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Abstract— The problem of direct adaptive visual servoing of
robot manipulators is considered. A solution is developed for
image-based look-and-move visual systems to allow tracking of
a desired trajectory, when both camera calibration and robot
dynamics are uncertain. In order to solve the multivariable
parameter adaptive problem, the recently proposed Immersion
and Invariance (I&I) method is used. The scheme is then
combined with a robust motion controller for the manipulator,
which takes into account its uncertain nonlinear dynamics and
leads to an overall stable adaptive visual servoing system. The
effectiveness of the proposed strategy is illustrated through
simulations and experimental results.

Index Terms— Nonlinear control, adaptive control, visual
servoing, uncertain robotic systems

I. INTRODUCTION

Robotic visual servoing techniques have been studied for
many years and has still received considerable attention in
the recent robotics literature as potential tools for relevant
industrial and also medical sensor-based robotic applica-
tions [10]. As part of this trend, the problem of tracking
a desired trajectory based on the image features has been
explored in several works as a control-theoretic issue [5],
[15], [12], [14], [16], [18]. The uncertainties of model pa-
rameters have been of concern since the early developments.
Several adaptive schemes have been proposed to circumvent
the performance degradation due to modeling uncertainty,
particularly with respect to the camera calibration and robot
parameters. Among the early works in this field we cite
[3], [7], [19], [20], [22]. However, most of the above cited
works have not considered the non-linear robot dynamics
in the controller design. These controllers may result in
unsatisfactory performance when high-speed tasks or direct-
drive actuator are required. Exceptions can be found in
recent papers like [9], [11], [13], [14], [21], [23].

In this paper we propose a solution for the direct adaptive
visual tracking of planar manipulators using a fixed camera,
when both camera calibration and robot dynamics are
uncertain. The proposed strategy is developed for image-
based look-and-move visual servoing systems. In order to
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solve the multivariable parameter adaptive problem related
to the camera calibration uncertainty, the recently proposed
Immersion and Invariance (I&I) method [22] is used. One
of the advantages of the I&I is to avoid controller over-
parametrization in the visual servo loop [20]. The scheme is
then combined with a robust controller for the manipulator
based on sliding mode control [4], which takes into account
its nonlinear dynamics and lead to an overall globally stable
adaptive system. Simulation and experimental results are
also presented to illustrate the effectiveness of the proposed
scheme.

II. PROBLEM FORMULATION

Consider the problem of tracking a desired trajectory
with a planar manipulator using a fixed and uncalibrated
camera with image plane parallel to the task plane. The
camera image coordinate frame can be related to the robot
coordinate frame by the following transformation:

yc = Kpy + yc0 , (1)

where yc ∈ <2 is the end-effector position in the image co-
ordinate frame, Kp is the camera/workspace transformation
(uncertain) matrix, y ∈ <2 is the end-effector position in
the robot coordinate frame, and yc0 ∈ <2 is a bias constant
vector.

In the camera frame the cartesian control problem is
described by:

ẏc = Kpv , (2)

where v = ẏ.

A. I&I Adaptive Visual Servoing

Defining the desired trajectory y∗

c in the image frame, the
tracking problem is formulated as designing v so that the
tracking error ec = yc− y∗

c tends asymptotically to zero. In
order to apply the I&I Adaptive Method [22], we need to
express the system (2) in a filtered version:

ẏcf = Kpvf + εt , (3)

where
ẏcf = −λfycf + yc , (4)

v̇f = −λfvf + v , (5)

and εt is a vanishing term. Thus, according to [22], the
control parameterization is given by:

v∗

f = −K−1

p (λfecf − ẏ∗

cf ) = Ψfθ
∗ , (ideal) (6)

vf = Ψf (θ̂ + β1(ecf )) , (estimated) (7)



where
Ψ̇f := −λfΨf + Ψ , (8)

Ψ :=

[

(λfec − ẏ∗

c )
T 0 0

0 0 (λfec − ẏ∗

c )
T

]

, (9)

Ψf :=

[

(λfecf − ẏ∗

cf )
T 0 0

0 0 (λfecf − ẏ∗

cf )
T

]

