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Two Level Model Predictive Control for the
Maximum Control Invariant Set

Pascal Griedér, Zhaoyang Wah Mayuresh Kothareand Manfred Morafi

Abstract— This paper presents an extension of the Two-
Level Model Predictive Control (MPC) scheme presented in
[13]. The procedure in [13] allows for computationally efficient
MPC over a subset of the controllable state-space. The first
controller level provides a stability guarantee and the second
level optimizes performance. This two-level control scheme
allows for a transparent tradeoff between the necessary on-line
computation power and performance. However, the scheme
also suffers from two drawbacks. The two-level controller [13]
does not cover all controllable states and in order to guarantee
constraint satisfaction in closed-loop, it is necessary to resort
to open-loop control for certain initial states. These issues are
dealt with in this paper. We will extend the procedure such that
the controller covers the infinite time controllable seto (X7)
with closed-loop stability and feasibility guarantee. The set
Ko (Xr) denotes all states which may be driven to the set;
by an admissible control law.

I. INTRODUCTION

In Model Predictive Control (MPC) an optimization
problem is solved on-line over a prediction horizdhand

level controller which provides close to optimal closed-
loop performance. Level 1 is computationally efficient and
generates a stabilizing feedback law whereas Level 2 is used
to further optimize for performance.

The concept of [13] is extended in this paper to cover
the infinite time controllable sek..(X7). The resulting
controller guarantees that the state will enter an arliligrar
small neighborhood of the origin in finite time and does
not rely on the intermediate use of open-loop control to
provide these properties. The method presented in thigpape
replaces Level 1 of [13] whereas Level 2 is identical to the
scheme presented in [13]. The paper is structured as fallows
A general problem definition and a recap of the results in
[13] is given in Section II. Section Ill and IV describe
the proposed control scheme while Section V illustrates the
advantages of the proposed scheme on numerical examples.

Il. PROBLEM STATEMENT AND PROPERTIES

subsequently only the first element of the obtained input

sequence is applied to the plant. This procedure is repeatedp this section, we will first introduce the formulation of

at each time step, thus leading to closed loop controjhe MPC problem considered here, before we restate some
In general, a stability proof for the closed-loop systenyf the results of two-level MPC published in [13].

is obtained by imposing a set constraint on the terminal pefinition 1: A polytope is a bounded and closed set

statex y as well as an associated terminal coSPz [11].
However, the constraint omy may require the prediction

horizon N to be very large for the optimization problem to
be feasible. Large prediction horizons inherently result i
prohibitive computation times, thus creating a clear need f

defined by a finite intersection of hyperplanes. A hyperplane
bounding a polytope is referred to as a facet of that
polytope. A full dimensional polytope ifR™ with n + 1
vertices is referred to as simplex.

fast and efficient alternatives to the classic MPC approach.

The authors in [3] proposed to use multi-parametriéd. Formulation of MPC
programming to solve the quadratic optimization problem _ o _ i )
associated with MPC off-line. However, the computational ASSUme a linear, time-invariant, discrete-time system

complexity is exponential in the number of inputs and
prediction horizonN, thus making it unsuitable for large

x(k+1) = Az(k) + Bu(k), 1)

problems. The authors in [10] proposed an interpolation

of feasible input sequences which were computed offwith A € R™*™ andB € R"*™. Let z(k) denote the mea-
line beforehand to obtain robust stabilizing control. Thisured state at timé and z;, denote the predicted state at
idea was applied and extended in [13], [1], where théme k given the state:(0). Let u; be the computed input
authors presented an efficient way of partitioning the statéor time &, given z(0). Assume now that the states and
space and interpolating input sequences by using a twbe inputs of the system in (1) are subject to the following
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constraints

z(k) e X CR", u(k) e UCR™, Vk>0, (2

where X and U are bounded and closed polytopic sets
containing the origin in their interior, and consider thétén
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time constrained optimal control problem Theorem 1:[13] Consider an LTI system (1) subject to
No1 the input and output constraints (2). At each sampling

T (2(0)) = - 'R 2 O time k, a sequence ofV-step control moved/ (z(k)),
K ((0) e Z (iR + 25, Qo which minimizes the upper bound(z(k)) on the MPC

