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Abstract— This paper presents an intrinsic formulation of
an observer for an important class of simple mechanical sys-
tems on a Lie group. Recently, Aghannan and Rouchon have
formulated an observer for a simple mechanical system on a
general Riemannian manifold. The current paper specializes
their result to the case where the manifold is a Lie group,
the kinetic energy is left invariant, and the velocity variables
are to be estimated based on measurement of the configuration
variables. These restrictions allow a greatly simplified result, of
interest in its own right. Most significantly, no coordinates need
be introduced on the Lie group, hence a single formulation
is valid for all coordinate patches. To illustrate the method,
observers are computed for two simple mechanical systems, on
the rotation group SO(3) and on the Euclidian motion group
SE(3). Simulations of an example onSO(3) show excellent
performance.

I. I NTRODUCTION

A simple mechanical systemon a Lie group consists
of i) a Lie group, which corresponds to the configuration
space of the system, ii) a Lagrangian defined by kinetic
energy minus potential energy, and iii) a set of forces (or
one-forms) [7], [15]. When some of these forces may be
used for control, we refer to a simple mechanicalcontrol
system [7]. Such systems provide a rich source of control
problems. Some examples include underwater vehicles,
satellites, surface vessels, airships, hovercrafts, and robots
[8], [20], [21], [6], [2], [3]. Simple mechanical systems on
Lie groups are also interesting assubsetsof more complex
interconnected systems. As an example, in [12] the authors
model the electrostatically actuated micromirror component
of a micro optoelectromechanical system (MOEMS) in this
framework.

Many researchers have considered the stabilization and
motion planning problems for simple mechanical control
systems on Lie groups. For instance, open loop motion
planning algorithms are developed using small amplitude
forcing in [8] and by minimizing an appropriate cost
functional in [21]. For examples of the many feedback
stabilization methods we refer to [5], [6], [13] and the
references therein. These stabilization techniques primarily
depend on notions of energy shaping and passivity. The
resulting control strategies typically involve both velocity
and configuration feedback. However, depending on the
application, one or the other of these may not be directly
available, and therefore must be estimated. In some cases

the velocity measurements may be easily obtained [3], [14],
[17] while in others it is the configuration measurements [2],
[19], [18], [12]. The latter case is the focus of this paper.

A central idea in differential geometry is that meaningful
definitions should beintrinsic. A definition is intrinsic if
its meaning is not dependent on the particular choice of
coordinate representation, that is, if it can be considered to
be coordinate independent. In particular, for a formulation
to be general enough to apply to a wide class of Lie
groups, it must be intrinsic, since the coordinate-dependent
details are not known in advance. In the case of rigid-
body rotation, many successful angular velocity estimation
schemes have been published [18], [2], [19]. However,
they require a particular parameterization of the rotation
matrix, and the observers depend explicitly on this choice.
Hence, they are not intrinsic, and so their methods cannot
be extended in general. For instance in [18] the rotation
matrix is parameterized by unit quaternions while in [3]
the modified Rodrigues parameters are used.

A significant body of work exists on the design of
observers for a class of nonlinear systems. A recent survey
of the state of the field may be found in [11]. The general
approach is contingent upon the system taking one of a
number of special forms. For instance, a system is said to
be linear up to output injectionif, in a particular coordinate
patch, the nonlinearities appear only in terms of the control
and measured output. Then an observer may be designed
that is guaranteed to converge exponentially as long as
the system remains in the patch. This is an extremely
valuable and powerful result, invaluable in situations where
the system is to be confined to a relatively small set,
such as output feedback stabilization of an equilibrium
point or a periodic orbit. However, in cases where state
trajectories are not so confined, it has some limitations. The
special form is not intrinsic, and hence convergence is not
guaranteed in any other coordinate patch. Furthermore, the
structural requirement is extremely stringent, and is rarely
naturally satisfied. To address this, a series of nonlinear
transformations of sequentially higher order is applied in
order to approximatelytransform a non-compliant system
into the necessary form. However, these transformations
rely on a power series expansion, and therefore are valid
only locally. When the system is converted to the special
form through such a series of transformations, convergence



is guaranteed only locally. Thus this approach to nonlinear
observer design does not seem extendable to an intrinsic
formulation suitable for more general Lie groups.