, (10)

ẏ∗

cf = −λfy
∗

cf + y∗

c , (11)

ėcf = −λfecf + ec , (12)

˙̂
θ = − [2λfΨf − Ψ]

T
Γ−1ecf . (13)

β1 = −ΨT
f Γ−1ecf , (14)

and Γ is a non-singular matrix (known) that satisfies the
well-known inequality condition [8]

KpΓ
T + ΓKT

p > 0 . (15)

Then, defining the variable z as

z := θ̂ − θ∗ + β1 , (16)

the following error equations will be obtained

ėcf = −λfecf + KpΨfz , (17)

ż = −ΨT
f Γ−1KpΨfz . (18)

Now consider the quadratic Lyapunov function candidate

2V (ecf , z) = ‖ecf‖
2 + α‖z‖2 , α > 0 . (19)

Its derivative along (17) and (18) yields

V̇ = −λf‖ecf‖
2 + eTcfKpzψ − αzTψMzψ , (20)

where

M :=
1

2

(

Γ−1Kp + KT
p Γ−T

)

= MT , (21)

zψ = Ψfz . (22)

For sufficiently large α there exists δ > 0 such that

V̇ ≤ −δ(‖ecf‖
2 + ‖zψ‖

2) . (23)

Thus we can state that limt→∞ ecf (t), zψ(t) → 0. Also,
from (17) we have ėcf (t) → 0 and finally from (12),
ec(t) → 0.

Then, restoring v from (5) we obtain the cartesian control
law

v = Ψ
(

θ̂ − ΨT
f Γ−1ecf

)

− ΨfΨ
T
f Γ−1ec . (24)

This is the adaptive control law to be applied in conjunc-
tion with (13).

Remark 1: In [20], a solution was proposed based on
nonlinear parameterization so that only one parameter
needed to be adapted, at the expense, however, of some
tracking offset. For generic Kp, the present I&I approach
does not lead to overparameterization, i.e., only 4 elements
of Kp (6) need to be identified. This contrasts with [15] in
which 5 parameters had to be identified.

III. NONLINEAR ROBOT DYNAMICS

Now consider the problem of controlling a manipulator
with uncertain dynamic. The nonlinear dynamic model of
the manipulator can be expressed in cartesian coordinates
y by [1]

H(q)ÿ + D(q, q̇)ẏ + W (q) = F , (25)

where H, D, W are defined in terms of the joint coor-
dinates q, q̇, namely: H(q) = J−TMJ−1, D(q, q̇) =
J−T (C−MJ−1J̇)J−1, W (q) = J−TG and F = J−T τ . It
is worth mentioning that in joint-space, M(q) is the inertia
matrix, C(q, q̇)q̇ represents the centripetal and Coriolis
torques, G(q) represents the gravity torques, and τ is the
vector of applied torques.

The properties of H and D are similar to the correspond-
ing joint-space matrices. However, one should note that
the validity of the cartesian model is restricted to motions
which do not lead to a singular Jacobian matrix. We will
henceforth assume that this condition holds.

The main idea of controlling robots with non-negligible
and uncertain dynamic is based on a cascade control struc-
ture. Consider the cartesian control of a planar manipulator,
where y ∈ <2 is the cartesian end-effector coordinate
vector. Assume that joint torques are such that the end-
effector dynamics mimics the following simple dynamics
as a reference model:

ẏm = −λym + vr , (26)

where λ > 0 and vr ∈ <2 is a 2D reference signal, yet to
be defined in the spirit of cascade control as in [6]. Then,
if the model is followed by means of a proper design of the
control law, the end-effector will behave as a linear system
in response to the input vr, i.e.,

ẏ = −λy + vr , (27)

Hence, the kinematic control case considered before can
be easily applied here by just letting vr = v+λy, where v is
defined in the previous section. Thus, the problem reduces
to that of achieving the tracking of the model (27), and
Robust Sliding Mode Control can be used to solve this
problem.

