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Abstract—Unstable regimes occuring for multiphase flow in
vertical risers have successfully been stabilized using conven-
tional linear control techniques. However, the control systems
rely on downhole measurements which are at best unreliable, if
at all available. In this paper, we design a nonlinear observer
for the states of the multiphase flow that relies on topside
measurements only, and apply it to estimate downhole pressure
for feedback control. A key feature of the design is that it
exploits the structure of the model to obtain robustness with
respect to the internal flows in the system. The performance
of the observer is demonstrated in simulations.

I. INTRODUCTION

The use of control in multiphase flow systems is an area
of increasing interest for the oil and gas industry. Oil wells
with highly oscillatory flow are a significant problem in the
petroleum industry. Several different instability phenomena
related to oil and gas wells exist, and in this study, unstable
gas lifted wells will be the area of investigation. Gas lift
is a technology to produce oil and gas from wells with
low reservoir pressure by reducing the hydrostatic pressure
in the tubing. Gas is injected into the tubing, as deep as
possible, and mixes with the fluid from the reservoir, see
Figure 1. The gas reduces the density of the fluid in the

Fig. 1. A gas lifted oil well

tubing, which in turn reduces the downhole pressure (DHP),
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and thereby increases the production from the reservoir. The
lift gas is routed from the surface and into the annulus,
which is the volume between the casing and the tubing.
The gas enters the tubing through a valve, or an injection
orifice, which does not permit backflow from the tubing into
the annulus. The dynamics of highly oscillatory flow in gas
lifted wells can be described as follows:

1) Gas from the annulus starts to flow into the tubing.
As gas enters the tubing the pressure in the tubing
falls. This accelerates the inflow of gas.

2) The gas pushes the major part of the liquid out of the
tubing.

3) Liquid in the tubing generates a blocking constraint
downstream the injection orifice. Hence, the tubing
gets filled with liquid and the annulus with gas.

4) When the pressure upstream of the injection orifice
dominates the pressure on the downstream side, a new
cycle starts.

For more information on this type of instability, often
termed severe slugging, see [9].

There are in principle two approaches to eliminate highly
oscillating well flow in gas lifted wells: The first approach
is to increase the pressure drop caused by friction either by
increasing the gas flow rate, reducing the opening of the
production choke, reducing the size of the gas lift valve,
or decoupling the dynamics of the annulus and tubing by
obtaining supercritical flow through the injection valve; the
second method is the use of active control to stabilize the
well flow, which is the subject of this study. Figure 2
shows a conceptual gas lift production curve. The produced
oil rate is a function of the flow rate of gas injected
into the well. The curve shows under which conditions
the well exhibits stable or highly oscillatory flow. It is
important to note that the average production rate may be
significantly lower with unstable, see the line labeled "open
loop production", compared to stable well flow, see the line
labeled "theoretical production". The region of optimum lift
gas utilization may lie in the unstable region. In addition
to causing lower oil production, large oscillations in the
flow rate from the well causes poor downstream oil/water
separation and flaring.

Stabilization of gas lifted wells using conventional con-
trol techniques has been studied for single well systems in
[1], [6], [8], and for a two-well system in [3]. In [5], a
state feedback control law was designed using Lyapunov
theory, and the controller was used in an output feedback
setting with an extended Kalman filter in [4]. In this
paper, we design a nonlinear observer for the states of
the multiphase flow in the tubing, and apply it to estimate



Fig. 2. The gas lift curve with the region of optimum lift gas utilization.

downhole pressure for feedback control. The design exploits
the structure of the model to obtain robustness with respect
to the internal flow between the annulus and the tubing.

The paper is organized as follows: In Section II we
present a mathematical model of the gas lifted well due
to [4], [5]; in Section III we design the observer and apply
it in open-loop simulations, and; in Section IV the observer
is applied for output feedback stabilization of the system.
Concluding remarks are offered in Section V.

