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Abstract—This paper presents an intrinsic formulation of  the velocity measurements may be easily obtained [3], [14],
an observer for an important class of simple mechanical sys- [17] while in others it is the configuration measurements [2],
tems on a Lie group. Recently,‘ Aghannan aqd Rouchon have [19], [18], [12]. The latter case is the focus of this paper.
formulated an observer for a simple mechanical system on a A central idea in differential geometry is that meaningful
general Riemannian manifold. The current paper specializes N DA L S e
their result to the case where the manifold is a Lie group, definitions should bentrinsic. A definition is intrinsic if
the kinetic energy is left invariant, and the velocity variables its meaning is not dependent on the particular choice of
are to be estimated based on measurement of the configuration coordinate representation, that is, if it can be considered to
variables. These resirictions allow a greatly simplified result, of e ¢qordinate independent. In particular, for a formulation
interest in its own right. Most significantly, no coordinates need . .
be introduced on the Lie group, hence a single formulation to be ggneral enQUQh t_o aPp'y to a W'd_e class of Lie
is valid for all coordinate patches. To illustrate the method, ~9roups, it must be intrinsic, since the coordinate-dependent
observers are computed for two simple mechanical systems, on details are not known in advance. In the case of rigid-
the rotation group SO(3) and on the Euclidian motion group  pody rotation, many successful angular velocity estimation
SE(3). Simulations of an example onSO(3) show excellent  ¢.hames have been published [18], [2], [19]. However,
performance. . . o .

they require a particular parameterization of the rotation
matrix, and the observers depend explicitly on this choice.
Hence, they are not intrinsic, and so their methods cannot

A simple mechanical systeiwn a Lie group consists be extended in general. For instance in [18] the rotation
of i) a Lie group, which corresponds to the configuratiormatrix is parameterized by unit quaternions while in [3]
space of the system, ii) a Lagrangian defined by kinetithe modified Rodrigues parameters are used.
energy minus potential energy, and iii) a set of forces (or A significant body of work exists on the design of
one-forms) [7], [15]. When some of these forces may bebservers for a class of nonlinear systems. A recent survey
used for control, we refer to a simple mechanicahtrol of the state of the field may be found in [11]. The general
system [7]. Such systems provide a rich source of contr@pproach is contingent upon the system taking one of a
problems. Some examples include underwater vehiclesumber of special forms. For instance, a system is said to
satellites, surface vessels, airships, hovercrafts, and robétslinear up to output injectiorif, in a particular coordinate
[8], [20], [21], [6], [2], [3]. Simple mechanical systems on patch, the nonlinearities appear only in terms of the control
Lie groups are also interesting asbsetof more complex and measured output. Then an observer may be designed
interconnected systems. As an example, in [12] the authoiisat is guaranteed to converge exponentially as long as
model the electrostatically actuated micromirror componenhe system remains in the patch. This is an extremely
of a micro optoelectromechanical system (MOEMS) in thivaluable and powerful result, invaluable in situations where
framework. the system is to be confined to a relatively small set,

Many researchers have considered the stabilization asdch as output feedback stabilization of an equilibrium
motion planning problems for simple mechanical contropoint or a periodic orbit. However, in cases where state
systems on Lie groups. For instance, open loop motiamajectories are not so confined, it has some limitations. The
planning algorithms are developed using small amplitudspecial form is not intrinsic, and hence convergence is not
forcing in [8] and by minimizing an appropriate costguaranteed in any other coordinate patch. Furthermore, the
functional in [21]. For examples of the many feedbaclstructural requirement is extremely stringent, and is rarely
stabilization methods we refer to [5], [6], [13] and thenaturally satisfied. To address this, a series of nonlinear
references therein. These stabilization techniques primaritsansformations of sequentially higher order is applied in
depend on notions of energy shaping and passivity. Trarder to approximatelytransform a non-compliant system
resulting control strategies typically involve both velocityinto the necessary form. However, these transformations
and configuration feedback. However, depending on thely on a power series expansion, and therefore are valid
application, one or the other of these may not be directlgnly locally. When the system is converted to the special
available, and therefore must be estimated. In some cadesm through such a series of transformations, convergence

