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Abstract--- This paper proposes a robust model 
predictive control (MPC) scheme to asymptotically 
stabilize an uncertain linear plant with polytopic model 
uncertainty description.  Quadratic robust stability 
constraints are explicitly imposed as contractive 
constraints on the predicted state at each sampling 
time. The feasibility of these constraints can be detected 
either off-line or at the first step of on-line optimization. 
The feasibility is independent of the selection of the 
optimization objective function and its parameters. 
Therefore, the objective function can be formulated to 
satisfy other criterion such as the performance 
requirements. The simulation study shows the 
effectiveness and features of the proposed method. 

I. INTRODUCTION 
Stability constrained model predictive control (SCMPC), 
sometimes also called contractive model predictive control, 
is one of the approaches to guarantee the closed-loop 
stability of a predictive control system. In this approach, a 
stability constraint (or contractive constraint) is explicitly 
imposed on the predicted state at each step of the on-line 
optimization. The first control step solved from the 
optimization is actually implemented and the whole process 
repeats at the next sampling time. The stability constraint is 
often constructed in quadratic form and can be shown as a 
Lyapunov function in different format ([1], [3], [4], [5], [6], 
[8], [10], [11]). When model uncertainties are included in 
the consideration, many robust MPC techniques solve the 
min-max optimization of a quadratic objective function 
over an infinite prediction horizon ([7],[12]). The infinite 
horizon objective function naturally becomes the Lyapunov 
function and the contractive constraint. Therefore, 
feasibility of the MPC calculation often depends on the 
selection of the objective function and its associated 
parameters. The baseline control solved from the first step 
optimization typically also depends on the initial condition 
of the state variable even if no control input and plant 
output constraints are imposed. This restrictiveness is 
pointed out in the work of [9]. Moreover, in most process 
control applications, especially in low-level regulation and 
set-point tracking control where MPC finds most of its 
applications, the higher priority should be placed on the 

closed-loop stability and process response speed.  
Minimizing the “worst” case objective function value is 
less important, since the objective function for the true 
plant is not necessarily optimized.  
 
In this paper we extend the concept proposed in the work 
of [4] and [5], and address the issue of robust stabilization 
of an uncertain linear plant described by a set of polytopic 
linear models using the SCMPC approach. Full state 
measurement is assumed and a set of Lyapunov equation 
type of stability constraints are explicitly imposed at each 
sample time. The objective function can be chosen as any 
type of convex function in finite prediction horizon.  The 
feasibility of the robust stability constraints does not 
depend on the parameters in the objective function. The 
proposed approach guarantees closed-loop stability if the 
robust stability constraints can be constructed through a 
feasible off-line linear matrix inequality (LMI) solution, or, 
in the input constrained case, a feasible on-line LMI 
optimization at the first step.  
 
This paper is organized as follows:  Section II briefly 
introduces preliminaries and notations. Section III presents 
the robust SCMPC algorithm for input-unconstrained linear 
systems. Section IV describes the corresponding robust 
SCMPC algorithm for control input constrained systems. 
Section V, followed by the concluding section, illustrates 
the proposed algorithms by numerical examples.  

II. PRELIMINARIES AND NOTATIONS 
Assuming a multi-input uncertain linear plant is described 
by the following state space equation 
    )()()1( kBukAxkx +=+        (1) 

n mwhere , , and A and B have appropriate 
dimensions. It is also assumed that the uncertain plant (A, 
B) is bounded by the convex hull of a set of linear time 
invariant (LTI) models  ( j = 1, …, H).  That is,  
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The use of polytopic model uncertainty representation 
assumes the true plant is the weighted average of all models 
in the uncertainty set. It is practically useful, especially in 
process control applications. For example, if the original 
model can be described by nonlinear differential (or 
difference) equations, then a set of LTI models can be 
obtained by linearizing the nonlinear model at different 
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operating points. Models at any other operating points can 
be approximated as the linear interpolation of models 
obtained at linearization points. The same thing can be said 
when a set of LTI models are obtained at different 
operating points, and perhaps at different times, by 
experimental methods.   
 