In a recent paper [1], Aghannan and Rouchon present
an intrinsic observer that provides estimates of the states
of a simple mechanical system on a Riemannian manifold,
given measurements of the configuration variables. They
use a reformulation of the Luenberger observer, where the
observation error is intrinsically defined by the geodesic
distance between the actual and estimated configuration
variables. This quantity is well-defined, provided the esti-
mate and the true value are sufficiently close. Aghannan and
Rouchon also show that an additional curvature term should
be added to ensure local convergence. The key steps in
their derivation are the computations of the Levi-Civita con-
nection, the Riemannian curvature, the associated distance
function, and the approximation to parallel transport on the
manifold. While their observer is intrinsic, the formulation
is presented in terms of coordinates. On a Lie group, the
observer as formulated in [1] may be directly implemented
once a suitable choice of coordinates are chosen. How-
ever, as onSO(3), it is not always possible to pick a
convenient, globally nonsingular choice of coordinates. In
applications such as optimal control and long term trajectory
tracking, these singularities may cause difficulties. A major
contribution of the current paper is that the formulation of
the observer is expressed independently of the choice of
coordinates on the Lie group.

For any simple mechanical system, the kinetic energy
may be used to define a metric on the configuration space,
thus providing the structure of a Riemannian manifold.
This in turn gives the unique Levi-Civitaconnectionas-
sociated with this metric, allowing intrinsic differentia-
tion of the velocity components. This is the minimum
amount of structure required for an intrinsic observer to
be defined. In this sense the result of [1] is the most
general possible for simple mechanical systems. However,
while the observer itself is intrinsic, it must be specified
in each coordinate patch. That is, to explicitly write the
equations of the observer, the configuration and velocity
variables, as well as the connection coefficients, must be
expressed in coordinates. While there is no way around
this in general, the formulation may be greatly simplified
in the important special case where the manifold is a Lie
group, and the kinetic energy is left invariant. Locally, the
tangent bundle of a Riemannian manifold looks like the
product of the manifold and a Euclidean space. However,
this product representation may not be valid globally. In
contrast, Lie groups areparallelizable, meaning that they
have a globally defined, smoothly varying set of vector
fields that define a basis for the tangent space at any point.
This implies that the product representation applies globally.
The significance of this is that a single choice of coordinates
for the tangent space at the identity may be left translated
to provide coordinates for all tangent spaces. This means
that the state equation for the configuration variable may be

written without specifying coordinates. This holds for any
Lie group. However, the connection coefficients required
to write the state equations for the velocity components
will be still functions of the configuration variables. If we
further assume that the kinetic energy is invariant under left
translation, as is typically the case for rigid body rotation
and translation, then the connection coefficients become
constant, and now the velocity component state equations
are also simplified considerably. This is the case considered
here. We note that though coordinates are not needed for
the Lie group, it is still necessary to choose a basis (not
necessarily orthonormal or orthogonal) for the Lie algebra.

In section II we show how the quantities we will need
subsequently specialize from Riemannian geometry to Lie
groups. In section III we use these to explicitly formulate
the intrinsic observer of [1] for Lie groups with left invariant
kinetic energy metric. The observer is calculated in section
IV for two examples, one onSO(3) and the other on
SE(3). Finally, section IV shows a simulation example on
SO(3) in which the angular velocities of a axisymmetric
top are estimated. We also note that an application of
this observer toSE(3) for the closed-loop control of an
electrostatically actuated MOEMS device has been given in
[12], without details of the observer derivation.

II. T HE RIEMANNIAN STRUCTURE ONL IE GROUPS

LetG be a Lie group and letG ' TeG be its Lie algebra.
The left translation ofζ ∈ G to TgG will be denoted by
g · ζ = DLg ζ. The Jacobi Lie bracket of any two vector
fieldsX,Y on G will be denoted by[X,Y ] while the Lie
bracket onG for any two ζ, η ∈ G will be denoted by
[ζ, η]G = adζ η and the dual of thead operator will be
denoted byad∗. Any smooth vector fieldX(g) on G has
the formg · ζ(g) for some smoothζ(g) ∈ G.

Let I : G 7→ G∗ be an isomorphism such that the relation
<< ζ , η >>G=< Iζ , η > for ζ, η ∈ G defines an inner
product onG. Here < ·, · > denotes the usual pairing
between a vector and a co-vector. IdentifyingG∗ and G
with Rn, let Iij and Iij be the matrix representation ofI
and I−1 respectively.I is symmetric and positive definite.
Such anI induces a unique left invariant metric onG by
the relation<< g · ζ , g · η >>=< Iζ , η > and further it
also follows that every left invariant metric has such an
associated isomorphism. Thus by a choice ofI the Lie
groupG can be endowed with the structure of a Riemannian
manifold (G , << · , · >>).