0-7803-8335-4/04/$17.00 ©2004 AACC 1546

I. INTRODUCTION



is guaranteed only locally. Thus this approach to nonlineavritten without specifying coordinates. This holds for any
observer design does not seem extendable to an intrindie group. However, the connection coefficients required
formulation suitable for more general Lie groups. to write the state equations for the velocity components
In a recent paper [1], Aghannan and Rouchon presenill be still functions of the configuration variables. If we
an intrinsic observer that provides estimates of the statésrther assume that the kinetic energy is invariant under left
of a simple mechanical system on a Riemannian manifoltékanslation, as is typically the case for rigid body rotation
given measurements of the configuration variables. Theand translation, then the connection coefficients become
use a reformulation of the Luenberger observer, where tlmmnstant, and now the velocity component state equations
observation error is intrinsically defined by the geodesiare also simplified considerably. This is the case considered
distance between the actual and estimated configuratibere. We note that though coordinates are not needed for
variables. This quantity is well-defined, provided the estithe Lie group, it is still necessary to choose a basis (not
mate and the true value are sufficiently close. Aghannan amecessarily orthonormal or orthogonal) for the Lie algebra.
Rouchon also show that an additional curvature term should In section Il we show how the quantities we will need
be added to ensure local convergence. The key steps snbsequently specialize from Riemannian geometry to Lie
their derivation are the computations of the Levi-Civita congroups. In section Il we use these to explicitly formulate
nection, the Riemannian curvature, the associated distartte intrinsic observer of [1] for Lie groups with left invariant
function, and the approximation to parallel transport on thkinetic energy metric. The observer is calculated in section
manifold. While their observer is intrinsic, the formulationlV for two examples, one onSO(3) and the other on
is presented in terms of coordinates. On a Lie group, th&F(3). Finally, section IV shows a simulation example on
observer as formulated in [1] may be directly implementedO(3) in which the angular velocities of a axisymmetric
once a suitable choice of coordinates are chosen. Howep are estimated. We also note that an application of
ever, as onSO(3), it is not always possible to pick a this observer toSE(3) for the closed-loop control of an
convenient, globally nonsingular choice of coordinates. lelectrostatically actuated MOEMS device has been given in
applications such as optimal control and long term trajectorfd 2], without details of the observer derivation.
tracking, these singularities may cause difficulties. A major
contribution of the current paper is that the formulation of
the observer is expressed independently of the choice ofLet G be a Lie group and lef ~ T,.G be its Lie algebra.
coordinates on the Lie group. The left translation off € G to T,G will be denoted by
For any simple mechanical system, the kinetic energy- ¢ = DL, (. The Jacobi Lie bracket of any two vector
may be used to define a metric on the configuration spadélds X,Y on G will be denoted by X, Y] while the Lie
thus providing the structure of a Riemannian manifoldbracket ong for any two (,n € G will be denoted by
This in turn gives the unique Levi-Civitaonnectionas- [¢,n]g = ad¢n and the dual of theid operator will be
sociated with this metric, allowing intrinsic differentia- denoted byad*. Any smooth vector fieldX(¢g) on G has
tion of the velocity components. This is the minimumthe formg - ((g) for some smootlg(g) € G.
amount of structure required for an intrinsic observer to Let]: G +— G* be an isomorphism such that the relation
be defined. In this sense the result of [1] is the most< (, n >>g=< I{, n > for {,n € G defines an inner
general possible for simple mechanical systems. Howeveroduct onG. Here < -,- > denotes the usual pairing
while the observer itself is intrinsic, it must be specifiecbetween a vector and a co-vector. IdentifyiGg and G
in each coordinate patch. That is, to explicitly write thewith R", let I;; and I/ be the matrix representation &f
equations of the observer, the configuration and velocitgnd I~ respectively.] is symmetric and positive definite.
variables, as well as the connection coefficients, must f&uch an/ induces a unique left invariant metric @n by
expressed in coordinates. While there is no way arourttie relation<< g-¢, g-n >>=< I(, n > and further it
this in general, the formulation may be greatly simplifiecalso follows that every left invariant metric has such an
in the important special case where the manifold is a Liassociated isomorphism. Thus by a choicelothe Lie
group, and the kinetic energy is left invariant. Locally, thegroupG can be endowed with the structure of a Riemannian
tangent bundle of a Riemannian manifold looks like thenanifold (G, << -, - >>).
product of the manifold and a Euclidean space. However, In what follows we will specialize the notions of a Levi-
this product representation may not be valid globally. IrcCivita connection, Riemannian curvature and the notion
contrast, Lie groups arparallelizable meaning that they of a distance function to Lie groups equipped with a left
have a globally defined, smoothly varying set of vectoinvariant metric. Once this is accomplished, specialization
fields that define a basis for the tangent space at any poiof. the result of [1] is reasonably straightforward.
This implies that the product representation applies globally. o )
The significance of this is that a single choice of coordinated: LeVvi-Civita Connection
for the tangent space at the identity may be left translated On any Riemannian manifold it is known that there exists
to provide coordinates for all tangent spaces. This meamsunique connection that is metric, and torsion free [4], [9],
that the state equation for the configuration variable may H&0], [16]. This connection is referred to as the Riemannian

