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Abstract— Traditional linear control theory has only limited
utility in the description of near-term new approaches for
laser beam control for propagation through turbulence. In
this paper, a sample of the foundation work providing an
alternate framework for analysis of the stability of a laser beam
control system is described. An important class of laser beam
control systems are well described by a pair of systems coupled
by generalized projections onto constraint sets – where the
constraint sets can be convex or non-convex, and the resultant
generalized projection operators linear or nonlinear. The theory
of sequential projections onto constraint sets is modified to
construct a theory of simultaneous projections onto constraint
sets, which is suitable for analysis of the interactions of systems
with components whose behavior is described by generalized
projection operators. The basic elements of the theory of simul-
taneous projections onto constraint sets is reviewed. Numerical
examples related to control of laser beams for propagation
through turbulence are given.

I. INTRODUCTION

Generalized projection algorithms provide a means to
address complicated optimization problems in which the
objective is to determine a solution vector in the intersection
of two or more convex or non convex constraint sets[1],
[2], [3], [4], [5], [6]. If an intersection does not exist, the
objective is generally to minimize the sum of the distances
from the solution vector to the constraint sets used in the
algorithm. It is important to recognize that much of the
utility of the theory of generalized projection algorithms
is in the generality of the methods: the constraint sets of
interest can be convex or non convex, and the projections
onto the constraints may be nonlinear. A wide range of
incarnations of the method of projections onto convex sets
have been used to address a number of applications, including
image processing, tomography, control system optimization,
and signal recovery. In a fundamental paper, Levi and Stark
extended the method of sequential projections to the case
of sequential projection between a pair of closed, convex or
non convex, constraint sets[5]. Levi and Stark established
that sequential projection between a pair of constraint sets
monotonically reduces the summed distance, in the given
norm on the Hilbert space, from the solution vector to the
two constraint sets. An important limitation of the method
of sequential projections was mitigated by Kotzer[6]. Kotzer
established that, as with convex constraint sets, a product
space formulation, combined with the Levi-Stark theorem,
can be used to define a parallel generalized projection al-
gorithm that has a guaranteed convergence property with an
arbitrary number of convex or non convex constraint sets[6].

The recent work by Levi, Stark, and Kotzer is an extension
of the seminal work in projections onto convex sets by Gubin
and Youla[3], [4]. Although Levi and Stark formalized the
methods of sequential projections onto constraint sets, non
convex projections had been used in the phase retrieval from
amplitude measurement problem[7], [8], [9].

More recently, the methods of sequential and paral-
lel generalized projections have found application in two-
dimensional control and shaping of laser beams for imaging
and laser beam propagation applications[10], [11], [12], [13],
[14], [15], [16]. Much of this work is focused on developing
solutions to the long-standing problem of compensation of
both the amplitude and phase fluctuations on a laser beam
propagated through a turbulent medium. The initial work in
this area proceeded in large part as for image processing
and phase retrieval algorithms. Control solutions were solved
for in an open loop manner: given a set of measurements,
the control commands to satisfy a set of constraints were
developed, and then applied to actuator devices, without
feedback measuring the consequences of the commands. A
step forward was made in this area with the development of a
closed loop stable means for compensation of both amplitude
and phase fluctuations[17].

The intuition governing the control algorithm was moti-
vated by sequential projection methods, but the application
required several interesting twists, introducing a feedback
control problem illustrated in figure 1. We consider a general
problem involving a pair of multiple-input-multiple-output
systems, denoted Gx,Hx and Gy,Hy (where the operators
Gx and Gy are to be associated with a sensing operation
and Hx and Hy are associated with the operation of some
type of actuator) and associated controllers, Kx and Ky . The
controller and plant outputs and states of (Gx,Kx,Hx), are
taken to be members of a, possibly non convex, constraint set,
C1. The controller and plant states of (Gy,Ky,Hy), are taken
to be members of a second, possibly non convex, constraint
set, C2. The controller-plant groups are inter-connected by
means of projections onto the respective constraint sets. The
output of Hx is a member of C1. The projection of the output
of Hx onto the constraint set C2 is a disturbance to the
(Gy,Ky,Hy) system. Correspondingly, the output of Hy is
a member of C2 and the projection of the output of Hy onto
C1 is a disturbance to the (Gx,Kx,Hx) system. The general
system described in figure 1 may include non-linearities in
the controllers or plants, or in the projection operations.