In what follows we will specialize the notions of a Levi-
Civita connection, Riemannian curvature and the notion
of a distance function to Lie groups equipped with a left
invariant metric. Once this is accomplished, specialization
of the result of [1] is reasonably straightforward.

A. Levi-Civita Connection

On any Riemannian manifold it is known that there exists
a unique connection that is metric, and torsion free [4], [9],
[10], [16]. This connection is referred to as the Riemannian



or Levi-Civita connection. Let{ei} be any basis for the
Lie algebraG and let{Ei(g) = g · ei} be the associated
left invariant basis vector field onG. The left invariant 1-
form field dual to{Ei} will be denoted by{σi} (that is
σi(Ej) = δi

j). Now [ei, ej ]G = Ck
ijek, whereCk

ij are the
structure constants of the Lie algebraG (note thatCk

ij =
−Ck

ji).
For any vectorV at a pointg ∈ G and a smooth vector

field Y , defined locally aboutg ∈ G, the Levi-Civita or
Riemannian connection onG is defined as follows,

∇V Y = (dY k(V ) + ωk
ijV

iY j)Ek , (1)

whereωk
ij are the Levi-Civita connection coefficient. Using

the structure constants the Levi-Civita connection coeffi-
cientsωk

ij are uniquely given by

ωk
ij =

1
2
(
Ck

ij − Iks(IirCr
js + IjrC

r
is)
)
. (2)

Observe that the connection coefficients are constant. Thus
the connection can be expressed as,

g · ∇ζη =

dηk(ζ)Ek+
1
2
g ·
(
[ζ, η]G−I−1

(
ad∗(ζ)I(η)+ad

∗
(η)I(ζ)

))
(3)

whereV = g · ζ, Y = g · η(g) and η(g) ∈ G is a smooth
function fromG 7→ G andg · ∇ζη = ∇g·ζg · η.

From the torsion free property of the connection the
Jacobi Lie-bracket of two vector fieldsX = g · ζ(g) , Y =
g · η(g) on G can be expressed as,

[X,Y ] =
{
dηk(ζ)− dζk(η)

}
Ek + g · [ζ, η]G . (4)

B. Curvature

Let u, v, w be tangent vectors toG at g and let the
vector fieldsX,Y, Z be their arbitrary smooth extensions
in a neighborhood ofg. Then the curvature tensor onG is
defined by [9], [10], [16],

R(u, v)w = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (5)

R(u, v)w at g depends only on the values ofu, v, w and
not on their smooth extensions. Therefore atg ∈ G if u =
g ·ζ, v = g ·η, w = g ·Ω for fixed ζ, η,Ω ∈ G, thenX,Y, Z
can be chosen to be the corresponding left invariant vector
fields. Thus ifg · R(ζ, η)Ω = g · R(g · ζ , g · η)g · Ω from
(5) we have

g ·R(ζ, η)Ω = Ek⊗{2θk
j (g ·ζ , g ·η)Ωj−ωk

j (g ·[ζ, η]G)Ωj},
(6)

whereωk
j = ωk

ijσ
i are the connection 1-forms and

θk
j =

1
2
Rk

jab σ
a ∧ σb = (−1

2
ωk

rjC
r
ab + ωk

arω
r
bj)σ

a ∧ σb

are the curvature 2-forms with the curvature coefficients
Rk

jab computed to be,

Rk
jab = (−ωk

rjC
r
ab + 2ωk

arω
r
bj). (7)

Hence the pull back of the curvature toG by left translation
can be expressed by,

R(ζ, η)Ω = ek{Rk
jabΩ

j(ζaηb−ζb ηa)−ωk
ijC

i
abζ

aηbΩj}.(8)

C. The Local Distance Function

Let ||ζ||G =
√
Iζ · ζ define the norm onG induced by

the metric<< · , · >>. For two sufficiently close points̃g
andg there exists a uniqueζe ∈ G such thatexp ζe = g−1g̃.
Then the distance between two sufficiently close pointsg̃
andg can be defined as,

d(g̃, g) = ||ζe||G . (9)

For a fixedg define the function

F (g̃) =
1
2
d(g̃, g)2 =

1
2
Iζe · ζe. (10)

For g̃ sufficiently close tog, the gradient ofF (g̃), denoted
by gradF , is uniquely given by the relationship

<< gradF , g̃ · η >>=< dF , g̃ · η >= Iζe · η, (11)

for any η ∈ G. Thus explicitlygradF = g̃ · ζe.