II. MATHEMATICAL MODEL

The process described in the introduction, and sketched
in Figure 1, is modelled mathematically by three states: x1
is the mass of gas in the annulus; x2 is the mass of gas in
the tubing, and; x3 is the mass of oil in the tubing. Looking
at Figure 1, we have

ẋ1 = wgc − wiv, (1)
ẋ2 = wiv − wpg, (2)
ẋ3 = wr − wpo, (3)

where wgc is a constant mass flow rate of lift gas into
the annulus, wiv is the mass flow rate of lift gas from the
annulus into the tubing, wpg is the mass flow rate of gas
through the production choke, wr is the oil mass flow rate
from the reservoir into the tubing, and wpo is the mass
flow rate of produced oil through the production choke.
The flows are modeled by

wgc = constant flow rate of lift gas, (4)

wiv = Civ

q
ρa,imax {0, pa,i − pt,i}, (5)

wpc = Cpc

p
ρmmax {0, pt − ps}u, (6)

wpg =
x2

x2 + x3
wpc, (7)

wpo =
x3

x2 + x3
wpc, (8)

wr = Cr (pr − pt,b) . (9)

Civ, Cpc, and Cr are constants, u is the production choke
opening (u (t) ∈ [0, 1]), ρa,i is the density of gas in the

annulus at the injection point, ρm is the density of the
oil/gas mixture at the top of the tubing, pa,i is the pressure
in the annulus at the injection point, pt,i is the pressure in
the tubing at the gas injection point, pt is the pressure at
the top of the tubing, ps is the pressure in the separator,
pr is the pressure in the reservoir, and pt,b is the pressure
at the bottom of the tubing. The separator pressure, ps, is
assumed to be held constant by a control system, and the
reservoir pressure, pr, is assumed to be slowly varying and
therefore treated as constant. Note that flow rates through
the valves are restricted to be positive. The densities are
modelled as follows

ρa,i =
M

RTa
pa,i, (10)

ρm =
x2 + x3 − ρoLrAr

LtAt
, (11)

and the pressures as follows

pa,i =

µ
RTa
VaM

+
gLa
Va

¶
x1, (12)

pt =
RTt
M

x2
LtAt + LrAr − νox3

, (13)

pt,i = pt +
g

At
(x2 + x3 − ρoLrAr) , (14)

pt,b = pt,i + ρogLr. (15)

M is the molar weight of the gas, R is the gas constant,
Ta is the temperature in the annulus, Tt is the temperature
in the tubing, Va is the volume of the annulus, Vt is the
volume of the tubing, La is the length of the annulus, Lt is
the length of the tubing, At is the cross sectional area of the
tubing above the injection point, Lr is the length from the
reservoir to the gas injection point, Ar is the cross sectional
area of the tubing below the injection point, g is the gravity
constant, ρo is the density of the oil, and νo is the specific
volume of the oil. The oil is considered incompressible,
so ρo is constant. The temperatures, Ta and Tt are slowly
varying and therefore treated as constant.

We now assume that the multiphase flow through the
production choke, that is, wpc, is controlled by an inner
loop flow controller that is fast compared to the dynamics of
system (1)–(3). In other words, we may replace the control
input u (production choke opening), by the new control
input v = wpc (flow rate through production choke), to
obtain the system

ẋ1 = wgc − wiv, (16)

ẋ2 = wiv − x2
x2 + x3

v, (17)

ẋ3 = wr − x3
x2 + x3

v. (18)

In the next section, we present our observer design, which
is based on the system in the form (16)–(18).

III. STATE ESTIMATION

In practice, measurements downhole in the tubing or
annulus will in general not be available. If they are avail-
able, they must be considered unreliable due to the harsh



conditions in which the sensors operate, and the fact that
maintainance of the sensors is virtually impossible. Thus,
we will in this work assume that we have measurements at
the top of the annulus and tubing, only. The main challenge
is how to deal with the multiphase flow in the tubing,
whereas the single phase flow in the annulus can accurately
be estimated based on one pressure measurement and one
temperature measurement. Thus, we will assume that x1
is measured. For estimation of the two remaining states,
we measure the pressure at the top of the tubing. Our
measurements are therefore

y1 (t) = x1 (t) , and y2 (t) = pt (t) . (19)

In addition, the variables of the fast flow controller govern-
ing the production choke, that is v and u, are available.