1547

Il. THE RIEMANNIAN STRUCTURE ONLIE GROUPS



or Levi-Civita connection. Let{e;} be any basis for the C. The Local Distance Function

Lie algebrag and let{E;(g) = g - e;} be the associated Y e .
left invariant basis vector field o&r. The left invariant 1- Let HC.HQ = VI define the norm o1y mducet_:l tZy
the metric<< -, - >>. For two sufficiently close point§

form field dual to{E;} will be denoted by{s*} (that is andg there exists a uniqué, € G such thaexp C, = g—13.

WE.) = §i el = Cke, k ) . o
Ztr(lfz]tzjre fé)n-st";\’t‘/s [sz, f?]]eg e C;;ﬁ]egt;g\;\l(Zirteecgﬁafcr‘i tie Then the distance between two sufficiently close points
9 i — andg can be defined as,

—Ck).
Jt
For any vectorl at a pointg € G and a smooth vector d(G,9) = ||C|g- 9)
field Y, defined locally abouy € G, the Levi-Civita or ’
Riemannian connection ofi is defined as follows, For a fixedg define the function

VvY = (dY*(V) + wi,V'Y7)Ey (1)

Wherewfj are the Levi-Civita connection coefficient. Using

the strukcture co_nstants _the Levi-Civita connection coefn'-:org sufficiently close tag, the gradient of(§), denoted
cientsw;; are uniquely given by

by grad F', is uniquely given by the relationship

F(§) = 5(3,0)° = 3G G (10

1
k k ks r r
k= — (CF — I* (I, CT. + I.,C")). 2 . _
ww 2(01_7 ( L,CJ5+ J C’Lé)) ( ) << gTCldF, g_77>>:< dF, 9'77>=I€e'777 (11)
Observe that the connection coefficients are constant. Thus o .
the connection can be expressed as, for anyn € G. Thus explicitly grad F' = g - (..
g-Ven=

D. Simple Mechanical Control Systems on Lie Groups

1
k —1 * *
dn (OEWQ‘J ' (K’T’]Q*I (ad(C)I(”)+ad(n)1(<)))(3) A simple mechanical control system evolving on a Lie

whereV = g-¢, Y = g-n(g) andn(g) € G is a smooth groupG equipped with a left invariant metrie< -, - >>
function fromG +— G andg - V¢ = V.09 - 1. is defined as a system with kinetic enerdtg, ), given
From the torsion free property of the connection théYy,

Jacobi Lie-bracket of two vector field§ = g - ((g),Y = o1 .

g-n(g) on G can be expressed as, Elg.9) = 2 <<9, 9> (12)
(X,Y] = {dn*(¢)—dc*(n)} BEx+g-[¢nlg. (4 and a Lagrangiar.(g,g) = E — U(g) for some smooth

B. Curvature function U(g) on G, [7], [15]. Let I : G — G* be the

associated isomorphism where neyx g-(, g-n >>=
I¢ -n. Then the Euler-Lagrange equations of motion of the
system are given by,