UQyee ey UN —1
k=0

T2 O (3a) objective function/*_ (x(k)), are obtained from the solution
. N=fEN (if it exists) of the following linear objective minimizatn
subj. tox, € X, Vk € {1,...,N}, (3b)  problem:
up—1 € U, VE e {1,...,N}, (3¢) ) N T (k) < L 4
T Gl e ole®), Ti®) < ala(k), (@)
Thi1 = Awzp + Bug, w0 =x(0), (3€) subjectto (3b) - (3e). The first control move of the sequence
Q>0, Qf>=0, R>0. (3f)  Ux(z(k)) is applied to the system. Suppose that (4) is
o . . L, feasible fork = 0, then the proposed controller makes the
The optimizerUy (z(0)) = [ug, - .., u)y_,]’ to problem (3)  cjosed-loop system asymptotically stable.
is a function of the initial condition:(0). Equation (4) can be solved by using LMI or quadratically

Dgfinjtion 2:[9] The setX; will denote. the maximum constrained quadratic program (QCQP) solvers.
admissible set for linear systems (1) subject to the optimal Corollary 1: [13] Consider a polytopic set of statds—
unconstrained LQR feedback lai,gr derived from the Co{z®, ..., z(1)} in the state spacB”, whereCo denotes
cost objective in (3): the convex hull, and:¥), j = 1, .., L, are vertices of the

X = {2(0) e R (k) €X, Fropa(k) €U, convex hull. Suppose for each verte¥), the solution of

the minimization in Theorem 1 i&(®) and U(). On line,
I(k + 1) = (A + BFLQR)x(k), Vk > O} L

L : .
AssumePy4rz to be the solution of the Algebraic Riccati at time k, if z(k) = Zl%a:(ﬂ) € X with Zlej =1 and
1= 1=

Equation (ARE). If the terminal set constraifiie; = X7 I _ B
and Q; = Papg in (3), then stability and feasibility 0 < 6; < 1, thenda(z(k)) = Y. 0;0 and U(z(k)) =
are guaranteed if (3) is implemented as Receding Horizon j=1

Control (RHC) [11]. RHC is a control policy where the $~¢,/(/) are a feasible solution for the minimization in
optimization problem (3) is solved at each time-step but=1

only the first inputuy of the resulting input sequence is\™"/- . . )

applied. We will henceforth assume tHEg = ;. Given a Cartesian coordinate systdR¥ with a set of
Definition 3: [8] The finite time controllable set,(x;) unit base vectors!), ..., e(™), the author(sl)in [13] co?;ider

is the largest set of states " for which there exists an & Polytope of the form¥' = Co{+ae'?, ..., +a,et™}

admissible (for (2)) time-varying state feedback conteov| With 2n vertices and subsequently apply an interpolated
such that the set; is reached ins steps. Here input sequence according to Corollary 1 in Level 1 of
’ the algorithm. In Level 2, an LMI (or QCQP) as in (3)

Ks(Xr) ={z(0) € X| Ju(0) € U, is solved formy,.. < N free inputs, i.e. U} =

Mfree
Az(0) + Bu(0) € Ko_1(X1)}, [ug7...,u;;fmfl,umfm,.... ,un—1], where the input se-
quence(uy,,,..,---,un—1] iS taken from Level 1. If the
with KCo(X7) = X;. The settC,(X;) can easily be computed new cost functional improves upon that of Level 1 (i.e.,
by applying projection methods (e.qg., [7]). I e, (X(K)) < @(x(k))) the input from Level 2 is applied,
The infinite time controllable seX.,(X;) is defined ac- otherwise the solution of Level 1 is used.
cordingly for s — oo. If Ks(X;) = Ks—1(Xr), this The 2-Level approach boasts significant computational

implies Koo (X7) = Ks(&7) [8]. Since the constraints in advantages over standard solution methods, since the de-
(2) are compact the séf. is also bounded. Note that the grees of freedomn ;.. in the on-line optimization prob-
set K (Xr) may not be finitely determined, even if it is lem may be arbitrarily chosen. However, only considering

bounded (e.g., i, (X;) has open boundaries). diamond shaped sef¥ is restrictive since only a subset of
the controllable states can be controlled with the 2-Level
B. Two Level MPC controller. Furthermore, even if the initial state is comeal