A. Reduced Order Observer Design
Since the mass of gas in the annulus can be considered

a measurement, we design a reduced order observer for the
remaining two states. Before we state our main result, we
state key assumptions and an intermediate result needed in
the convergence proof for the observer. For definitions of
control theoretic concepts used in this paper, see [7].
Assumption 1: The production choke is not allowed to

close completely. That is,

u ≥ δu > 0, ∀t ≥ 0. (20)
Assumption 2: The states are bounded away from zero,

and the part of the tubing below the gas injection point is
filled with oil. More precisely,

x1 ≥ δ1 > 0, x2 ≥ δ2 > 0,
x3 ≥ ρoLrAr + δ3 > ρoLrAr

¾
∀t ≥ t0. (21)

Assumption 3: The gas in the tubing has lower density
than the oil. More precisely,

LtAt + LrAr − νo (x3 + x2) ≥ δg > 0, ∀t ≥ 0. (22)
Remark 4: Assumptions 1–3 are not restrictive. Since the

production choke opening is a control input (from the fast
flow controller), Assumption 1 can be satisfied by the con-
struction of the control law. Of course, δu has consequences
for the solvability of the state feedback regulation problem,
and must therefore be sufficiently small. The first condition
in (21) is satisfied for all t > 0, and if x1 (t0) 6= 0 for all
t ≥ 0. The second condition in (21) is imposed to deal with
the fact that the model of the compressible multiphase flow
in the tubing is invalid when the fluid is incompressible,
which corresponds to x2 = 0, since the pressure calculation
is based on the ideal gas law. From a practical point of
view, the flow in the tubing cannot forever stay single phase,
since the pressure in the annulus would grow and gas would
eventually penetrate into the tubing. The third condition in
(21) states that the reservoir pressure must be high enough
for oil to rise above the gas injection point in the tubing. The
last assumption, Assumption 3, imposes an upper bound on
the gas density in the tubing. For practical gas lifted oil
wells, the density of gas will always be less than the density
of oil under normal operation.

Lemma 5: Solutions of system (16)–(18) are bounded in
the sense that there exists a constant B, depending on the
initial state, such that

xi ≤ B(x (t0)), i = 1, 2, 3, ∀t ≥ 0. (23)

In particular,

x3 < ρo (LtAt + LrAr) , ∀t ≥ 0. (24)
Proof: The condition (24) follows from incompress-

ibility of the oil, and the fact that x2 is strictly positive.
Taking the Lyapunov function candidate V = 2x1+x2+x3,
it is straight forward to show that V̇ is strictly negative for
sufficiently large V . This defines a bounded region in state
space which is globally attractive. B can be taken to be the
maximum value of the bound for this region and the norm
of the initial state.

Theorem 6: Solutions x̂ (t) = (x̂2 (t) , x̂3 (t)) of the
observer
˙̂z1 = wgc − ẑ1 − y1

ẑ2 − y1
v + k1 (ẑ1, ẑ2, y1, y2) , (25)

˙̂z2 = wgc + Cr

µ
pr − ρogLr +

Ar

At
ρogLr +

g

At
y1

−y2 − g

At
ẑ2

¶
− v + k2 (ẑ2, u, v, y1, y2) , (26)

ẑ1 ≥ δ2 + y1, and ẑ2 ≥ ρoLrAr + δ3 + ẑ1, (27)
x̂2 = ẑ1 − y1, (28)
x̂3 = ẑ2 − ẑ1, (29)

where the output injections, k1 and k2, are given by

k1 (ẑ1, ẑ2, y1, y2) =

c1

µ
M

RTt
(LtAt + LrAr − νo (ẑ2 − ẑ1)) y2 − (ẑ1 − y1)