Obviously, analysis of the general case for such a system
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Fig. 1. General framework for feedback systems governed by projections
onto constraint sets. Each multiple-input-multiple-output system has a
sensor, Gx and Gy , controller, Kx and Ky , and actuator, Hx and Hy .
The output of the system (Gx, Kx, Hx) is a member of the set C1 while
the output of the system (Gy , Ky , Hy) is a member of the set C2. The
feedback systems are inter-connected by means of generalized projections
P1 and P2. The constraint sets C1 and C2 are taken to be convex or non
convex constraint sets, and hence the projection operators may be nonlinear.
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Fig. 2. Simplified problem framework considered in this paper. Each
multiple-input-multiple-output sensor / controller / plant system is assumed
to be simply a proportional integral controller with gain λ. The systems are
inter-connected by generalized projection operators.

would be very difficult. However, in this paper, we consider
a simplified version of the system illustrated in figure 1 that
is suitable for analysis if the constraint sets describing the
space of controller-plant states are convex or fall in a narrow
class of non convex constraint sets. The difficulty in analysis
arises in accommodating the, typically non-linear, projections
onto the constraint sets. The proofs involving vector space
projection methods typically rely on alternating projections to
ensure convergence. In the case of a feedback system of this
form a new difficulty is encountered because we are forced
to consider simultaneous projections onto the constraint sets.
Simultaneous projections onto non convex sets allow for
pathological cases that can de-stabilize the system.

The simplified problem considered here is illustrated in
figure 2. Each sensor and controller and plant are simply
a linear proportional integral (PI) controller. In the situation
where the sets of interest are convex, the equations governing
the system in figure 2 are,

xk+1 = xk + λex,k, (1)

yk+1 = yk + λey,k, (2)

ex,k = P1yk − xk, (3)

ey,k = P2xk − yk. (4)

where λ is the gain of the PI controller and is assumed to be
in the range [0, 1]. The variables xk and yk are the controller
states while ex,k and ey,k are the error signals. The operators
P1 and P2 are projection operators onto the sets C1 and C2,
respectively. Substitution of equations 3 and 4 into equations

1 and 2 yields,

xk+1 = (1 − λ) xk + λP1yk, (5)

yk+1 = (1 − λ) yk + λP2xk, (6)

Noting that λ ∈ [0, 1], it is apparent that the controller
states xk and yk are contained in the convex sets C1 and
C2, respectively. While the iteration described by equations
5 and 6 is similar to conventional sequential projection
methods, the coupled nature of the simultaneous projections
complicates convergence analysis.

Despite the fact that the simplified problem described by
figure 2 is highly restrictive, it represents a first step towards
consideration of more general problems. The objective is
to show that, for this simple example, the operation of
the two independent systems illustrated in figure 2 reduces
the norm of the difference between the outputs of the two
systems, ‖xk − yk‖. The objective in a more conventional
application of a vector space projection algorithm is to seek
a solution vector that achieves a minimum distance from two
constraint sets, and if an intersection of the two constraint
sets exist, achieves a solution in that intersection. The control
system can be viewed as an alternate means of seeking an
intersection between a pair of constraint sets, i.e. if xk ∈ C1

and yk ∈ C2, then minimizing the distance between xk and
yk determines solution vectors that minimize the distance
between the two constraint sets. However, rather than being
simply a variant of a vector space projection algorithm, the
subject of interest is a control system implemented with
feedback, possibly improving robustness to uncertainty. This
class of systems, involving feedback systems interconnected
by projection operations, shall be denoted the method of
simultaneous projections onto constraint sets.