IV. ROBUST ROBOT CONTROL

It is well known from [2] that a robust control law for the
forces or torques τ exists such that y will asymptotically
follow ym provided that vr and v̇r are bounded (thus
yielding ym, ẏm, ÿm bounded quantities). In what follows,
we describe one such a robust motion controller working in
cartesian coordinates. This controller is then integrated to
the adaptive visual servoing algorithm developed in Section
II-A. Here, it is worth mentioning that an adaptive motion
controller [24] can be also used instead of the robust one.

Following [14], we define the virtual error s ∈ <2 as

s = ė+λe = ẏ−ẏr ; e = y−ym ; ẏr := ẏm−λe . (28)



Now, define the nonnegative function

2Vr = sTHs , (29)

which has derivative V̇r(s) = sT (Hÿ − Hÿr) + 1

2
sT Ḣs.

Substituting Hÿ by its expression obtained from the robot
equation (25), one gets

V̇r(s) = sT (F − Hÿr − Dẏr − W ) , (30)

where the property of skew-symmetry of Ḣ − 2D has been
used. In order to make V̇r negative definite in s, we can
take the following robust control law:

F = F̂ − ρ
s

‖s‖
− KDs , (31)

where F̂ is some nominal control law given by F̂ = Ĥÿr+
D̂ẏr + Ŵ , KD = diag{kd1, kd2} is a positive definite gain
matrix and ρ(t) is given as an instantaneous upper bound
for the model uncertainty, such that for any constant kr > 0
and ∀t ≥ 0

ρ ≥ ‖(Ĥ − H)ÿr + (D̂ − D)ẏr + (Ŵ − W )‖ + kr . (32)

With ρ satisfying (32), V̇r can be upper bounded by:

V̇r ≤ −kr‖s‖ − sTKDs . (33)

Thus, the inequality V̇r ≤ −kr‖s‖ also holds and since
Vr = (1/2)‖s‖2

H , it follows that Vr, and thus s, tend to zero
in finite time [4, p.64]. With the expression s = ė + λe =
ẏ−ẏm+λ(y−ym), vr = ẏm+λym, the following expression
can be derived

ẏ = −λy + vr + s . (34)

Assuming that the manifold s = 0 has already been
reached (occurs in finite time as stated above) one has y
perfectly following ym, i.e., ẏ = −λy + vr. Now, consider
Kp from the camera/workspace transformation (1). Thus, in
camera coordinates, after y(t) ≡ ym(t) is achieved one has
ẏc = −λyc+Kpvr, which is similar to the cartesian control
case. Thus, it is sufficient to cascade the I&I adaptive visual
servoing controller with the robust robot motion controller
by simply setting

vr = v + λy , (35)

where v is defined in (24).
However, in order to cascade the I&I adaptive controller

of Section II-A with the robust one we must guarantee
that the system signals remain bounded before s reaches
the manifold s = 0. Since s appears in (34) as an input
disturbance to the standard form, a new set of (disturbed)
equations has to be analysed.

A. Controller Design

From (5) and

ẏf = −λfyf + y , (36)

ṡf = −λfsf + s , (37)

we can produce a filtered version of (34), say:

ẏf = −λyf + vrf + sf + εt , (38)

where εt is a vanishing term. Then, premultiplying (38) by
Kp and assuming for simplicity that εt ≡ 0, we obtain

ẏcf = −λycf + Kpvrf + Kpsf . (39)

Noting from (6) and (35) that

vrf = Ψf

[

θ̂ + β1

]

+ λK−1

p ycf , (40)

in order to obtain a control parameterization one has to
modify slightly Ψf , β1, ˙̂

θ, z from (9), (14), (13), (16),
respectively, as follows:

Ψ̄f =

[

(λfecf − ẏ∗cf − λycf )T 0 0
0 0 (λfecf − ẏ∗cf − λycf )T

]

(41)

β̄1 = −Ψ̄T
f Γ−1ecf , (42)

˙̂
θ = −

[

2λf Ψ̄f − Ψ̄
]T

Γ−1ecf , (43)

z := θ̂ − θ∗ + β̄1 , (44)

yielding the following new parameterization:

vrf = Ψ̄f

[

θ̂ + β̄1

]

