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Abstract— Cascade control strategy is commonly employed addition, different inner- and outer-loop sampling rate and
in process control. Usually the inner loop is run at a higher |oop interactions can be accounted for in the design process.

sampling rate than the outer loop to achieve an effe_ctiye For single-rate cascade control systems, in which the
cascade control. In this paper, we present a model predictive '

controller (MPC) that could handle this multirate cascade INPUt updating and the output sampling rates are the same,
control strategy in a straightforward manner. There is only  €efforts have been made to get more efficient and convenient
one controller to be designed, thus reducing the complexity control strategies. In [10], an IMC-based design for cascade
of tuning the cascade control system. An illustrative example control using the state space technique was presented. A
is presented to demonsrate the effectiveness of the proposed .,q.4de predictive structure with an adaptive predictive con-
control design method. .
troller for the inner loop and a PID controller for the outer
|. INTRODUCTION loop was implemented in [13] for a distributed col_lector
solar filed. To control an open-loop unstable Continuous
As showed in Figure 1, a typical cascade control systetirred Tank Reactor System, Nagrathal.[8] developed
consists of an inner loop and an outer loop. Cascadestate estimation-based model predictive control approach
controllers are useful when the outer loop plant containghich employs a single MPC strategy that incorporates both
right-half plane zeros or a time delay or when the inneloops’ measurements and manipulates the system input.
loop has significant disturbance and uncertainty[7]. Predictive cascade controllers for the control of the position,
velocity and rotor flux of an induction machine were also
reported in [2], [6].

v Cy c, 1) P, - P, b2 The rest of this paper is organized as follows. In Section
2, we review a state space formulation of model predictive
control for multirate systems. Section 3 shows the main
results of this paper, that is, a predictive controller for
multirate cascade systems. Section 4 gives a numerical
example on a multirate cascade system which verifies the

Fig. 1. A typical cascade system proposed design. Finally, a brief concluding remark is made
in Section 5.
The conventional approach to designing a cascade control
system is that an appropriate inner loop controller is first Il. STATE SPACE FORMULATION OFa

determined to match the desired dynamics of the innqy | TIRATE MODEL PREDICTIVE CONTROLLER
control loop. With the inner loop closed, the outer loop con-

troller is next designed. Usually the inner loop has a higher One popular version of Model Predictive Control (MPC)
bandwidth than the outer loop. In practical implementatioris the Generalized Predictive Control (GPC). Some recent
the inner loop usually operates at a faster sampling rate thamerests in extending MPC to multirate situation can be
the outer loop. found in [1], [3], [4], [11], [12]. In particular, [12] used

In cascade control, there is one manipulated variablge lifting technique to develop a GPC scheme for non-
and two or more measurement. Thus, in this paper, w#iformly sampled multirate systems. In this section, we
proposed to take an alternative approach and designrecall the state space MPC formulation approach for mul-
predictive controller for the cascade control problem byirate systems.
sampling the plant outputg;; and y, at different rates, Unlike a conventional single-rate system, a multirate
and generates the control signaht the faster rate. In other system has different rates for measurement sampling and
words, we treat the plant as a non-square multivariable plaobntrol updating. Generally the sampling and updating
with possibly multirate sampling and control requirementpattern are periodic over a larger peri@dknown as the
and design the required controller accordingly followingrame period. For example, if the measurement sampling
the Model Predictive Control (MPC) approach. Using thigeriod isnh, and the control updating period+ish, where
approach, only one controller needs to be designed. i andn are integers andl is the base period, then the frame
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period isT = gh, whereg is the least common multiple of  Substituting (2) into (5) and solving the minimization
m andn. problem, we have the following control law:

Now let us consider a controllable and observable, single-
input single-output linear multirate system, supposing its
base period state space model in discrete-time form \ghere
represented by

AU = Kyw(kT + imh) + Koz (KT +imh),  (7)

K, = (U704 A1)~ teT]

{ Tkr+n = Azgr + BAugr 1) Ky = —(9T0w+A)"1070, (8)

YT = Cuxr,
Using the so-called receding horizon strategy, only the
st element of the control vector obtained from Equation
7), is applied to the plant. The control calculation is then

peated at the next control updating instance. Since the
prediction model is the same at every control updating
instance, it can be seen that the controller gaihs and

then the basic idea of the state space MPC for multira%er
systems can be described as follows:

Firstly, a prediction model is constructed based on th
base period model. For example, at the time instaht+
imh(i = 0,---,n), the prediction model is