The concept of two-level MPC is that at level 1, a stabiin X, there is no guarantee the state will be able to remain
lizing MPC solution is constructed by linear interpolationwithin A" for the future time steps, thus making it necessary
of off-line solutions, while at level 2, a suboptimal solu-to rely on open-loop control if the state exits the contiaka
tion tailored to the computation resources is computed bset.
solving an optimization problem of arbitrary size. Equatio
(3) can be formulated as an optimization problem with the
free variabled/%, ((0)) anda(x(0)) which corresponds to  As previously stated, the contribution of this paper is an
an upper bound on the value function, i.d%(x(0)) < efficient way of computing an interpolated input sequence
a(z(0)). according to Corollary 1 for all controllable states ¢
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Ks(Xr). In this section we will first describe the off-line Triangulation [14] which is included in commercial
computation procedure before presenting an efficient way  software [2], [4]. Subsequently create a second lookup

of applying the results on-line. table S(f,c) which associates all the simplices in
) ) V—representation with the respective facet. In the

A. Off-Line Computation table X(/'©) = S(f,¢), f denotes the facet number,
In this section, three methods of pre-computing certain c € NT is the index for the associated simplex number
elements of the optimal control solution will be presented. and X (:©) denotes the set of vertices defining simplex

The three methods offer a trade-off between the necessary c.

on-line and off-line computation time. Note that the ofidi  (b) Simplex-Based 2:Directly divide the full polytope

computation time may not be negligible for the approaches  K;(X}) into simplices via Delaunay Triangulation,

presented here, which makes the distinction between the i.e., do not deal with each segmehtseparately (see

three approaches necessary. First, the infinite time dentro Figure 1(c)). This will result in a smaller number of

lable setk . (X7) will be computed in both half-plane simplices, but the on-line identification of the active
simplex may take more time, i.e., there is a tradeoff

Koo(¥1) = {z € R*|Hz < K} between the necessary storage space and on-line com-

and vertex putational speed. Subsequently store all simplices in
L L V—representation in a data structure which we will
; (©) = S(c), wherec is an index counter
Keo(X) ={z Rz =3 dz® &, >0, S & =1 denote as¥ ! cis
(A1) =1 | ; - ; } used to access each of the simplices. As befofe,

. ‘ is a set containing all vertices which define simplex
representation, where(” denotes thei — th vertex of c
Koo (X1). Since the iterative computation & (X7) may  (c) Facet-Based:Add the origin to each vertex list stored
not terminate in finite time it is advisable to set an upper in 7(f).

bounds on the_number of |terat|o_ns which are CornputedNote that there is no difference in the off-line computation
such that we will henceforth consider only the &t X;). ﬁ]

X hetween methods (a) and (c) in two dimensions. While
The half-plane and vertex representation of polytopes wi ethod (a) always divides the entire $e¢(.X;) into sim-
be referred to asH and V representation respectively.

li h ill ivi Xr) into full di -
Though the move fron{ to V representation is computa- plices, method (c) will subdividé., (7) into full dimen

) : X sional polytopes. Once the vertices of each simplex (a,b)
lt_lonallﬁ taxing [[7] [4.]' [14,[]’ tfhe proced_ure |stperfor:rt1e?1-o IOlor of the setk;(X;) (c) have been computed, solve (3) for
Iné where Tuntime 1S not of primary iImportance. 1t Soult, 5cp of the vertices and store the associated input sequence
be noted however, that the requirement to move ffi@no

Y . . ) and a(z?) = J5(z*) in an appropriate data
Y puts a limit on the size of problems which are tractabl(gtfu(fturi a(@?) = Jy@o) i ppropr

with the proposed approach.

In the second step of the off-line procedure, the optimad. On-Line Computation
input sequencé&y () and the upper bound on the value
function a(z(*)) are computed for each of the vertices
() of the reach-setC,(X;) by solving (3). Note that
a terminal set constraint (3d) needs to be imposed E?
guarantee feasibility (invariance) and that we also reqgui
an appropriate terminal weigh®; to be used in order to
guarantee stability [11].