The remainder of the paper proceeds as follows. Section
II reviews the fundamentals of the method of simultaneous
projections onto constraint sets. Section III provides numeri-
cal examples from laser beam control of stable and unstable
feedback systems whose behavior is governed by projections
onto non convex sets. Section IV summarizes the results
obtained and makes suggestions for other areas in which the
method of simultaneous projections onto constraint sets may
find application.

II. SIMULTANEOUS PROJECTIONS ONTO
CONSTRAINT SETS

The important elements of the theory of simultaneous
projections onto constraint sets is reviewed in this section.
Section II-A reviews the method of sequential projections
onto constraint sets. Section II-B describes the method of
simultaneous projections onto constraint sets for convex
constraint sets while section II-C develops related results for
a narrow class of non convex constraint sets. The important
results are given without proof. A manuscript detailing
the proofs of the theorems in sections II-B and II-C is
available[18].



A. Definitions and review of the method of sequential
projections onto constraint sets

The method of sequential generalized projections onto
constraint sets is the foundation of vector space projection
algorithms that seek the intersection, or minimum distance
to two or more sets. The basic method and convergence
property of the method of sequential generalized projections
is reviewed in this section. The most complete and instructive
treatment of this subject known to the author is by Stark and
Yang[1]. The material in this section is a summary of Stark
and Yang’s treatment.

Take C to be a closed set in a Hilbert space H. Given
a point, x ∈ H, the generalized projection, if it exists
(existence of a projection onto a non convex set can only
generally be shown in a finite dimensional Hilbert space), is
defined to be that point in C which achieves the minimum
distance from x to C,

Px = arg min
Px∈C

‖Px − x‖ . (7)

Stark distinguishes between a projector and a generalized
projector because of the complexities associated with non
convex constraint sets. If the set C is convex, the generalized
projector is simply the projection onto C. However, for non
convex C, the projection may not be unique (as it is for
convex C) and, for an infinite dimensional Hilbert space, may
not even exist (Stark and Yang provide an interesting example
of one such case)[1]. The relaxed projection operator on x,
Tx, is defined as, Tx = x + λ (Px − x).

Consider a pair of closed sets, C1 and C2, in H. Either can
be convex or non convex. The Levi-Stark theorem establishes
that the iteration, xk+1 = T1T2xk monotonically reduces
the norm, J (xk) = ‖P1xk − xk‖+ ‖P2xk − xk‖ (known as
the summed distance error), provided that λ satisfies certain
conditions (the condition 0 ≤ λ < 2 is a conservative
condition)[5], [1].

The iteration, xk+1 = T1T2xk, is typically denoted the
sequential generalized projection algorithm (SGPA) or the
method of sequential generalized projections onto constraint
sets. It should be readily apparent that the iteration described
in equations 5-6 does not meet the requirements of the Levi-
Stark theorem. Examination of the general case (allowing
for non convex constraint sets) reveals that, in fact, very
little can be stated exactly concerning the convergence of the
iteration described by equations 5-6 unless both constraint
sets are convex. In section III, a convergence property of
the iteration is proven, provided that both constraint sets are
convex. In section IV, a convergence property of the iteration
is established for a limited, but physically meaningful, class
of non convex constraint sets.

B. Simultaneous projections onto convex sets

If we initially restrict our attention to systems intercon-
nected by projections onto convex sets, then development
of a convergence criteria is relatively straightforward. When

the sets describing permissible states are convex, then for
λ ∈ [0, 1], equations 5-6, describing the evolution of xk and
yk ensure that xk ∈ C1 and yk ∈ C2. This fact preserves
the interpretation of the system of interest as a pair of
interconnected feedback systems.