, (45)

To recover the actual control vr as done in [22], we
simply resort to (24) replacing Ψf with Ψ̄f , i.e.,

vr = Ψ̄
(

θ̂ − Ψ̄T
f Γ−1ecf

)

− Ψ̄f Ψ̄
T
f Γ−1ec . (46)

Now that (45) has been stated, we can develop (39):

ẏcf = −λycf + KpΨ̄f

[

θ̂ + β̄1

]

+ Kpsf =

= −λycf + KpΨ̄f [z + θ∗] + Kpsf , (47)

where (6), (42) and (43) were used to obtain

ėcf = −λfecf + KpΨ̄fz + Kpsf , (48)

ż = −Ψ̄T
f Γ−1KpΨ̄fz − Ψ̄T

f Γ−1Kpsf . (49)

In the particular case sf = 0 the error equations (48), (49)
remain essentially1 the same as (17), (18), respectively.

1Except for Ψ̄f instead of Ψf .



B. Stability Analysis

In order to verify the stability of the overall control sys-
tem, we define the following quadratic full-state Lyapunov
function candidate

2V (ξ) =
(

‖ecf‖
2 + α‖z‖2 + δ‖sf‖

2
)

+ γVr(s) , (50)

where α, δ, γ > 0, ξ = [eTcf , z
T , sTf , sT ]T and Vr is the

function defined in (29). Taking the derivative of V along
the trajectories of (37), (48) and (49), follows that

V̇ (ξ) = −λf‖ecf‖
2 + eTcfKpzψ + eTcfKpsf − αzTψMzψ

−αzTψMsf − λfδ‖sf‖
2 + δsTf s + γV̇r(s) . (51)

with M defined in (21) and zψ = Ψ̄fz.
Since V̇r(s) is upper bounded by (33)

V̇r(s) ≤ −kr‖s‖ − sTKDs ≤ −sTKDs , (52)

we can rewrite (51) in the following compact form:

V̇ (ξ) ≤ −ηT (ξ)Bη(ξ) , (53)

where

η(ξ) = Θξ , Θ = diag{I, Ψ̄f , I, I} , (54)

and

B =













λfI − 1

2
Kp − 1

2
Kp 0

− 1

2
KT
p αM α

2
M 0

− 1

2
KT
p

α
2
M λfδI − δ

2
I

0 0 − δ
2
I γKD













. (55)

We now assume a generic block partition of B, say

B =

[

B11 B12

B21 B22

]

. (56)

Then, the positive definiteness of B will be ensured if we
can satisfy the Schur’s Complement conditions:

B11 > 0 , (57)

B22 > B21B
−1

11
B12 . (58)

So, if we first consider the choice:

B11 = A =

[

λfI − 1

2
Kp

− 1

2
KT
p αM

]

, (59)

it can be shown (Schur’s Complement to B11) that (57) can
be satisfied for all αλf > λmax{KpM

−1KT
p }.

Instead, consider another choice of B11, say

B11 =





λfI − 1

2
Kp − 1

2
Kp

− 1

2
KT
p αM α

2
M

− 1

2
KT
p

α
2
M λfδI



 . (60)

In this case, assuming that α has been fixed to a suf-
ficiently large constant, and applying again the Schur’s
Complement to B11, we can show that it is always possible
to choose δ ensuring (57), that is,

δ > λmax

{

[

− 1

2
KT
p

α
2
M

]

A−1

[

− 1

2
KT
p

α
2
M

]}

. (61)

Here, assuming that δ has been properly fixed we can
finally test (58) based on the last partition of B. Now,
since KD is diagonal with positive entries, γ can be chosen
sufficiently large to satisfy:

γ > λmax







[

0 0 − δ
2
I

]

B−1

11





0
0

− δ
2
I











. (62)

Thus, for appropriate choices of α, δ, γ in (50), the
positive definiteness of B can be guaranteed. Although the
negative definiteness of −ηT (ξ)Bη(ξ) with respect to η is
assured from the previous conclusion, only negative semi-
definiteness can be stated for (53) with respect to ξ. This
can be seen in (53), after restoring ξ from (54):