Note that unlike [13], the state spadé;(X;) is not 1 h¥
automatically divided into simplices. In order to deal with He—-K<0. KT=|1]. H= hi
this issue, a lookup table is computed which associates the -

f —th facethyx < ky to the vertices of that facet, i.e.,

XU =T(f) whereX/) is a set of vertices which lie on Note that0 € £, (X;) follows from (2). (i) Compute

the f —th facet andZ (f) denotes the lookup table function. the valuesy; = h;‘fx and computef for which ~; is a

After this initialization, three approaches are feasible: maximum. Then ifz € K,(X;), it follows that z lies in

(a) Simplex-Based 1:For each facetf, subdivide the polytope P;.

polytope which is defined by the vertic&s/) and the Lemma 2:If a state is contained in a polytope <
origin into simplices (see Figure 1(b)). It is necessary?, then there exists a vecto®, such thatz =
to add the origin to each set of vertices in order t& -, @20, 0 < &, < 1, Y &, = 1, wherez(®
obtain a full dimensional simplex. A polytope with denotes the i-th vertex @?. If P is a simplex and alt(*) are
the verticesX (/) and the origin will henceforth be known, the computation o can be realized with a simple
referred to as segment. The simplex division of function evaluation. By substituting; = 1 — Zf:2 ®; an
segmentf can be achieved by applying Delaunayequation system withh equalities andl = n unknowns is

1588

The following Lemmas will be used in the on-line
procedure.
Lemma 1:[12] (i) Define the polytopes’; as segment
of Ks(X1), i.e., Py is the polytope defined by all vertices
on facet f of K (X;) and the origin. (ii) Normalize the
inequalities definingCs(X;) according to



(8) Reach-sekCs. (b) Triangulation method 1 of reach-set

KCs (10 simplices).

(c) Triangulation method 2 of reach-set
ICs (8 simplices).

Fig. 1. Reach-sek; with the corresponding triangulation.

obtained which can be solved by simple matrix inversion. 3) Obtain the input sequendé(x(k)) = Zle o, U,

If the polytopeP is a simplex, the inverse of the matrix

will exist.

the cost boundy(z(k)) = Yo1_, ®;a(®.
4) If a(x(k)) < a(z(klk — 1)), apply the first input of

For efficient on-line implementation we propose the
following algorithm,

Algorithm 1:

1) Obtain a state measurementk) € R™. If x(k) ¢
Koo (Xr) then no feasible input sequence exists for

the sequenc®(z(k)). The term(k|k—1) denotes the
predicted state at timé given a state measurement
at timek — 1. If a(x(k)) > a(z(klk — 1)), apply
the second input ofU(xz(k — 1)). For U(x(k —
1)) = [uo,u1,...,un—1], now setU(z(k)) =
[wo, ..., un—1, Frorzn]| anda(z(k)) = a(z(k|k —
1)). The shifted boundsy(z(k|k — 1)) are easily

the given state.
2) Initialize ¢ = 0 and then proceed depending on which
off-line approach was taken:

a) Simplex-Based 1:Obtain the facet which is

b)

computed as shown in [13] (Note thatz (k|k—1)) <
a(z(k —1)) ). Goto 1.

Method (a) and (b) have the advantage that no LPs
will need to be solved on-line. Method (a) is faster on-
line because of the efficient detection of the active sim-
plex. However, (a) requires more storage space than (b),
since more simplices are needed to cover the full polytope
Ks(Xr). Method (c) relies on solving LPs on-line. Though
this is computationally more taxing than method (a) or (), i
is possible to include an objective when formulating the LP.
The objective[aV), ..., a)]® will yield the interpolation
Lemma 2. If||®||; # 1 or any ®;(z) < 0, set resulting in the lowest bound on the value function and may
¢ =c+ 1 and repeat (b). thus produce a superior control law compared to Method (a)
Facet-Based:Obtain the facet which is closest or (b). It should also be noted that although an LP needs
to the stater(k) according to Lemma 1. Obtain to be solved at each time step, the size of this LP is given
the vertices associated with facgt through by the number of vertices of each segmgnivhereas the
the lookup tableX(/) = S(f) and solve the size of the control problem (3) is mainly influenced by the

closest to the state(k) according to Lemma
1. Obtain the simplices iV representation as-
sociated with facetf through the lookup ta-
ble X(/:©) = S(f,c). Apply the procedure of
Lemma 2 to obtain®. If ||®||; # 1 or any
®,(z) <0, setc = ¢+ 1 and repeat (a).
Simplex-Based 2: Compute & according to

following LP prediction horizon times the number of inputs. Therefore,
the proposed approach may be significantly faster than
min [a® ... aP]®, subj. ta direct computation of a feasible input sequence.

0<®; <1, i={l,...,1}, Theorem 2:Algorithm 1 ascertains asymptotic stability

I 1 and constraint satisfaction (2) for all time.