The convergence criteria is summarized in a series of
three theorems. Consider the closed ball in H, defined
as B (x, y) =

{
z ∈ H|∥∥z − x+y

2

∥∥ ≤ ‖x − y‖ /2
}

. In other
words, B (x, y) is the ball centered at x+y

2 with radius
‖x − y‖ /2. The ball B (x, y) describes the space of all
possible admissible projections from y and x onto C1 and
C2, respectively, provided that both C1 and C2 are convex.
This is characterized by the following theorem,

Theorem 1: Given a closed convex set, C, a point x ∈ C,
and a point y ∈ H, the projection of y onto C, PCy, is
contained in B (x, y)
The following theorem follow trivially from theorem 1,

Theorem 2: Given closed convex sets, C1 and C2, and
points x ∈ C1 and y ∈ C2, the distance ‖P1y − P2x‖ is
less than or equal to ‖x − y‖.
A proof of algorithm convergence follows without difficulty
from theorem 2. The convergence of the iteration in equations
5-6 is described by the following theorem,

Theorem 3: Given closed convex sets, C1 and C2 and
points x0 ∈ C1 and y0 ∈ C2, the iteration defined by
equations 5 and 6, has the property that, ‖xk+1 − yk+1‖ ≤
‖xk − yk‖, provided that λ ∈ [0, 1].

C. Simultaneous projections onto a limited class of non-
convex sets

Although it is possible to establish a convergence property
describing the behavior of the feedback system described
by equations 1 through 4, the limitation that the sets be
convex may restrict the applicability of the results developed
in section III. In this section, a related result is developed for
feedback systems governed by projections onto a particular
class of non convex sets. Specifically, we consider closed
constraint sets D that have the property that,

PDx =
PCx

‖PCx‖ID, (8)

where C is a closed convex constraint set, and ID is an arbi-
trary constant. A set D whose projection satisfies equation 8
is said to be a convex − like constraint set with a convex
partner set C. If the partner set, C, is also a subspace, then
the convex–like constraint set D has the property that, given
x, z ∈ D and λ ∈ [0, 1], the quantity x+λ(z−x)

‖x+λ(z−x)‖ID ∈ D.
There are other convex–like constraint sets that have this
property — however, in general, this property does not hold
for all convex–like constraint sets.

An example of a convex–like set is the set,
D ≡ {x ∈ Rn |‖x‖ = ID; and xj = 0 ∀ j ≥ m + 1},
where m ≤ n. The partner convex set (which in this case
is a subspace - thus we call D as subspace-like set),



C, is given by, C ≡ {x ∈ Rn |xj = 0 ∀ j ≥ m + 1}. An
additional example of a convex–like set is a subset of the
surface of a ball in Rn parameterized by a vector, y, with
‖y‖ = ID, and a scalar β ∈ [−1, 1],

D ≡ {
x ∈ Rn

∣∣‖x‖ = ID, Re 〈x, y〉 ≥ βI2
D

}
. (9)

This example set has the convex partner set,

C ≡
{

x ∈ Rn

∣∣∣∣Re 〈x, y〉
‖x‖ ‖y‖ ≥ β

}
. (10)

Following the path taken in section III, we shall take the
closed, convex–like constraint sets D1 and D2 in a Hilbert
space H to describe the set of admissible state vectors of
a coupled pair of systems. The partner sets, C1 and C2

associated with D1 and D2 are taken to be subspaces. The
state vectors, xk ∈ D1 and yk ∈ D2, are taken to describe the
system state at the k−th time step. Consider the following
pair of error signals,

ex,k = PD1yk − xk, (11)

ey,k = PD2xk − yk. (12)

A system of controllers of the following form is assumed,

xk+1 =
xk + λ1ex,k

‖xk + λ1ex,k‖ID1 , (13)

yk+1 =
yk + λ2ey,k

‖yk + λ2ey,k‖ID2 . (14)

Due to the fact that C1 and C2 are subspaces, and PD1yk ∈ D1

and PD2xk ∈ D2, xk+1 ∈ D1 and yk+1 ∈ D2, and hence the
controller output is in the space of admissible state vectors.
The system given by equations 11-14, can be written as the
following iteration,

xk+1 =
xk + λ1 (PD1yk − xk)
‖xk + λ1 (PD1yk − xk)‖ID1 , (15)

yk+1 =
yk + λ2 (PD2xk − yk)
‖yk + λ1 (PD2xk − yk)‖ID2 . (16)

The system described by equations 15 and 16 is remarkably
similar to that given in equations 5 and 6. The iteration given
by equations 15 and 16 describes a sequence of points in
the sets of admissible state vectors D1 and D2, just as the
iteration given by equations 5 and 6 describes a sequence of
points in the sets of admissible state vectors C1 and C2.