¶
,

k2 (ẑ2, u, v, y1, y2) =

c2

Ãµ
v

Cpcu

¶2
− ẑ2 − y1 − ρoLrAr

LtAt
(y2 − ps)

!
,

converge to the actual state x (t) = (x2 (t) , x3 (t)) expo-
nentially fast in the following sense

kx (t)− x̂ (t)k ≤ Ce−γ(t−t0), (30)

where C depends on initial conditions, and

γ = min

½
c1

δg
LtAt + LrAr

,
Crg

At
+ c2

δp
LtAt

¾
. (31)

δp ≥ 0 is a constant satisfying max{0, pt − ps} ≥ δp for
all t ≥ t0.

Proof: Define z2 = x1 + x2 + x3, which is the total
amount of mass in the system. From (16)–(18), (9), (15),
and (14), its time derivative is

ż2 = wgc + Cr

µ
pr − ρogLr +

Ar

At
ρogLr

+
g

At
y1 − y2 − g

At
z2

¶
− v.



We estimate z2 by ẑ2, which is governed by

˙̂z2 = wgc + Cr

µ
pr − ρogLr +

Ar

At
ρogLr

+
g

At
y1 − y2 − g

At
ẑ2

¶
− v + k2 (·) , (32)

where k2 (·) is an output injection term to be determined.
The observer error, e2 = z2 − ẑ2, is governed by

ė2 = −Crg

At
e2 − k2 (·) . (33)

Take the Lyapunov function candidate V2 =
1
2e
2
2. Its time

derivative along solutions of (33) is

V̇2 = e2

µ
−Crg

At
e2 − k2 (·)

¶
. (34)

Selecting

k2 (ẑ2, u, v, y1, y2) = c2

Ãµ
v

Cpcu

¶2
− ẑ2 − y1 − ρoLrAr

LtAt
max {0, y2 − ps}

¶
, (35)

where c2 > 0, and inserting (35) into (34), we get

V̇2 = e2

µµ
−Crg

At
e2

¶
−c2

µ
z2 − y1 − ρoLrAr

LtAt
max {0, y2 − ps}

− ẑ2 − y1 − ρoLrAr

LtAt
max {0, y2 − ps}

¶¶
= −

µ
Crg

At
+ c2

max {0, y2 − ps}
LtAt

¶
e22. (36)

So we obtain

ke2 (t)k ≤ ke2 (t0)k e−
Crg
At

(t−t0). (37)

Next, define z1 = x1 + x2, which is the total mass of gas
in the system. From (16)–(17), its time derivative is

ż1 = wgc − z1 − y1
z2 − y1

v. (38)

We estimate z1 by ẑ1, which is governed by

˙̂z1 = wgc − ẑ1 − y1
ẑ2 − y1

v + k1 (·) , (39)

where k1 (·) is an output injection term to be determined.
The observer error, e1 = z1 − ẑ1, is governed by

ė1 = −z1 − y1
z2 − y1

v +
ẑ1 − y1
ẑ2 − y1

v − k1 (·) . (40)

Notice that the observer error dynamics (33) and (40), is in
a cascaded form, where the dynamics of e2 is independent
of e1. Since e2 converges to zero, we will seek to apply
[2, Lemma 2]. Towards that end, we take the Lyapunov

function candidate V1 =
1
2e
2
1. Its time derivative along

solutions of (40) is

V̇1 = e1

µ
−z1 − y1
z2 − y1

v +
ẑ1 − y1
ẑ2 − y1

v − k1 (·)
¶

= e1

µ
−(ẑ2 − y1) e1 − (ẑ1 − y1) e2

(z2 − y1) (ẑ2 − y1)
v − k1 (·)