D. Simple Mechanical Control Systems on Lie Groups

A simple mechanical control system evolving on a Lie
groupG equipped with a left invariant metric<< · , · >>
is defined as a system with kinetic energy,E(g, ġ), given
by,

E(g, ġ) =
1
2
<< ġ , ġ >>, (12)

and a LagrangianL(g, ġ) = E − U(g) for some smooth
function U(g) on G, [7], [15]. Let I : G 7→ G∗ be the
associated isomorphism where now<< g · ζ , g · η >>=
Iζ · η. Then the Euler-Lagrange equations of motion of the
system are given by,

ġ = g · ζ, (13)

∇ġ ġ = g · I−1

(
fc(g) +

m∑
i

uif
i(g)

)
,

= g · S(g), (14)

where fc(g), f i(g) ∈ G∗ and ui ∈ R. The conservative
force termfc(g) satisfies the condition< dU , g · Ω >=
− < fc(g) , Ω > for any Ω ∈ G and the f i’s
denote the control directions and are assumed to be linearly
independent. Theui are the magnitude of the forces and are
the controls of the system. Note that (13) are the kinematic
conditions and (14) are the Euler-Lagrange equations of the
system. Combined they define a dynamical system onTG.
Using (3) these equations can also be expressed by,

ġ = g · ζ , (15)

ζ̇ = I−1

(
ad∗ζ Iζ + fc(g) +

m∑
i

uif
i(g)

)
, (16)

where now (15) – (16) defines a dynamical system onG×G,
the left trivialization ofTG.



III. A N INTRINSIC OBSERVER FORVELOCITY

ESTIMATION

In this section we apply the computations of the previous
section to the result derived in Theorem 1 of [1], and obtain
our main result. Namely, we specialize the intrinsic observer
of [1] to simple mechanical systems on Lie groups equipped
with a left invariant metric. Consider (13) – (14). Letg̃ be
the estimated value ofg. If the two points are sufficiently
close then the error betweeñg and g is defined by||ζe||G
for ζe ∈ G satisfyingexp (ζe) = g−1g̃.

For a fixedg̃ define the functionF (g) as in (10). Then the
gradient ofF is given by (11). Thus specializing Theorem
1 of [1] to a Lie group we have that the following observer
converges locally for anyα, β > 0.

˙̃g = g̃ · (ζ̃ − 2αζe), (17)

∇ ˙̃g g̃ · ζ̃ = g̃ · Γ(S, ζe) + g̃ ·R(ζ̃, ζe)ζ̃ − β g̃ · ζe,(18)

where,
Γ(S, ζe) = (Sk − ωk

ijS
iζj

e) ek. (19)

Using (3) and expanding (18) we thus have the explicit
observer,

˙̃g = g̃ · (ζ̃ − 2αζe), (20)
˙̃
ζ = I−1

(
ad∗

ζ̃
Iζ̃ − α(ad∗ζe

Iζ̃ + ad∗
ζ̃
Iζ̃e)

)
+[ ζe , ζ̃ ]G + Γ(S, ζe) +R(ζ̃, ζe)ζ̃ − βζe. (21)

This derivation of the intrinsic observer of [1] for Lie groups
does not require coordinates to be introduced on the Lie
group and is uniquely specified once the structure constants
of the Lie group are specified.

IV. EXAMPLES

In this section we demonstrate the constructions pre-
sented in here for the two cases where the configura-
tion space of the simple mechanical systems are the Lie
groupsSO(3) andSE(3). In the process we also compute
the Riemannian connection, Riemannian curvature and the
topological metric of the Lie groupsSO(3) andSE(3).

A. The Rotation GroupSO(3)

The rotation groupSO(3) is the group of matricesR ∈
GL(3,R) that satisfy the conditionsRRT = RT R = I
anddet(R) = 1. The Lie algebraso(3) of SO(3) is the set
of traceless skew symmetric three by three matrices. Note
that so(3) ' R3 where the isomorphism is defined by,

Ω ∈ R 7→ Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 ∈ so(3), (22)

whereΩ = [Ω1 Ω2 Ω3]T . From here on we will use both
Ω and Ω̂ to mean the same element ofso(3).