Let w,v,w be tangent vectors t67 at ¢ and let the
vector fieldsX,Y, Z be their arbitrary smooth extensions
in a neighborhood of. Then the curvature tensor d@r is
defined by [9], [10], [16], g = g-¢ (13)

R(u, v)w = vayZ — VyVXZ — V[X’y]Z. (5)

. —1 c %

R(u,v)w at g depends only on the values af v, w and Vog = 91 (f (9) + Zulf (g)> ’
not on their smooth extensions. Thereforgyat G if u = — ¢-S(9), ' (14)
g-C,v=g-nw=g-Qforfixed(,n, N € g, thenX,Y, 7
can be chosen to be the corresponding left invariant vect@here f<(g), fi(g) € G* andu; € R. The conservative
fields. Thus ifg - R(¢,n) =g - R(g-C, g-n)g-Q from  force termf¢(y) satisfies the conditior: dU , g - Q >=
(5) we have — < fg) , Q > for any Q@ € G and the f'’s
g-R(C,n)Q = Ek-®{29f(g-é, g-n)Y —wf(g-[é,n]g)ﬁj}, denote the control directions and are assumed to be linearly

(6) independent. The; are the magnitude of the forces and are

wherew” = wk.o? are the connection 1-forms and the controls of the system. Note that (13) are the kinematic
1'7 ! 1 conditions and (14) are the Euler-Lagrange equations of the
oF = §R§ab o Nob = (—§w,’fj6’gb +whwp)e® Ao®  system. Combined they define a dynamical systerTh
. . ._Using (3) these equations can also be expressed by,
are the curvature 2-forms with the curvature coefficients
k .
R7,, computed to be, g = g-¢C, (15)
Rfq, = (—wp;Cap + 2w5,00)). ) : _ \ . i
’ ’ ! . = ' adZ IC+ [(g) + ) uif'(9) |, (16)
Hence the pull back of the curvaturegoby left translation ;

can be expressed by, h (15) - (16) def d ical svst
— " i _ where now - efines a dynamical systend:ong,
R(<7”)Q:€k{R§abQJ(C =" )_Wzl‘cjc’abC " ¥}1(8) the left trivialization of T'G.
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[1l. AN INTRINSIC OBSERVER FORVELOCITY s0(3)* ~ R? by the positive definite matri. This induces
ESTIMATION a left invariant metric onSO(3) by the relation,

In this section we apply the computations of the previous<< R- Q, R-¢) >>=<< Q, ¥ >>,,5= IQ- ¢, (23)
section to the result derived in Theorem 1 of [1], and obtain ,
our main result. Namely, we specialize the intrinsic observdP’ @1y two elements? - Q. R - ¢ € TrSO(3). The Lie
of [1] to simple mechanical systems on Lie groups equippeld@cket onso(3) is given by,
with a left invariant metric. Consider (13) — (14). Lgtbe [, Y]so3) = adah = Q x 1. (24)
the estimated value qf. If the two points are sufficiently o
close then the error betwegnand ¢ is defined by||¢.||g  @nd the dual of the.d operator is given by,
for ¢, € G satisfyingexp ((.) = ¢7'g. ads, T =11 x Q, (25)

For a fixedg define the functiorF'(g) as in (10). Then the ) ]
gradient of F' is given by (11). Thus specializing TheoremWhere Il € so(3)* ~ R?®. Using equations (2) and (7)
1 of [1] to a Lie group we have that the following observeftheé connection coefﬂmenlzsfj and the coefficients of the