We start by defining a Lyapunov function for the plant as 

, where P  is a positive definite matrix and x is 
the state variable. Following usual definitions, the weighted 
2-norm on matrix P is defined as: 
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prediction horizon (and also the control horizon) is 
represented by N.  The state and control variables predicted 
at time k are denoted by  and  

respectively (i = 1,…, N).  The  is used to 
represent the predicted state variable made at time k using 
the model , where  j = 1, …, H.  The measured 
state variable at time k is .  
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Suppose a constant gain control law can be expressed by 

, where K is the static state feedback control 
gain. A sufficient condition to guarantee closed loop 
stability for the system (A, B) is the existence of positive 
definite matrices P and Q such that the following set of 
Lyapunov inequalities are satisfied (see Theorem 1 proof) 
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By defining  and , (3) can be written as 
the following quadratic inequalities 
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By Schur Complement (see [2]), the satisfaction of (4) is 
equivalent to successfully solving the following set of 
linear matrix inequalities (LMI) in terms of matrix 
variables S, L, and  (for  j = 1, …, H).  1−Q
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From now on, we assume that the optimization objective 
function in the following robust SCMPC development is a 
generic convex function , unless 
otherwise specified.  
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III. MAIN RESULT: INPUT-UNCONSTRAINED SCMPC 
We start the development with the control input 
unconstrained case. The control input constrained case will 
be discussed in the next section. The constraint on plant 
output is not included in this paper, since it can be solved 

in a similar way that the control input constraint is being 
handled. Only the regulation problem is discussed in this 
paper, since set-point tracking control can be easily 
formulated by using augmented state space equations. 
Output feedback with state estimation is expected to be a 
natural extension to this work with appropriate 
modifications.   
 
The input-unconstrained robust SCMPC is formulated as 
the following algorithm. 
Algorithm I  (input unconstrained case): 
Step 1:  Solve the LMI (5) off-line. If it is infeasible, stop 
here. The proposed scheme can not apply directly. If it is 
feasible, go to the next step 2. 
Step 2:  Set  )()|( kxkkx p

j =

Solve the following optimization at each sampling 
time k = 1, 2, … 

min
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       (i = 0,1, … , N,   j =1,…, H,  0< βj ≤1)          
Step 3:  Apply , and repeat from Step 2.  )|()( kkuku p=
 
We denote equations (6) as the prediction state constraint 
and inequalities (7) as the robust stability constraint. As 
assumed earlier, Φ  is a convex function. The robust 
stability constraints (7) are quadratic constraints and βj are 
tuning constant. Therefore, the overall on-line optimization 
is a convex programming. The following lemma 1 is 
introduced to facilitate future discussions.  
 
Lemma 1. If Step 1 in Algorithm I (off-line calculation) is 
feasible, then the robust stability constraints (inequality (7)) 
in Step 2 is feasible for all k = 0,1….  
 
Proof.  If step 1 (inequality (5)) is feasible, then the 
equivalent (3) is feasible. Since βj ≤ 1, (7) is feasible. The 
feasibility of (7) stands at every sampling time after step 1, 
since the off-line computed  can always be 
selected by the optimization algorithm to satisfy the 
inequality (7). Therefore, the feasibility carries over to all 
subsequent steps. 

)()( kKxku =

 
Theorem 1.  If  the robust stability constraints in 
Algorithm I is feasible at every sampling step, then the 
system (1) controlled by using Algorithm I is 
asymptotically stable.  
 
Proof : By assumption, the state variable for the uncertain 
system (1) can be represented by 
   ∑∑ == ⋅+⋅=+ H
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By Schur Complement, the robust stability constraints (7) 
can be written as the following LMI. 

  0
)|1(

)|1()()( 22

≥












+

+−

PkkPx
Pkkxkxkx

p
j

Tp
jQjP

β
 

Multiplying the above inequalities by αj , and adding them 
by the index j from 1 to H,  we have  
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By applying Schur Complement again on the above 
inequality, we have  
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The features of Algorithm I can be summarized in the 
following remarks. 
 
Remark 1. As stated in Lemma 1, if the LMI calculated in 
step 1 is feasible, then the on-line optimization (Step 2) is 
feasible throughout.  The feasibility of the off-line LMI 
does not depend on the format and parameters of the 
objective function selected in Step 2.  Therefore, the 
objective function and its parameters can be selected to 
accommodate performance requirements. Note that all 
features of [5] are now directly carried on to here where 
model uncertainty is included. 
 
