of (17) by way of (19) is exactly equal ~ H (Am 0, up, q1> = H <)‘N77,m7}\777 U ql> (51)
to (36). In general, this is not true; that is, the discretized covectors N ~i
are not equal to the Lagrange multipliers associated with the _ iz wiH <>‘l’ml’“l’q> (52)

discretized problem. This is because dualization and discretization (b — as)

are not commutative operations [17], [18]. we generate a new multiplier set,

When the necessary conditions arising from the stationarity of
the Lagrangian are derived, they do not resemble the discretized M™*(x) := {7\ e MM (y) : A satisfies (49) — (5% (53)
necessary conditions. On the other hand, when Lemma 1 is used,

it then becomes straightforward to show the following: Obviously, M"*(x) ~ M*" (x). Thus, the imposition of closure
Fori=0,...,N, andk =0,..., N, we get, conditions on Problen<™* implies that every solution of the

5T modified Problent{™* is also a solution to Probleri*™ .

I3
ou’,

@87 X. THEHYBRID COVECTORMAPPING THEOREM

Let MM (x) # 0 and {&", [z}, [7\2]} € MM (y); then the

(ﬁk?xjmw;c7u7iqu) :0
0<p, L,—h[ki>0 (38)

St TV A AN i A
where L,, implies the discrete weighted complementarity condiPiiection, M2 (x) ~ M (x), is given by,
tion for eachi € Ns. Fori =0,...,Nsandk=1,...,N* — 1,

AWty =x, pNty) =p,, v=0v (54)
we have
L N The proof of this follows quite simply from the closure conditions.
H o~ . . . i~1 ] P H H H
gmi (uz)\k,wi,uk,ql) + Z DN'X =0 (39) A schematic of the main results are depicted in Fig. 1.
k 1=0
. . convergence A
Finally fori =0,..., Ns, we have | Problem ,H,\ Problem H,\A
0<v'l—eli|>0 (40) discretization Covector
; (indirect) a Mapping
O i ; ; ; N Nt ; gap Theorem
ozt </J'Ni7)‘Ni7mN’iauNi7q ) + Z DyiAi = ¢y (41) N
Ni 1=0 c Problem H*
~i OE[i] i 2
N af}\r’i WNiCn (42) E _(%
OF /. ~i . o M _ ° s
o (o Xo,@b ') + 3" DA = —ch (43) E
0 1=0 convergence N
<i O[] . Problem H Problem H’
Ao + omi  WoCo (44) discretization
) 0 (direct)
1T N i OE[i] , , , .
Z wiH ()\l zi ul,q ) N (45) Fig. 1. Schematic of the Main Results: The gap denotes tHel8et(x)\
(bi — ai) = PR 0b; M)‘N(X).
Nt =~
1 S wil (j\; ol qi) _ OE[] (46) Remark 1:Although (54) offers Eulerian-like elegance, note
(bi — a:) = e da; that this equation was obtained only after imposing the closure

conditions and defining the discrete Lagrangian as a weighted 1-

wherec} and c}, are arbitrary vectors iﬂRNgz. Thus, Problem form. No such additional conditions are necessary for Eulerian
H™N* can now be defined as a mixed variable, mixed complemenmliscretizations. _ _

tarity problem of finding{&*, [fz%], [Ax], [%], [uk], q, a, b, Ni} Remark 2:The gridn* (see Sec.V) containd* points. Unlike
that satisfy (23) - (25) and (37) - (46). a PS method, a forward Euler method does not collocate a

IX. CLOSURECONDITIONS

MM (x) == {A : A satisfies (28) — (35)

MM (x) = {4 : A satisfies (37) - (49)

Let x == {[z}], [ui],q,a,b, N, } and A := {v’, [u}], [AL]}
We denote byM*Y (x) the multiplier set corresponding tg,

(47)
Similarly, we define,A := {17 i, [XL]} and MY (x) the
multiplier set,

(48)

derivative at the point',,;. Hence, derivative information across
two adjacent gridsy’ and=**!, cannot be transferred at a discrete
event even if double node points were defined as “Eulerian knots.”
A similar notion holds for a backward Euler method or Runge-
Kutta Methods.

Remark 3:Since dualization and discretization are noncommu-
tative operations (see Fig. 1), a solution to the MVP Probeth
may be primal feasible but not satisfy the discretized necessary
conditions (i.e. Problem*"). Such a spurious solution can be
easily detected from the Hybrid Covector Mapping Theorem by
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solving the system of generalized (set-valued) linear equations tHar] 1. M. Ross and F. Fahroo, “A Perspective on Methods for Trajectory

defineM™* () for a given primal executiony. If MY (x) = 0,
we have a spurious solution.

Xl. CONCLUSIONS

It is far simpler to discretize and solve a hybrid optimal control[lg]
problem than to solve for the necessary conditions resulting
from the Hybrid Minimum Principle. Rather than use Eulerian
discretizations that generate a linear convergence rate, the psa?-]
dospectral (PS) knotting method is proposed as an efficient higher-
order method to solve hybrid problems. PS knots provide a simpfe1]
method to handle switches, resets and other event conditions.
Solving the PS-discretized hybrid problem may result in spurious
solutions. The hybrid covector mapping theorem can be us
to detect these spurious solutions by checking the optimali

conditions over the node points.
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