Soi=1, a(k) =Y xV (@), o

Pt = Proof: Feasibility: Since the reach sef’,(X7) of
an optimization problem as in (3) is convex ardd:() +

where denotes the number of vertices associpy () e K (X;) this directly imp|ieSZf:1 ®,;(Az) +

ated with facetf and X /) (i) denotes thé —th  By()) € K, (X;). Since (3) will be feasible for alt(k) €

vertex of facetf. Ks(Xr), constraint satisfaction is guaranteed for all time.
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[ Example 1] Simplex 1] Simplex 2 | Facet-Based

Stability: As is clear from Algorithm 1, Step 4, the function

a(x) is strictly decreasing. Sinck,(Xr) is bounded and E; 186 164 g
because of Theorem Iy(z) is also bounded from above K10 76 24 3
and below. Therefore, the functiam(z) serves as a Lya- Kao 26 24 3
punov function which guarantees asymptotic stability &f th EBO ii 2‘2‘ g
closed-loop system. N =

TABLE |

IV. LEVEL 2 CONTROL FORK 4(X})
Wi ill refer th der to [131 f detailed d it THE NUMBERS FOR THESIMPLEX-BASED METHODS1 & 2 DENOTE
€ will reter the reader 1o [ ] ora cetaie escrip IonTHE NUMBER OF SIMPLICES IN EACH REACH SETWHILE THE NUMBER

of the second level and simply restate the basics in this
. Once the inbut se uerﬁ%(x) . [u U ] FOR THE FACET BASED METHODS DENOTES THE MAXIMUM NUMBER

section. p q g = %0y MN-1 OF VERTICES FOR EACH SEGMENT OK s (7).

and the bound on the cost functiariz) are obtained with

the methods in Section 1lI-B for an initial state, an

optimization problem is solved over an arbitrary number

of free inputsmrc., i.e., The cost on the state is set@®= I and the input-cost is
L*(@,Up,,..) = _ min  L(z,Un,,..) (5a) =1 , .
UG U For example 1, the reach set computation terminates after
subj. toxy, € X, Vk € {1,..., N}, (5b) 40 steps, i.e.lew(Xl) = IC_40(X1). The solution complexity
w1 €U, Vk € {1,...,N}, (5¢) pf the resuIF is shown in Table I. .Note that the on-line
implementation complexity for the simplex methods grows
TN € Tset (5d) linearly with the number of obtained simplices, since a set-
IN(@, Upny,..) < a(z) (5e) membership test needs to be performed for each simplex, in

Try1 = Axp+ Bug, xo=x(0), (5f) the worst case. The complexity of the facet-based approach
grows polynomially, since interior-point LP solvers have

whereUp, ;.. = [ug, - Ui, o Umyeet1s - un—1]- N polynomial complexity. For the Level 1 controller, problem
general we will choosenf... < N, such that the on- (3)'yas solved for each vertex for a prediction horizon of
line optimization problem is easily solved. This secondy _ 40 The resulting runtime and performance is given

level allows us to make use of the long prediction horizof, Taples Il and Ill. The runtime was compared with the
computed at level 1 Whi|§ optimizing for performance ovef,aT| AB QP solver. The performance was measured by
only a small number of inputs. If the cost of Level 1 caryigding the state space and computing the closed loop-
be improved upon, i.e. (5e) is satisfied, the input sequenggiectory cost to the origin for each initial state. A total
obtained at the second level will be implemented, otherwisgs 115 initial states were considered. We did not consider
the solution obtained at Level 1 is applied. Note that thgye aqditional impact of the Level 2 controller, in order to
Level 2 controller cannot destabilize the closed-loopesyst pighjight the contribution of this paper, which is the mod-
since (Se) is satisfied. _ _ . ification to the Level 1 controller. Note that even without
Remark 1:The presentation up to this point has beefe aqditional improvement of the level 2 controller, the
restricted to LTI systems and the standard open 100p MPGeformance degradation incurred by the Level 1 controller
formulation. However, as shown in [13], the extension tqq marginal (see Table Ill).
LTV or polytopic LDI systems is straightforward. It is fur-  gafore concluding, a brief comparison of feedback con-
thermore possible to consider systems subject to persistgpy|iers based on triangulation and multi-parametric feed
additive disturbances. Moreover, since MPC algorithms fog, -k controllers [6] will be given. Note that unlike the
LTV and LDI systems provide a computationally efficientyethod in [6], the triangulation based controller congider
alternative to nonlinear MPC algorithms for constrainehere does not guarantee optimal performance. Specifically,
nonlinear systems, the proposed algorithm can also be iy random stable systems with= 4 states andn = 2 in-
plemented for the control of constrained nonlinear systemﬁutS were generated. Subsequently, both the infinite horizo
V. EXAMPLES optimal solution with the multi-parametric algorithm in][6
Iand the triangulation controller (b) from Section IlI-A veer
computed. Figure 2 depicts the difference in the number of
controller regions for two different cost objectives. Asica