converges locally for anw, 3 > 0. curvature tensoR;?ab can be calculated once the structure
] - constantsC,{g of the Lie algebra are specified.
g = g-(C—2a¢), (17) From (15) — (16) a simple control system 80 (3) takes
vg _§~] . C = g : F(Sa Ce) + _§~] . R(Ca CG)C - ﬁ g ' 48(18) the form,
where, R = R, (26)
— (qk _ k Qi ok . lis .
Using (3) and expanding (18) we thus have the explicit i
observer, The intrinsic observer (20) — (21) takes the form,
g =g ~2aC), 200 R = R ((-200), (28)
E =1 (adgfé — a(ad}, I + ad? Ig;)) ¢ = I (1{ % € — a(I€ x (o + IC. % 5))
+[Ce s Clg +T(S,¢) + R(C €)= BCe. (21) +aCe X C+T(S,C) + Re(, ¢e)C — B¢, (29)
This derivation of the intrinsic observer of [1] for Lie groupsWhere(. satisfiesezp(C.) = R” It and is given by,
does not require coordinates to be introduced on the Lie . 0 s =
group and is uniquely specified once the structure constants Ce = 2sin 1 (R"R—R"R), (30)

of the Lie group are specified. -
where,cos ) = (tr(RTR)—1)/2, for [¢| < m, andsiny =
IV. EXAMPLES /1 —cos?, [13]. The parallel transport terfi(R, () is

. : . calculated from (19) wher§(R) = f°(R) + >_." u; f*(R)

In this section we demonstrate the constructions Pr€; d the curvature termi,. (¢, C.)C is calculated from (8).

sented in here for the two cases where the configura- . . . .
. . : - 1) Simulation Resultstn this section we demonstrate the
tion space of the simple mechanical systems are the Li

groupsSO(3) and SE(3). In the process we also C0mputeeef‘fectlveness of the observer (28)-(29) by means of simu-

. . . . . lation. Consider the classical problem of a axisymmetric
the Riemannian connection, Riemannian curvature and the

: . : top in a gravitational field. LetP = {P;, P;, Ps} be an
topological metric of the Lie groupSO(3) and SE(3). inertial frame fixed at the fixed point of the top and let

A. The Rotation GrougO(3) e = {?1262’63} pg a quy fixed orthonormal frame with
the origin coinciding with that ofP. At ¢ = 0 the two
X = i p frames coincide. Then let the coordinates of a pg@irih
GL(3,R) that satisfy the conditiongt B = R* R = I  the inertial frameP be given byz and in the body frame
anddet(R) = 1. The Lie algebrao(3) of SO(3) is the set , pq given byX. They are related by(t) = R(t)X where
of traceless skew symmetric three by three matrices. Noy_ei(t) € SO(3). Let —P; be the direction of gravity and

that so(3) ~ R? where the isomorphism is defined by, |et | be the inertia matrix. The kinetic energy of the top
0 -3 2 is K = I( - ¢/2, where( is the body angular velocity
NeR O — [ 03 0o -0t ] € s0(3), (22) and the potential energy i§(R) = mglRes - P;. Here

The rotation groupSO(3) is the group of matrice® €

_02 o 0 m is the mass of the topy is the gravitational constant,
[ is the distance along the; axis to the center of mass.
whereQ2 = [Q' Q% Q3]T. From here on we will use both For simplicity we assume the top to be symmetric about

Q and() to mean the same element af(3). the e axis. The generalized potential forcg$(R) in the
Now let us investigate the Riemannian structure obody frame will be given by the relatior f°(R),( >=
SO(3). Define the isomorphismi : so(3) ~ R® — — < dU,R-( >= —mglRCes - P; for any ¢ € so(3),
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which yields f(R) = mglRT P; x e3. The metric induced In order to investigate the Riemannian structure define
on SO(3) by the kinetic energy is left invariant and thethe inner product ome(3), << -, - >>,.(3) between the
system is a simple mechanical system@(3). Thus the two elementg2,v), (¢, u) € se(3) as follows,

equations of motion oi$'O(3) x so(3) are given by,

< (Q,’U),(t/),u) >>ge(3)= 0,9+ Muv - u, (36)
Pf - R,.l < - (31) where [, is a positive definite matrix. Thusl =
¢ I7H(IC x C+mgl R Py xes).  (32)  diag(I,, MIsxs3). This inner product omse(3) defines a

Since in this example it is assumed that the top is symmetrtélct invariant me.tnc _onSE(3) in the usual way. The Lie
about thees axis, the inertia matrix is diagonal with = racket onse(3) is given by,

I, that is, I = diag(Il,Il,Ig). In this case ife is the ad(Q,q;)('(/]a ’LL) [(Q, 'U), (’(/), u)]se(S)

canonical basis, using (24), the nonzero structure constants (Qx, Qxu—1pxv). (37)
Cf on so(3) ~ R3 are calculated to be, ’

and the dual of thed operator is given by,

e
0]
where (I, 1) € se(3)* ~ R? x R3.
\ Using equations (2) and (7) the connection coefficients
A wy; and the coefficients of the curvature tenRﬁlb can be

‘ calculated once the structure constants of the Lie algebra
se(3) ~ RS are specified.