V = ®x(kT + imh) + TAU, ) K, are time invarignt. .
If the state variables are not directly measurable, and
where in particular, in multirate situation, because control and
[ G(kT + imh + h) CA measurem.ent occur at dlffergnt rate, the state variable may
. : 2 not be available at certaif"+imh. In this case the control
R J(kT + imh + 2h) CA : o
Vv — _ . b= _ . law is modified to
i g}(kT+in'1h+Nph) CANP AU = Kyjw(kT +imh) + K2z (kT +imh|kT + jnh), (9)
[ Au(kT + imh) wherez (kT +imh|kT + jnh) denotes the estimation of the
Au(kT + imh + h) state atkT" + imh based on the most up-to-date input and
AU = : ; (3) output measurements. One possible approach to designing a
L state estimator for the multirate system is via the so-called
[ Au(kT +imh + (Nu — 1)h) receding or moving horizon state estimator[5], [9].
CB 0 0 1. APREDICTIVE CONTROLLER FOR
- CAB CB 0 MULTIRATE CASCADE SYSTEMS
B : : In this section, we present our main results, that is,
CAN»—1B CAN»—2B ... CAN»—NupB developing a predictive controller for a multirate cascade

(4) control system. Such a predictive controller can control not
Then the state feedback law can be obtained by minimionly the inner loop but also the outer loop at the same time.
ing the cost function The basic idea for this approach arises from the fact that

N a multirate two-loop cascade control system can also be

» . . . X
. . . . . treated as an equivalent multirate single-input two-output
_ _ 2
Jo= Z; lo (kT + imh + jh) = G(T + imh + jh)l| control system. We hence can design a predictive controller
’_N for this single-input two-output system with the technique

. . 2 introduced in Section 2. As it is showed in Figure 2, this
+ AZ |Au(KT +imh +(j = DRI, ©) predictive controller is simpler and more compact than the

=1 conventional design with two predictive controllers for the
subject to the following constraints: cascade control and thus it is more convenient to design
] ] ] and tune.
Au(kT +imh+ jh) =0, j#0,m,2m,---. (6)

) o ] A. An Equivalent Multivariable System
The parametel,, is known as the upper prediction horizon,

and for simplicity, the lower prediction horizon is cho-

sen to be one in the above formulations. The predictioﬁqg'val‘?gt to the mt&ltlrate ttwo-lq?hptﬁasfc?lde 'sysFem. |
horizons define the interval over which the tracking error onsider a cascade system wi € following Inner loop

is minimized (w is the setpoint fory ). The control syls:terrt}f’l anclit'OL{[te;jloobrlJ slysterﬁ’2 d i
horizon, N,,, defines the degree of freedom available for or this muttirate double-loop cascade System, We assume

the minimization. The control weighting, can be used to that _bothPl _and P, are controllable and observable. The
penalize excessive control activity, but in practice, it is morgontmuous—tlme plant can be represented by
commonly used to ensure a numerically well-conditioned y1(s) P

algorithm. [ Y2(s) ] N { PPy } (=)

We first give a multirate multivariable system which is

(10)
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Without loss of any generality, we assume that its updating Now we can compute the predictive control law as
and sampling rates are periodic over a frame pefiodlet follows:

us suppose that the updating perioduofs mh, sampling Yy = Oz (kT + imh) + VAU, (15)
period ofy; is nih andnyh is the sampling period ofs.

Herem, n; andny are integers and is the base period. where R .
Furthermore, we assume th#t is the smallest common G2(KT + imh + h) T'A
multiple of mn; h andmnoh. The discrete-time base period | #2(kT +imh + 2h) _ | raz
model is 5 B Y2 = : &= j '

Trr = ATy + Buy (11) G2(KT + imh + Nph) AN

Yk = Cxy (16)

. . Au(kT + imh)
Next add an integrator into the model Au(kT + imh + h)
R E I v
= ~ + Auy,
Yk C I ][y 0 Au(kT + imh + (
- Ay, I'B 0 0
w=1[C I][yk_l} ) TAB B 0
U= ,
Now we can formulate the cascade control system as a : .
multirate controller design for a single-input two-output TAN»—1B TAMN>—1B ... FANFNHB
system using the following compact form (18)
and
{ Tkt = Az + Buy (12) I' = the second row ot
Yk = Cuxy

Then from Section 2, we have the following predictive
We thus transfer the original cascade system to an equi¥pntrol law,

alent multivariable system based on which a predictive

controller will be derived. AU = K w(kT + imh) + Koz (kT + imh) (19)
: - with
B. Design of the Predictive Controller
ST 1q,T
For the multirate single-input two-output system (12),we Ky o= (WU HANTw,
can find a predictive controller through the technigue de- Ky = —(0T0 +A1)"1'070. (20)

scribed in Section 2. When the state variablesare not available at timeT -+

imh, the control law in (19) is replaced by

w u Y1 Y2 AU = Kjw(kT + imh) + K@ (kT + imh | kKT + jnh),
— Pl P2 - (21)
Predictive wherez (kT + imh | kKT + jnh) denotes estimation of the

state variables at timgT + imh based on the most up-to-
date available state variables. The process of state estimation
will be described next.