Example 1:Consider the discrete-time double integrato
with the state-space representation:

sk+1) = <1 1) 2(k) + < 1 > u(k) be deduced, the number of controller regions obtained with
0 1 0.5 multi-parametric programming can vary widely depending
y(k) = [1 0] z(k) on the cost function in (3), whereas the complexity of the

. - . triangulation controller is independent of the perfornanc
The task is to regulate the system to the origin while . 2 . ;
- . . Objective. Therefore triangulation based 2-Level MPC may
fulfilling the input and output constraints : . .
be preferable to multi-parametric controllers for certain
—1<u(k) <1, -50<y(k)<50, Vk>0 problems.
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| Example 1 || Simplex 1| Simplex 2 | Facet-Based QP solver |

Average Time 1.24 msec| 1.38 msec| 1.62 msec | 140 msec

Worst-Case Time|| 1.42 msec| 1.58 msec| 1.88 msec | 258 msec
TABLE I

THE COMPUTATION TIME TO OBTAIN THE INPUT SEQUENCE FOR A GIVENNITIAL STATE IS GIVEN FOR EXAMPLE 1 FOR THE DIFFERENT METHODS

PRESENTED INSECTION IlI-A. ‘QP’ DENOTES THE TIME NECESSARY TO SO

LVE THE ASSOCIATED QUADRATIPROGRAM FOR A PREDICTION

HORIZON OF N = 40. THE RUN TIMES WERE OBTAINED ON APENTIUM IV 2.25GHz MACHINE, 1GB RAM AND THE MATLAB QP AND LP

SOLVERS WERE U

SED

| Example 1 [[ Simplex 1] Simplex 2 | Facet-Based|
Mean Performance Decrease || 3.2% 4.3% 3.2%
Worst-Case Performance Decrea|$e 8% 8.1% 8%
TABLE Il

THE AVERAGE AND WORST CASE PERFORMANCE DECREASE INCURRED FA®XAMPLE 1 FOR THE DIFFERENT METHODS PRESENTED IBECTION

111-A VERSUS ANQP SOLUTION OBTAINED BY OPTIMIZIN

1 MP

QP
B Triangulation)

[ MPQP
B Triangulation

) . (1]
g 1 g 1
0.5 0.5 [3]
MHIHI “ﬂ’\ ﬂ”ld““ ml“" JFIFIJ FIJMHJM”(IF”JMI“
0 5 S;g[em 15 20 0 5 S;g[em 15 20
(4]
@o=I,R=01I by Q=1 R=101
(5]
Fig. 2. Number of controller partitions mp-QP vs. Triangwatifor
different cost objectives in (3). The same systems were usethétwo 6]
cost objectives.
(7]
VI. CONCLUSION
(8]
It was shown in this paper, how the 2-level MPC approac 9

in [13] can be extended to cover the maximum controllable
set. In the proposed method, input sequences which can be
computed off-line are used in the on-line implementation
to obtain feasible and stabilizing input sequences. As Wélsol
shown, the proposed procedure may significantly reduce
the on-line runtime necessary to obtain input sequencé$ll
Two fundamentally different procedures were presented.
First, sets may be split into simplices by applying the12]
Delaunay triangulation methods. For this method, on-line
computation of the input sequence boils down to a simplﬁ3]
set-membership test with subsequent function evaluation.
Alternatively, polytopes may be defined for which the
input sequence can be interpolated on-line by solving 3]
LP. The main drawback of the proposed schemes is the
computational complexity of the off-line procedure, which
makes the approach intractable for large problems.

The presented algorithms are contained in the MPT
toolbox [9] which is available for download.

G FOR A PREDICTION HORIZON OFN = 40.
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