Remark 2. In this input unconstrained case, the off-line 
solved control law u  does not depend on the 
initial condition either. Therefore, in addition to 
simply satisfying the feasibility of (5), the off-line 
computed baseline constant gain feedback control can even 
be chosen according to some performance criteria. 
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Remark 3. The baseline control is solved off-line. 
However, since the control action  is directly solved 
from the on-line optimization, most likely u  will not be 
the same as . In addition to the stability 

constraint (7), the actual applied  also depends on the 
objective function format and its parameters.  The 
parameters 
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jβ , which can be viewed as tuning factors, also 
play a role in determining the contraction rate. A smaller 

jβ  implies possible looser contraction (slower response) 
than what can be caused by applying the baseline control 
calculated in step 1, and vice versa. 
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IV. MAIN RESULT:  INPUT CONSTRAINED SCMPC 
 
We consider only input constrained robust SCMPC in this 
section. Given x(0) as the initial condition, since the future 
state x(k) will be contracted by the robust stability 
constraints, the feasible region for the constraints becomes 
an invariant set. Therefore, the calculated Lyapunov 
function value at the first step serves as the boundary for 
this invariant set. If   (with r determined at 
the beginning) and the robust stability constraint (7) is 
always feasible for the future control , then we have 

 (for all  k>0).  This can be cast as an 
LMI initial condition constraint at the first step of the 
robust SCMPC calculation. 
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Assuming the control input is constrained by  
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where means the diagonal elements of the 
corresponding matrix. Therefore, if  
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then (9) holds. 
The inequality (10) can be cast as the following LMI 
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Now the input constrained robust SCMPC can be stated as 
the following algorithm. 
 
Algorithm II  (input constrained case) 
Step 1.  Solve the LMI (5), (8), and (11) at the beginning 
step. If it is infeasible, stop here. The proposed scheme can 
not be applied directly. If it is feasible, go to the next step 
2. 



 
 

 

where W and R are positive definite weighting matrices on 
the predicted state and control input.  

Step 2. Set  )()|( kxkkx p
j =

Solve the following optimization at each sampling time k (k 
= 1, 2, …)  

Minimizing the objective function (13) is equivalent to 
solving the following constrained optimization problem.  min
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pTp vkikRukik ≤−+−+ )|1()|1(Lemma 2. If Step 1 in Algorithm II (first step on-line 
calculation) is feasible, then the robust stability constraint 
(inequality (7)) in Step 2 is feasible for all k = 0,1….  
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 We omit the proof since it is similar to the Lemma 1 proof.  
The key is that the first step on-line computed 

 can always be selected by the optimization 
algorithm to satisfy the future feasibility. 
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The above optimization is equivalent to the following 
linear objective function optimization with LMI constraint. 
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Theorem 2. If  the robust stability constraints in Algorithm 
II is feasible at every sampling step, then the system (1) 
controlled by using Algorithm II is asymptotically stable. 
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The proof is omitted since it is the same as the Theorem 1 
proof. The key is that the feasibility of the robust stability 
constraints guarantees the closed-loop system stability. 0≥iw            (16) 

0≥iv   ( i = 1, …., N)    (17)  
Remark 4.   Algorithm II preserves all features in 
Algorithm I, except that the admissible initial condition set 
is smaller than ℜn   due to control input constraints.  
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Therefore, we can formulate the on-line LMI version 
robust SCMPC as the following algorithm. 

 
Remark 5.  Algorithm II implies if the initial state starts 
from the feasible constraint region (invariant set), then the 
future feasibility and stability are all guaranteed. It does not 
resolve the issue when the initial state starts from outside 
this invariant set. 

 
Algorithm III  (control input constrained case) 
Step 1.  Solve LMIs  (5), (8), and (11) in the initial step. If 
it is infeasible, stop here. The proposed scheme can not be 
applied directly. If it is feasible, go to the next step 2.  
Step 2. Set  )()|( kxkkx p

j =In the situation where the convex objective function is 
selected in the quadratic, l1-norm, or linear format, then 
there is an alternative to cast the entire Algorithm II as the 
linear objective minimization with LMI constraints. 
Efficient algorithms and commercial software packages are 
available to handle this type of optimization problem. Note 
that the on-line calculated robust stability constraint (7) in 
Step 2 of the previous algorithms can be converted to the 
equivalent LMI constraints as follows   

Solve the following optimization at each sampling 
time k (k = 1, 2, …) 
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S.t.  (9), (12), (14), (15), (16), and (17).  
Step 3.  Apply , and repeat from Step 2. )|()( kkuku p=
 
Lemma 2 and Theorem 2 also stand for the Algorithm III, 
since Algorithm III is a special case of Algorithm II in 
terms of the format of the objective function.  
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We conclude this section by making a final remark. In this 
paper, the control u is directly solved from the on-line 
optimization to keep the original model predictive control 
flavor. In the algorithm development and simulation study 
(next section), finite horizon objective functions are always 
used. An infinite horizon robust MPC formulation can be 

If a finite horizon quadratic objective function (over 
nominal model (Aq, Bq)) is taken as an example, the 
objective function can be selected as  
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treated as a special case of this finite horizon MPC 
development.  