Controller

) C. State Estimation
Fig. 2. A controller for a two-loop cascade system

In practice, we usually can only measure the outputs
and the internal state variables are not available. A state
estimator is thus needed to reconstruct the state variables
according to the available input and output information.

For the whole system, there is only one setpainthich
is for the outputy,. Hence we can write the cost function

as follows, This is feasible if the system is observable.
Ny The design of state estimators can be implemented in
> Nw(kT + imh + jh) — g2 (kT + imh + jh)|*  various frameworks, such as the Kalman filter, which gives
j=1 the optimal state estimate in the mean square error sense
N but need a noise model which may be difficult to obtain.
+ A AT + imh + (j — DR, (13)  This paper employs the receding or moving horizon state
j=1 estimator to estimate the states that are not available in the
subjecting to the following constraints: prediction.
The basic strategy of moving horizon estimation (MHE)
Au(kT +imh+ jh) =0, j#0,m,2m,---. (14) s to estimate the state vector based on a finite number of
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past measurement samples. The oldest measurement sample IV. ANUMERICAL EXAMPLE
is discarded when a new sample becomes available. They, this section, we verify the efficiency of the proposed

memory length of the state estimator is thus fixed. MPC design in controlling the following multirate cascade

For simplicity, we adopt here the scheme proposed bystem. The plant?, and P, has the following transfer
[4] in which the design of the state estimator is treated ifynction representations

the same framework as that in the controller design, that is,

by minimizing the following cost function, Py(s) = 1 Py(s) = e
N1 10s +1 20s + 1
J, = Z p(ty — rh)|ly(t; — rh) — Ca(t; — T‘h)H2, (22) We choogePQ to haV(_a a time delay becaus_e cascade
- controller is only useful ifP, has RHP zeros or a time delay.

Assume the sampling period of outer-loogdlis= 1s, while

the sampling period of inner-loop i5/m, wherem is an

Z(t; —rh+h) = AZ(t; —rh) + Bu(t; —rh)Au(t; —rh), integer. Using the techniques presented in Section 3 with
(23) tuning parameters chosen &s, = m * 10 (ensuring the

whereN,, the estimation horizon, is the main tuning paramsame length of prediction horizon under different sampling

eter for the state estimator. It determines the number of thmatterns),/N,, = 2 (choosing the same number of degree-of-

past output measurement employed by the state estimativeedom) and\ = 0.01, we can design the MPC controller

with respect to the following constraints,

The controller makes control signal changes at every
intervals, that is , at timé, mh,2mh,.... But the plant
output is only available at tim@, n,h, noh, 2n1h, 2nsh, . . ..

So it is easy to see that

U(tj_Th):{ L if t; —rh = 0,mh,2mh, ...

0 otherwise (24)

M(t‘*?"h): { 1 if tj—rh:07n1h,n2h,2n1h,2n2h,...
J 0 otherwise

(25)
Minimization of Equation (22) with respect td(¢; —

N.h + h) gives the following optimum state estimates,

@(t; — Neh+h) = (MQM)'MTQ(Y — PYU) (26)

where
[ CANe—1
CANe—2
M = ,
i C
[ CB CAB CAN-—2B
0 CB CAN-—3pB
po= : (27)
0 0 CB
0 0 0
U = [ Au(tj — h) A’U,(tj — Qh) Au(tj — Neh —+
Y o= [ylt;) y(t;—h) y(tj — Neh+h) ]

and(@ is a diagonal matrix which containgt; —rh), T is
a diagonal matrix which contains(t; —rh). The estimated
state can be written as

i(t;) = B,Y + E,U (29)
where
B, = AN"YMTQM)T*MTQ
E, = [B AB ANe=2p | Y — E,PY

for this multirate cascade system. For the estimator design,
we choose the estimation horizon to Ng = 5. For various
values ofm = 2,4 and8, the closed-loop response of the
cascade control system is illustrated in Figure 3. The step
signal is injected at = 1s, and the inner-loop disturbance

is added att = 100s. It can be seen that the controller
achieve zero steady-state error and give reasonable setpoint
and disturbance responses. With the MPC framework, con-
straints on the intermediate measuremgnand the control
signalu could be added.
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Fig. 3. Step and disturbance responses of the cascade control system

V. CONCLUSIONS

We present in this paper a MPC design for multirate
cascade systems. The proposed predictive controller is sim-
ple to design and tune. Properties of the proposed control
design, such as the effect of sampling ratio and the
estimation horizonV, are currently under investigation.
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