¶
= e1

µ
− v

(z2 − y1)
e1 + v

ẑ1 − y1
(z2 − y1) (ẑ2 − y1)

e2

¶
−e1k1 (·)

= − v

z2 − y1
e21

+v
ẑ1 − y1

(z2 − y1) (ẑ2 − y1)
e1e2 − e1k1 (·) . (41)

We now select

k1 (ẑ1, ẑ2, y1, y2) =

c1

µ
M

RTt
(LtAt + LrAr − νo (ẑ2 − ẑ1)) y2 − ẑ1 + y1

¶
,

(42)

where c1 > 0, and obtain

V̇1 = − v

z2 − y1
e21 + v

ẑ1 − y1
(z2 − y1) (ẑ2 − y1)

e1e2

−c1e1
µ
LtAt + LrAr − νo (ẑ2 − ẑ1)

LtAt + LrAr − νo (z2 − z1)
(z1 − y1)

− (ẑ1 − y1)

¶
= −

µ
v

z2 − y1

+c1
LtAt + LrAr − νo (z2 − y1)

LtAt + LrAr − νo (z2 − z1)

¶
e21

+

µ
v

ẑ1 − y1
(z2 − y1) (ẑ2 − y1)

−c1 νo (z1 − y1)

LtAt + LrAr − νo (z2 − z1)

¶
e1e2. (43)

Using Lemma 5, Assumptions 2 and 3, and noticing that
(ẑ1 − y1) / (ẑ2 − y1) < 1, we obtain

V̇1 ≤ −
µ

v

2B
+ c1

δg
LtAt + LrAr

¶
e21

+

µ
v

δ2 + δ3
+ c1

Bνo
δg

¶
ke1k ke2k . (44)

We can now apply [2, Lemma 2] with V =
¡
e21 + e22

¢
/2,

k3 = min

½
c1

δg
LtAt + LrAr

,
Crg

At
+ c2

δp
LtAt

¾
, (45)

g (kek) =
µ

v

δ2 + δ3
+ c1

Bνo
δg

¶
ke1k ,

σ (ke (t0)k , t− t0) = ke2 (t0)k e−
Crg
At

(t−t0), (46)

to achieve the desired result, and in particular the estimate
(31).
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Fig. 3. Mean oil production versus production choke opening. Solid line
indicates stable production and dashed line indicates severe slugging.

B. Open-loop Simulations

The numerical coefficients used in the simulations of
system (16)–(18), are taken from a real full size gas
lifted oil well. For these coefficients, simulations have been
performed to calculate mean oil production as a function
of production choke opening. The result is presented in
Figure 3. The production is stable for small choke openings
and increases as the choke opening is increased. At a
choke opening of about 0.52, the flow becomes unstable
and goes into severe slugging, leading to a dramatic loss
of production. The increasing trend of the production for
small choke openings, suggests that a higher production
is possible for large choke openings if the flow can be
stabilized. This is shown to be the case in the next section.
In this section, we will illustrate the performance of the
observer by running open-loop simulations for the nominal
case of perfect model. Figure 4 shows the states along with
the estimates for the tubing over a six hour simulation with
c1 = 0 and c2 = 0. The flow is clearly in the state of severe
slugging, and the estimates converge to the actual states. It
is clear that the convergence rate estimate γ, as defined in
(31) is very conservative, since it is equal to 0 in the case
shown in Figure 4. However, looking at inequality (44),
the flow through the production choke, v, defines a better
bound for the estimation convergence rate, and explains why
the observer converges with c1 = 0. Although γ is a very
conservative estimate for the convergence rate, (31) tells us
that our observer can achieve any desired convergence rate
by increasing c1 and c2. From the proof of Theorem 6, we
see that c2 governs the convergence rate of the estimate
for the total mass in the system (gas and oil), whereas
c1 governs the convergence rate of the estimate for the
total mass of gas in the system, but with an upper bound
governed by c2. Simulations confirming faster convergence
with increasing c1 and c2 have also been run, but are omitted
here due to space limitations.
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Fig. 4. States (solid line) and their estimates (dashed line) for the system
during severe slugging.