From (15) — (16) a simple control system 6 (3) takes
the form,

7 N
; 4 S |:
-4
| .

CH=1,C=—1,03 =1, x4 g x o
X Q ’

(38)

ad’(kQ ,v)

Bl _ [RbI[Q o
00} [01}{0 O] (39)
-EO 2 4 6 8 1‘0 1‘2 1‘4 1‘6 18 20 Q _ _1 IbQ >< Q C
- ([ e ]
Fig. 1. Angular velocity estimates versus true values in axisymmetric - i
top simulation. The solid curves correspond to the angular velocities of + Zuzf (R7 b)) : (40)
the‘ axisymmetri_q top while the dashed dotted curves correspond to the i
estimated velocities. The intrinsic observer (20) — (21) takes the form,
With a = 8 = 10 Implementing the observer (28) — (30)J R b { ? 11) } Q-2aQ. -2av. ] (41)
we estimate the angular velocities of the axi-symmetric top. 0 0 0 0
The simulation results are shown in Fig. 1. O — Ib—1 (IbQ % € — (I x Qu + I, % Q)>
B. The Special Euclidian Motion Grou§iE (3) +afe x Q+T(S, ¢)}
The special Euclidian motion grouE(3) is the semi- +R(C, ¢ )¢ — B (42)
direct productSO(3) x ; R>. As a matrix group, an element b = 0xQ—2abx Q +T(S,()?
A € SE(3) can be represented by, x > ’
) P y +Ro(E,C)E — B, (43)

R b
where R € SO(3) andb € R3. Then
_ RT —RTb
1_
A"l = { A ] . (34)

The Lie algebra ofSE(3) denoted byse(3) is the set of

matrices,
=5 v

where) € so(3) andv € R®. Thense(3) ~ R3 x R3 by
identifying ¢ € se(3) with (2, v) € R3 x R3.

Q w

0 o (35)

where (. = (Q., v.) satisfiesexp(¢,) = A~'A and is
explicitly given by,
v
2siny
Ve WYRTb — RTb), (45)
where,cos ) = (tr(RTR) — 1)/2, for || < = [13] and
(1 — cos®) (¥ —sin)
P2 P3
The parallel transport ternI’(S) is calculated from
(19) whereS(R,b) = f°(R,b) + > u; f(R,b) and the

curvature termR, (¢, ()¢ is calculated from (8). In [12]
1550
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this observer is successfully employed in a observer basgd] F. Mazenc and A. Astolfi, “Robust Output Feedback Stabilization of
control strategy for the stabilization of an electrostatically ~ the Angular Velocity of a Rigid Body,Systems and Control Letters

. (39), ppg 203-210, 2000.
actuated MOEMS device. [15] M. C. Munoz-Lecanda and F. J. Yaniz-Fernandez, “Dissipative

Control of Mechanical Systems,Siam Journal of Control and
V. CONCLUSION Optimization (40) No. 5, ppg 1505-1516, 2002.
. PR . 6] P. PetersenRiemannian Geometrgpringer-Verlag, NY 1998.
In th|S. paper we pre;ent an_ |ntr|n5|c C).bse.rver for SlmDIHY] H. Rehbinder and X. Hu, “Nonlinear State Estimation for Rigid Body
mechanical systems with left invariant kinetic energy on a ~ Motion with Low Pass SensorsSystems and Control Lettergi0),

Lie group. The result is a specialization of a general result No. 3, ppg 183-191, 2000.