The following definition is introduced to simplify notation,

RD (x, y) =
x + λ (PDy − x)
‖x + λ (PDy − x)‖ID. (17)

Using this notation, the iteration in equations 15 and 16 is
given by,

xk+1 = RD1 (xk, yk) , (18)

xk+2 = RD2 (yk, xk) . (19)

In section III, the set B (x, y) was introduced to facilitate
establishing the convergence property of the iteration given

by equations 5-6. We now introduce the analogous set
A (x, y) to facilitate establishing the convergence property
of the iteration given in equations 15-16. The set A (x, y)
is the intersection of the surface of a ball in H and a cone
centered on the vector x + y

‖y‖ ‖x‖,

A (x, y) ≡
{

z

∣∣∣∣Re

〈
z, x +

y

‖y‖ ‖x‖
〉

≥ Re

〈
x, x +

y

‖y‖ ‖x‖
〉

; ‖z‖ = ‖x‖
}

.(20)

In section III, a set of conditions on the value for λ were
developed such that xk+1, yk+1 ∈ B (x, y). In this section,
conditions on the value for λ are stated such that xk+1 ∈
A (xk, yk) and yk+1 ∈ A (yk, xk), which will in turn be
used to establish that the iteration given by equation 15-16
monotonically reduces the quantity ‖xk − yk‖.

The convergence property that can be developed for the
iteration given by equations 15-16 is based on the following
theorem, whose proof is highly technical and relies heavily
on the fact that we restrict our attention to convex-like sets
with subspace partner sets.

Theorem 4: Given a closed convex-like constraint set D
with a partner subspace, C, points x ∈ D, and y ∈ H, then
RD (x, y) ∈ A (x, y), provided that ∀PDy 	∈ A (x, y),

0 ≤ λ ≤ 2 (X + A) (BX − AC)

2 (X + A) (BX − AC) + X
[
(X + A)2 − (B + C)2

] ,

(21)
and ∀PDy ∈ A (x, y),

0 ≤ λ ≤ 1, (22)

where X = ‖x‖2, A = Re 〈x, ỹ〉, B = Re 〈ỹ, PDy〉, and
C = Re 〈x, PDy〉.
Having developed, via theorem 4, requirements on λ that en-
sure that RD (x, y) ∈ A (x, y), establishing the convergence
of the iteration given by equations 15-16 follows with little
difficulty. The convergence property is summarized by the
following theorem,

Theorem 5: Assuming that λ1 and λ2 are chosen, accord-
ing to the requirements of theorem 4, such that xk+1 =
RD1 (xk, yk) ∈ A (xk, yk) and yk+1 = RD2 (yk, xk) ∈
A (yk, xk), the iteration given by equations 15-16 has the
property that ‖xk+1 − yk+1‖ ≤ ‖xk − yk‖.