V̇ (ξ) ≤ −ξT
(

ΘTBΘ
)

ξ ≤ 0 . (63)

Nevertheless, based on the Lyapunov function properties
of (50) and (53), we conclude that ξ(t), η(t) ∈ L∞.
By differentiating (53), one can verify from (37), (41),
(42), (43), (48), (49) and based on Barbalat’s Lemma that
limt→∞ η(t) → 0. From (48) and the conclusions above,
we can state that limt→∞ ėc(t) → 0, which also implies
that limt→∞ ec(t) → 0 in (12). In addition, from (50) and
(63) we have that z(t) ∈ L∞ which, consequently, leads
to θ̂ ∈ L∞ in (16). Thus, we can finally conclude that all
signals of the (cascade) closed loop system are uniformly
bounded.

At this point, we are able to state the following result:
Theorem 1: Consider the nonlinear second order robot

dynamical equation (25), the robot reference model (26)
and the robust sliding mode controller (31)-(32), with vr
generated by (46) and the adaptive law (43). Under the
assumptions of uniform boundedness of ẏ∗

c , y∗

c and that
the Jacobian matrix J remains away from singularities, the
following properties hold: (1) all signals of the closed loop
system are uniformly bounded; (2) there exists some finite
time ts such that s(t) = 0, ∀t ≥ ts; (3) limt→∞ ec(t) → 0.

Corollary 1: Also, if y∗

c in Theorem 1 is such that Ψ̄f

is persistently exciting, then the full error system with state
[eTcf , z

T , sTf , sT ]T is exponentially stable in any closed finite
ball (see [14] for a proof).

Remark 2: As can be seen from the above design and
analysis, the I&I method provides the use of single Lya-
punov function to assert the stability of the overall cascaded
system, which contrasts with some multivariable MRAC
schemes (e.g. [14]). Control overparameterization is also
avoided by the use of the I&I design method [22].

V. SIMULATION RESULTS

Here we consider the nonlinear second order robot dy-
namic model (25). Uncertainty of the robot dynamical
parameters is compensated by the robust control approach
developed in Section IV. If we consider that the planar two-
link manipulator

y1 = L1cos(q1) + L2cos(q1 + q2) + O1 , (64)



y2 = L1sin(q1) + L2sin(q1 + q2) + O2 , (65)

(where L1, L2 stands for link lengths, and O1, O2 for the
base coordinates in the workspace frame) is moving on a
horizontal plane (no gravity), then we have: M11 = a1 +
2a3cos(q2)+2a4sin(q2); M12 = M21 = a2 + a3cos(q2)+
a4sin(q2); M22 = a2; h2 = a3sin(q2)−a4cos(q2); C11 =
−h2q̇2; C12 = −h2(q̇1 + q̇2); C21 = h2q̇1; C22 = 0, with
a1 = I1 + m1L

2

c1 + Ie + MeL
2

ce + MeL
2

1
; a2 = Ie +

MeL
2

ce; a3 = MeL1Lcecos(δe); a4 = MeL1Lcesin(δe).
The physical meanings of the robot parameters can be found
in [2]. The parameter values were chosen to be the ones
in [14], [11], say: m1 = 9.5 kg; L1 = 0.25 m; Me =
5.0 kg; δe = 0; I1 = 4.3 × 10−3 kg m2; Ie = 6.1 ×
10−3 kg m2; Lc1 = 0.2 m; Lce = 0.14 m; L2 = 0.16 m;
O1 = −0.20 m; O2 = −0.20 m. The desired trajectory y∗

c

was designed to be the output of the model

ẏ∗

c = −y∗

c + r , (66)

in response to the external reference signals

r1 = a sin(wrt) + c + d sin(1.5wrt) , (67)

r2 = b sin(wrt + σ) + c + d sin(1.5wrt + σ) . (68)

The robust control law (31) was implemented considering
F̂ = 0. Also, in order to avoid numerical problems and
chattering phenomena, a smooth version based on boundary
layers was used, i.e.:

F = −ρ
s

‖s‖ + ε
− KDs , ε > 0 . (69)

Note that this is not the only choice to smooth the control
signal, for example, we could have considered tanh(s/ε)
[11]. In any case these modifications could be embedded
into the stability analysis resulting in convergency (Theorem
1) and exponential stability (Corollary 1) with respect to a
small residual set of order ε (see [14] and [11]).