: : : : 8] S. Salcudean, “A Globally Convergent Angular Velocity Observer for
on arbitrary Riemannian manifolds [1], however the greatly Rigid Body Motion,” [EEE Transactions on Automatic Conty¢B6)

simplified formulation, due to the the added structure, No. 12, ppg 1493-1497, December 1991.
makes the result of significant interest for its own sake. If19] G. V. Smimov, “Attitude Determination and Stabilization of a Spher-

- . - . ically Symmetric Rigid Body in a Magnetic Fieldfheternational
particular, the observer may be written explicitly without ;7= *° - Contro) (74) No. 4, ppg 341-347. 2001,

the need for coordinates on the Lie group, and thus theo] c. A. Woolsey and N. E. Leonard, “Moving Mass Control for
formulation is valid in any coordinate patch. A basis for the  Underwater Vehicles,Proc. of the American Control Conference,

. : Anchorage, Akppg 2824-2830, 2001.
Lie algebra must be chosen, though the added complex| 1] M. Zefran, V. Kumar and C. B. Croke, “On the Generation of

is minor. Once this is done, the observer is determined = smooth Three-Dimensional Rigid Body MotionsZEE Transactions
uniquely in terms of the structure constants of the Lie on Automatic Contrgl(14) No. 4, ppg 576-589, August 1998.
algebra. The observer is explicitly computed for two special

cases of practical significance: the rotation gréidp(3) and

the Euclidian motion groug E(3). Simulations show ex-

cellent performance. The observer has also been used as the

basis for closed-loop control design on an electrostatically-

actuated MOEMS device, also with excellent simulation

results [12].

ACKNOWLEDGEMENTS
This work was supported by NSF grant ECS-0218245.

REFERENCES

[1] N. Aghannan and P. Rouchon, “An Intrinsic Observer for a Class of
Lagrangian Systems|EEE Transactions on Automatic Contr¢438)
No. 6, ppg 936-945, June 2003.

[2] M. R. Akella, “Rigid Body Attitude Tracking without Angular
Velocity Feedback,Systems and Control Letter@?2), ppg 321-326,
2001.

[3] M. R. Akella, J. T. Halbert and G. R. Kotamraju, “Rigid Body Atti-
tude Control with Inclinometer and Low-cost Gyro Measurements,”
Systems and Control Letterg!9), ppg 151-159, 2003.

[4] V. I. Arnold, Mathematical Methods of Classical Mechanics, Second
Ed. Springer-Verlag, NY 1989.

[5] A. M. Bloch and J. E. Marsden, “Stabilization of Rigid Body
Dynamics by the Energy-Casimir MethodSystems and Control
Letters (14) , ppg 341-346, 1991.

[6] A. M. Bloch and N. E. Leonard, “Symmetries Conservation Laws,
and Control, "Geometry, Mechanics and Dynamiqspg 431-460,
Springer-Verlag, NY 2002.

[7] F. Bullo and R. M. Murray, “Tracking for Fully Actuated Mechanical
Systems: A Geometric Framework&utomatica (35), pp 17-34,
1999.

[8] F. Bullo, N. E. Leonard and A. D. Lewis, “Controllability and Motion
Algorithms for Underactuated Lagrangian Systems on Lie Groups,”
IEEE Transactions on Automatic Conty¢#5) No. 8, ppg 1437-1454,
June 2003.

[9] T. Frankel, The Geometry of Physics: An IntroductioGambridge
University Press, 1997.

[10] J. Jost,Riemannian Geometry and Geometric AnalySgringer-
Verlag, Berlin 2002.

[11] A. J. Krener, “Feedback LinearizationMlathematical Control The-
ory, ppg 66-95, Springer-Verlag, NY 1999.

[12] D. H. S. Maithripala, R. O. Gale, M. W. Holtz, Jordan M. Berg
and W. P. Dayawansa, “Nano-precision control of micromirrors using
output feedback,Proc. of the CDC Maui, HW, December 2003, pp.
26522657, 2003.

[13] J. E. Marsden and T. S. Ratiuntroduction to Mechanics and
Symmetry, Second E8pringer-Verlag, NY 1999.

1551



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeP07.4
	Page0: 1546
	Page1: 1547
	Page2: 1548
	Page3: 1549
	Page4: 1550
	Page5: 1551