III. NUMERICAL EXAMPLES

The work in this paper was largely motivated by consider-
ation of a specific application in laser beam control involving
maximizing the power transferred from one telescope to
another. The operation of a laser beam control system is
reasonably well described by the method of simultaneous
projections onto constraint sets. The numerical examples
described in this section were developed using detailed
wave optical simulation of propagation through turbulence.
This simulation is described in more detail in reference



??. Different control laws were implemented corresponding
to reasonable approximations of different types of adaptive
optical systems. In figure 3, numerical examples are given
for three cases. The first and second case corresponds to
both telescope systems being equipped with adaptive opti-
cal systems that are capable of both amplitude and phase
compensation. In the first case, the constraint sets of interest
are subspace-like and the control law is given by equations
15-16. In this case, unstable behavior can be observed. The
second case, the constraint sets of interest are subspace-like
and the control law is also given by equations 15-16, but the
value for λ is limited to meet the requirements of theorem 4.
In this case, monotone convergence is observed. In the final
case, which corresponds to a case where each telescope is
equipped with and adaptive optical system capable of only
phase compensation, both constraint sets are non convex, and
unstable behavior is observed.

IV. DISCUSSION

This paper has examined the possible use of projections
onto constraint sets to describe feedback control systems.
Such control systems were originally motivated by applica-
tions found in the control of laser beams for propagation
through a turbulent medium. The possible states of a system
are described by a constraint set. Error signals and the
operation of a control system are modeled using projections
onto the constraint sets. When the constraint sets are convex,
then a convergence property for a simple feedback system
can be derived. For the case where the constraint sets are
non convex, then the systems of equations describing simple
feedback systems become more complex. A special class of
non convex sets, denoted convex-like sets, was described.
The projection of a vector onto a convex-like set is propor-
tional to the projection of the same vector onto a convex
partner set. For the case when the constraint sets describing
the admissible states of the feedback system are convex-like
and where the partner set is also a subspace, a convergence
property was defined. This special case, although somewhat
limited has an application in the field of the control of laser
beams propagated through a turbulent medium.

This example application was studied and contrasted to
a more complex application whose sets describing the ad-
missible state vectors are strictly non convex, rather than
convex-like. Numerical examples comparing both cases re-
veal that the control law for the former example exhibits
stable behavior, while the control law for the latter example
exhibits erratic behavior. Although a complete understanding
of feedback systems whose admissible state vectors are
described by non convex constraint sets remains elusive (and
may remain so), the results developed for convex and convex-
like constraint sets provide insight into the non convex case.
We suggest that it may be appropriate to use projections
onto non convex constraint sets to motivate control laws for
alternate applications, and that in general such control laws
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Fig. 3. Numerical examples of the behavior of three beam control
approaches. (a) System 1, wherein both constraint sets are subspace-like,
indicates unstable behavior, as indicated by an increase in the cost function,
for large values of λ. For a sufficiently small value of λ, however, stable
performance is observed. (b) System 2, wherein both constraint sets are
subspace-like, but the value for λ is limited according to the requirements
of theorem 4, indicates stable behavior. In (b), the value of λ shown is the
nominal / initial value. (c) In system 3, both constraint sets are strictly non
convex. A limit cycle behavior is observed for large values of λ, but for
small values of λ, convergence, although not monotonic, is reasonably good.



will be well founded — however, numerical investigation of
their behavior will generally be required.

There are a number of interesting topics for further work.
Rather than utilize a pair of constraint sets in a Hilbert space,
like the method of parallel projections onto constraint sets[6],
[1], the results developed in sections II-B and II-C are easily
extended to sets in product spaces. Such a representation
of admissible state vectors may allow for treatment of more
complex problems. There are several results related to vector
space projection algorithms for projections onto subspaces
that also extend to projections onto linear varieties[1]. It
is suspected that the results developed in section II-C for
convex-like constraint sets with partner subspaces can be
extended to convex-like constraint sets whose partner sets are
linear varieties. The author expects that it may be possible
to examine more complicated interactions than the simple
examples considered in this paper using the same general
approach. Some specific possible applications follow. Satura-
tion non-linearities can be described by defining convex con-
straint sets describing the space of admissible state vectors —
there may be some application of the results developed in this
paper for such problems. The results developed in this paper
may find use in modeling competitive bargaining problems.
It is possible that the results developed in this paper may
find use in quantum control problems. In general, the results
developed in this paper may find use in describing linear
and/or non-linear processes in small or large order systems
that are well modeled by projections onto constraint sets.
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