V. SIMULATION EXAMPLES 
Example 1.  The example models are taken from [7].  We 
assume the following 
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Let the control input be limited by 1. The initial condition 
is . When Algorithm II is applied, we find 
the following solution at the first step calculation 
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However, when the objective function is chosen in the 
infinite horizon quadratic form and the weighting matrices 
on state and control variables are selected as  
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There is no feasible solution can be found by solving the 
LMIs for min-max optimization in [7]. 
 
Example 2.  The example is to show the robust SCMPC for 
the input-unconstrained case (Algorithm I). We assume the 
uncertain model set (A1, B1) and (A2, B2) are the same as in 
Example 1. The actual process is assumed to be  
 ),(),(),( 222111 BABABA αα +=   with 5.021 == αα . 
The model (  is chosen as the nominal model for the 
robust SCMPC on-line optimization. The objective 
function is selected in the form of (13). The weighting on 
the state and control variables are W  and R = 
80. The prediction (optimization) horizon N=5. The 
constant contraction parameters are 

), 11 BA

}1,1{diag=

.021 1== ββ .  The 
initial condition is selected as . Figures 1(a), 
1(b), and 1(c) show the simulated state variable response 
and the control input when the robust SCMPC algorithm I 
and a static gain feedback control u  were 
applied separately. The constant control gain matrix K is 
solved from the first step of Algorithm I, and is solved as a 
most aggressive control as it should be when the control 
input is not constrained. However, the first-step computed 
static-gain feedback control is not necessarily the actual 
control. The actual applied control will depend on various 
factors, such as the form of the objective function, 
weighting inside the objective function, as well as the on-
line robust stability constraint. The contraction parameter β 
in the stability constraint also plays an important role in 
terms of the control performance.  It is noted that the tuning 

rules identified in [5] also stand here. For instance, a longer 
prediction horizon N and a smaller contraction parameter β 
tend to produce a slower and smoother plant output 
response, and vice versa.  
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Fig.1(a) Input-unconstrained robust SCMPC (state x1)  

 
Fig.1(b) Input-unconstrained robust SCMPC (state x2) 

 
Fig.1(c) Input-unconstrained robust SCMPC (control u) 

 
Example 3.  This example shows the control input 
constrained case (Algorithm II). The actual process and 
nominal model are the same as in the previous example.  
The control input is assumed to be  bounded by 1. The 
objective function is selected as (13). The predicted 
optimization horizon N=5. The weighting parameters are  
W = diag{1,1}and R = 0.1. To force the possibly fastest 
response, contraction parameters are chosen as β1=β2=1. 
The initial condition is selected as x0=[2 2]T.  Figures 2(a), 
2(b), and 2(c) show the simulated state variable response 
and the control input when the robust SCMPC algorithm II 
and a static gain feedback control u(k)=Kx(k) were applied 
separately. Both control algorithms satisfy the control 



 
 

 

constraint at the first step. However, the robust SCMPC 
algorithm is able to tighten the control and achieve a faster 
response as the state variables contract to smaller regions. 
This is not surprising since the constant gain feedback 
control solved at the first step naturally becomes a low-gain 
controller due to the initial condition and the limitation on 
the control input.  

 
Fig.2(a) Input-constrained robust SCMPC (state  x1) 

 
Fig.2(b) Input-constrained robust SCMPC (state  x2) 

 
Fig.2(c) Input-constrained robust SCMPC (control u ) 

VI. CONCLUSIONS 
In this paper we proposed a stability constrained model 
predictive control scheme that robustly stabilizes linear 
systems with polytopic model uncertainty descriptions. A 
Lyapunov equation type of stability constraint is explicitly 
imposed on the predicted state at each sample time. The 
objective function can be chosen as any type of convex 
function in any prediction horizon. The proposed approach 
guarantees closed-loop stability if the baseline robust 
stability constraint can be constructed through a feasible 

linear matrix inequality solution. The control move solved 
from the on-line optimization further fine-tunes the actual 
implemented control action. Future work will address the 
situation when the initial state does not start from within 
the feasible region for the robust stability constraint. 
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