IV. ANTI-SLUG CONTROL BY OUTPUT FEEDBACK

A. State Feedback Controller
It has been shown in [3] that severe slugging can be

attenuated by stabilizing the downhole pressure using a
control law of the form

v = v∗ +K
¡
pt,b − p∗t,b

¢
, (47)

where v∗ and p∗t,b are some appropriate constants. In [5],
a state feedback design was presented that regulates the
total mass of gas (x1 + x2) and total mass of oil (x3) to
individual setpoints, Mg and Mo, using the gas lift flow rate
and the oil production flow rate as control inputs. In this
demonstration, we will design a variant of this total mass
controller. Having just one control input, we do not have
the freedom to individually regulate the mass of gas and
oil, but we may regulate the total mass, M = x1+x2+x3.
The resulting control law has the form

v = wgc + wr + λ (M −M∗) , (48)

where M∗ > 0 is the desired setpoint, and λ is any
positive number. Although (47) and (48) are designed with
different objectives in mind, stabilizing downhole pressure
and mass, respectively, their structure is in fact the same: As
in (47), (48) also contains proportional feedback from the
downhole pressure. The downhole pressure is in general not
available as a measurement, and neither are the individual
states in the tubing, but we may replace the states by their
estimates generated by the observer designed in the previous
section, to obtain the certainty equivalence controller. For
linear systems, stability of the closed loop using the cer-
tainty equivalence controller is guaranteed by the separation
principle of linear systems. For general nonlinear systems,
however, not even an exponentially convergent observer in
conjunction with an exponentially stabilizing state feedback
control law can guarantee stability of the closed loop
system. Thus, ignoring saturation in the control input, we



argue in the next section that our closed-loop system is
input-to-state stable with the observer error as input, so that
stability is preserved under certainty equivalence control.

B. A Nonlinear Separation Principle
Consider the certainty equivalence controller

v = wgc + wr (x̂2, x̂3) + λ (y1 + x̂2 + x̂3 −M∗) . (49)

Taking the Lyapunov function candidate

V =
1

2
(M −M∗)2 ,

we get

V̇ = (M −M∗) (wr (x2, x3)− wr (x̂2, x̂3)

−λ (y1 + x̂2 + x̂3 −M∗))
= −λ (M −M∗)2

+(M −M∗) (λ (e1 + e2) + wr (x2, x3)

−wr (x2 − e1, x3 − e2)) , (50)

so that the closed loop system is input-to-state stable with

g (x2, x3, e1, e2) = λ (e1 + e2) + wr (x2, x3)

−wr (x2 − e1, x3 − e2) (51)

as input. By the properties of our observer, g (·) → 0 as
t → ∞, and so M → M∗ as t → ∞. Having argued that
M →M∗ as t→∞, it remains to investigate the dynamics
on the manifold defined by M ≡M∗ in order to conclude
that the state converges to some fixed point. Since the topic
of this paper is observer design, we will not persue this
further here, but refer the reader to [5].

C. Closed-loop Simulations

We complete this section by offering simulation results
demonstrating the performance of our output feedback
controller (49). Figure 5 shows that we have stabilized the
flow at an oil production rate in excess of 16 kg/s, with a
production choke opening of 0.8. Recalling Figure 3, we see
that this choke opening corresponds to unstable open loop
production at 10 kg/s. Thus, the stabilized flow yields an oil
production increase of 60% compared to the unstable open
loop production at the same choke opening, and of about
11% compared to the upper performance limit for stable
open loop production.

V. CONCLUSIONS

In this paper, we have designed a reduced order nonlinear
observer for the states of the multiphase flow in the tubing.
The observer relies on topside measurements, only. A key
feature of the design is that it exploits the structure of the
model to obtain robustness with respect to the internal flow
between the annulus and the tubing. The performance of
the observer was demonstrated in simulations.
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