From the bounds of ‖H‖, ‖D‖, ‖J‖ and ‖J̇‖ [14], we
can define ρ as

ρ =
M̄

|det(J)|2
[

‖ÿr‖ + (1 + |det(J)|−1)
]

‖q̇‖‖ẏr‖ + k ,

(70)
where M̄ is a sufficiently large constant and k is an arbitrary
positive constant (eventually zero). The parameters used in
the simulations were

Kp =

[

cos(φ) sin(φ)
−hsin(φ) hcos(φ)

]

, (71)

φ = 0.5 rad; h = 0.5 (discrepancy); ε = 10−2; M̄ = 20;
k = 0; Γ = diag{8 × 10−3, 10−2}; wr = 0.5 rad/s; σ =
1.6 rad; a = b = d = 0.02; c = 0; λ = 1; λf = 10;
KD = diag{2, 2}; θ(0) = [−1.5, 0.001, −0.008, −2.5].

Simulation results are presented in Figures 1 and 2. We
can note from Fig. 1 that due to the small boundary layer
ε, torque signals are continuous and free of chattering.
For the sake of clarity, torque signals are shown until
t = 100 s. However, as can be seen also from Fig. 1, a very

small residual error takes place. Indeed, the usage of larger
boundary layers leads to larger residual errors [2], [4]. The
image space trajectories and the adaptive parameters are
presented in Fig. 2.
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VI. EXPERIMENTAL RESULTS

In this section, we describe the experimental results
obtained by implementing the I&I adaptive visual servo
controller proposed in Section II-A on a six d.o.f. kinematic
Zebra Zero robot manipulator (IMI Inc.). A CCD camera
with a lens of focal length f = 6mm was mounted in
front of the robot and 1 m far from it. The extracted visual
feature is the image coordinate of a white disc centroid
located at the robot wrist. The images of 640 × 480 (in
pixels) are acquired using a frame-grabber at 30 frames per
second (FPS) with 256 grey levels. The image processing
is performed on a 50 × 50 sub-window.

The visual servo controller was coded in C language and
executed on a Pentium 200 running Linux at 35 msec. The
joint velocity command generated by the adaptive control
law feeds the Zebra Zero ISA board which closes the
velocity loop using an HCTL1100 microcontroller (HP Inc.)
working in proportional velocity mode at 0.52 msec. All
tests were designed to avoid Jacobian singularities. The
parameters used in the experimental tests were: λ = 1;
λf = 20; Γ−1 = diag{0.0005, 0.0005}.

In Fig. 3 (top), tracking errors are 5 pixels of order and
arise possibly due to the existence of transmission backlash
in the manipulator joints. This can be also observed from
Fig. 5, in which image trajectories are presented. The
parameters behavior are shown in Fig. 4. The cartesian



control signals generated by the adaptive laws are also
illustrated at the bottom of Fig. 3.
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Fig. 3. Experimental results. Tracking errors ec1 (-·-), ec2 (–).
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Fig. 4. Experimental results. Parameters: θ1 (-·-),θ2 (–),θ3 (- -),θ4 (· · ·).
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Fig. 5. Experimental results. Camera plane trajectories: xc (–), xcd (-·-).

VII. CONCLUSION

The problem of controlling robots with nonneglegible
dynamics via adaptive visual servoing was presented. The
proposed scheme was developed taking into account the
uncertainties of both camera and robot parameters. The
kinematic control for the adaptive multivariable visual ser-
voing case was based on the recently proposed Immersion
and Invariance method. The combination of the kinematic
controller with the robust one was achieved by a cascade
structure, resulting on an overall stable adaptive visual

system. Simulation and experimental results were also pre-
sented to illustrate the performance of the proposed strategy.
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