Now let us investigate the Riemannian structure of
SO(3). Define the isomorphismI : so(3) ' R3 7→

so(3)∗ ' R3 by the positive definite matrixI. This induces
a left invariant metric onSO(3) by the relation,

<< R · Ω , R · ψ >>=<< Ω , ψ >>so(3)= IΩ · ψ, (23)

for any two elementsR · Ω, R · ψ ∈ TRSO(3). The Lie
bracket onso(3) is given by,

[Ω , ψ]so(3) = adΩ ψ = Ω× ψ. (24)

and the dual of thead operator is given by,

ad∗Ω Π = Π× Ω, (25)

where Π ∈ so(3)∗ ' R3. Using equations (2) and (7)
the connection coefficientsωk

ij and the coefficients of the
curvature tensorRk

jab can be calculated once the structure
constantsCk

ij of the Lie algebra are specified.
From (15) – (16) a simple control system onSO(3) takes

the form,

Ṙ = R · ζ , (26)

ζ̇ = I−1

(
Iζ × ζ + fc(R) +

m∑
i

uif
i(R)

)
. (27)

The intrinsic observer (20) – (21) takes the form,

˙̃R = R̃ · (ζ̃ − 2αζe), (28)
˙̃
ζ = I−1

(
Iζ̃ × ζ̃ − α(Iζ̃ × ζe + Iζe × ζ̃)

)
+αζe × ζ̃ + Γ(S, ζe) +Rc(ζ̃, ζe)ζ̃ − βζe, (29)

whereζe satisfiesexp(ζe) = RT R̃ and is given by,

ζ̂e =
ψ

2 sinψ
(RT R̃− R̃TR), (30)

where,cosψ = (tr(RT R̃)−1)/2, for |ψ| < π, andsinψ =√
1− cos2 ψ, [13]. The parallel transport termΓ(R, ζ) is

calculated from (19) whereS(R) = fc(R) +
∑m

i uif
i(R)

and the curvature termRc(ζ̃, ζe)ζ̃ is calculated from (8).
1) Simulation Results:In this section we demonstrate the

effectiveness of the observer (28)–(29) by means of simu-
lation. Consider the classical problem of a axisymmetric
top in a gravitational field. LetP = {P1, P2, P3} be an
inertial frame fixed at the fixed point of the top and let
e = {e1, e2, e3} be a body fixed orthonormal frame with
the origin coinciding with that ofP . At t = 0 the two
frames coincide. Then let the coordinates of a pointp in
the inertial frameP be given byx and in the body frame
e be given byX. They are related byx(t) = R(t)X where
R(t) ∈ SO(3). Let −P3 be the direction of gravity and
let I be the inertia matrix. The kinetic energy of the top
is K = Iζ · ζ/2, where ζ is the body angular velocity
and the potential energy isU(R) = mglRe3 · P3. Here
m is the mass of the top,g is the gravitational constant,
l is the distance along thee3 axis to the center of mass.
For simplicity we assume the top to be symmetric about
the e3 axis. The generalized potential forcesfc(R) in the
body frame will be given by the relation< fc(R), ζ >=
− < dU,R · ζ >= −mglRζ̂e3 · P3 for any ζ ∈ so(3),



which yieldsf(R) = mglRTP3 × e3. The metric induced
on SO(3) by the kinetic energy is left invariant and the
system is a simple mechanical system onSO(3). Thus the
equations of motion onSO(3)× so(3) are given by,

Ṙ = R · ζ , (31)

ζ̇ = I−1
(
Iζ × ζ +mglRTP3 × e3

)
. (32)

Since in this example it is assumed that the top is symmetric
about thee3 axis, the inertia matrix is diagonal withI1 =
I2, that is, I = diag(I1, I1, I3). In this case ife is the
canonical basis, using (24), the nonzero structure constants
Ck

ij on so(3) ' R3 are calculated to be,

C3
12 = 1, C2

13 = −1, C1
23 = 1,

.

Fig. 1. Angular velocity estimates versus true values in axisymmetric
top simulation. The solid curves correspond to the angular velocities of
the axisymmetric top while the dashed dotted curves correspond to the
estimated velocities.

With α = β = 10 Implementing the observer (28) – (30)
we estimate the angular velocities of the axi-symmetric top.
The simulation results are shown in Fig. 1.

B. The Special Euclidian Motion GroupSE(3)

The special Euclidian motion groupSE(3) is the semi-
direct productSO(3)×sR3. As a matrix group, an element
A ∈ SE(3) can be represented by,

A =
[
R b
0 1

]
, (33)

whereR ∈ SO(3) andb ∈ R3. Then

A−1 =
[
RT −RT b
0 1

]
. (34)

The Lie algebra ofSE(3) denoted byse(3) is the set of
matrices,

ζ =
[

Ω̂ v
0 o

]
, (35)

whereΩ̂ ∈ so(3) andv ∈ R3. Thense(3) ' R3 ×R3 by
identifying ζ ∈ se(3) with (Ω , v) ∈ R3 ×R3.

In order to investigate the Riemannian structure define
the inner product onse(3), << · , · >>se(3) between the
two elements(Ω, v), (ψ, u) ∈ se(3) as follows,

<< (Ω, v), (ψ, u) >>se(3)= IbΩ · ψ +Mv · u, (36)

where Ib is a positive definite matrix. ThusI =
diag(Ib, MI3×3). This inner product onse(3) defines a
left invariant metric onSE(3) in the usual way. The Lie
bracket onse(3) is given by,

ad(Ω , v)(ψ , u) = [(Ω , v), (ψ , u)]se(3)

= (Ω× ψ , Ω× u− ψ × v). (37)

and the dual of thead operator is given by,

ad∗(Ω , v)

[
Π
µ

]
=
[

Π× Ω + µ× v
µ× Ω

]
, (38)

where(Π, µ) ∈ se(3)∗ ' R3 ×R3.
Using equations (2) and (7) the connection coefficients

ωk
ij and the coefficients of the curvature tensorRk

jab can be
calculated once the structure constants of the Lie algebra
se(3) ' R6 are specified.

From (15) – (16) a simple control system onSE(3) takes
the form,[

Ṙ ḃ
0 0

]
=

[
R b
0 1

] [
Ω̂ v
0 0

]
(39)[

Ω̇
v̇

]
= I−1

([
IbΩ × Ω
Mv × Ω

]
+ fc(R, b)

+
m∑
i

uif
i(R, b)

)
. (40)

The intrinsic observer (20) – (21) takes the form,[
˙̃R ˙̃

b
0 0

]
=

[
R̃ b̃
0 1

][ ˆ̃Ω− 2α Ω̂e ṽ − 2α ve

0 0

]
(41)

Ω̇ = I−1
b

(
IbΩ̃× Ω̃− α(IbΩ̃× Ωe + IbΩe × Ω̃)

)
+αΩe × Ω̃ + Γ(S, ζe)1

+Rc(ζ̃, ζe)ζ̃1 − βΩe (42)

v̇ = ṽ × Ω̃− 2αṽ × Ωe + Γ(S, ζe)2

+Rc(ζ̃, ζe)ζ̃2 − βve, (43)

where ζe = (Ωe, ve) satisfiesexp(ζe) = A−1Ã and is
explicitly given by,

Ωe =
ψ

2 sinψ
(R̃RT −RR̃T ), (44)

ve = W−1(RT b̃− R̃T b), (45)

where,cosψ = (tr(RT R̃)− 1)/2, for |ψ| < π [13] and

W = I3×3 +
(1− cosψ)

ψ2
Ωe +

(ψ − sinψ)
ψ3

Ω2
e.

The parallel transport termΓ(S) is calculated from
(19) whereS(R, b) = fc(R, b) +

∑m
i uif

i(R, b) and the
curvature termRc(ζ̃, ζe)ζ̃ is calculated from (8). In [12]



this observer is successfully employed in a observer based
control strategy for the stabilization of an electrostatically
actuated MOEMS device.

V. CONCLUSION

In this paper we present an intrinsic observer for simple
mechanical systems with left invariant kinetic energy on a
Lie group. The result is a specialization of a general result
on arbitrary Riemannian manifolds [1], however the greatly
simplified formulation, due to the the added structure,
makes the result of significant interest for its own sake. In
particular, the observer may be written explicitly without
the need for coordinates on the Lie group, and thus the
formulation is valid in any coordinate patch. A basis for the
Lie algebra must be chosen, though the added complexity
is minor. Once this is done, the observer is determined
uniquely in terms of the structure constants of the Lie
algebra. The observer is explicitly computed for two special
cases of practical significance: the rotation groupSO(3) and
the Euclidian motion groupSE(3). Simulations show ex-
cellent performance. The observer has also been used as the
basis for closed-loop control design on an electrostatically-
actuated MOEMS device, also with excellent simulation
results [12].
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