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An LMI based model predictive control scheme with guaranteed
'H,, performance and its application to active suspension

H. Chen and C. W. Scherer

Abstract—In the framework of LMI optimization, we of LMI (linear matrix inequality) optimization at the price
present a robust MPC scheme that is guaranteed to achieve of involving conservatism (e.g. [10], [11], [12], [13]) or
closed-loop™., performance for linear systems with control 1, regricting uncertainties that only appear in the sy&em
and output constraints. The main ingredient is the introduction . . . .
of a dissipation constraint combined with on-line minimizing _statlc galn_ (or the 'r_]p_Ut matrix) (e.g. [14_]’ [15_])' Another
the Ho. performance level. Simulation results for a realistic iImportant issue of minimax MPC formulations is to guaran-
active vehicle suspension show that the proposed scheme hastee stability. It is shown in [16] that no stability guaramte
the capability of automatically relaxing the performance level can be given in the original minimax MPC formulation,
in order to obey hard time-domain constraints, while enhanc- and a remedy is suggested as well. For stable systems with

ing it when sufficient 'reserves’ in the dissipation constraint S - P L
have been accumulated so as to improve performance uncertain input matrix, the use of an infinite prediction

Index Terms— Model predictive control, M., performance, horizon guarantees robust stability [17], while the préstic

hard constraints, dissipation theory, LMI optimization control is set to zero for all times beyond the (finite)
control horizon. For integral control, additional congita
I. INTRODUCTION are required to force the integrating modes to be zero at

With the rapid development of computing, model prediclhe end of the finite control horizon [17]. LMI based robust
tive control, also refer to as moving (or receding) horizodPC formulations guarantee robust stability for both stabl
control, has become an attractive feedback strategy f§fd unstable systems by relying on an infinite (prediction
controlling constrained systems, not only in traditionelds  @nd control) horizon. As in the nominal case, the use of
such as refining and petrochemicals where slow dynami@® infinite horizon plays a crucial role to achieve robust
are dominant [1], but also in aerospace and defense (see [@bility. The crucial difference of various robust MPC
[3], [4] for some new reports). Over the last few yearsformula’uons lies in the way how to construct the predicted

also academic research of MPC has achieved significaf@ntrol such that the resulting optimization problem is
progress. By introducing the so-called stability constsi tractable; either the use of a constant feedback law over the

(equality and inequality terminal constraints or contracfull horizon [18] or al-step (V-steps) prediction control

tive constraints) and appropriately computing the teriningOncatenated by a constant feedback law [11], [19] have
penalty, the nominal stability issue of MPC is in generaP€€n proposed. A further difference is found in whether
well addressed; for a complete survey on this issue we ref8f€ Uses open-loop or closed-loop prediction. Classical
for example to [5], [6], [7]. MPC schemes rely on open-loop prediction. However, open-

For robust MPC, a general concept is to replace th|8°P prediction impligs that the unc_ertain system is pre-
minimization problem by a constrained minimax promemglctlvely controlled without feedback information. Thighu
where the maximization is performed over a set of unceff@ximization, the effect of uncertainties and disturbance
tainties and/or disturbances. The first minimax formutatio @€ Overestimated which might easily result in infeadipili
of MPC can be traced back to [8], where coefficients of aR the corresponding minimax optimization problems. The
SISO FIR model were assumed to be uncertain and to vaii#ed for a feedback prediction paradigm in robust MPC
within given bounds. A crucial issue of minimax MPC for-Schemes is clarified in [20], [21], [22]. In the context of
mulations is the difficulty concerning their implementatio €ceding horizor.. control, robust MPC is investigated

In order to render them tractable, the original formulatiofor two different purposes. One aims at a solution of time-
used thel..-norm of the error signal as an objective,VaTYing or nonlineafi{, control problems (e.g. [23], [24],

whereas subsequent approaches provide generalizationd4al [26], [27]), whereas the other is related to incor-
the I,-norm [9]. More recently, minimax formulations with Prating well-known robustness guarantees throtigh

quadratic criteria are addressed in the powerful framewof@nstraints into MPC schemes (e.g. [28]). For more detailed
survey and discussion on robust MPC we refer e.g. to [7],
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into account [23], [24], [25], [26]. subject to the foIIowing matrix inequalities

Preliminary attempts to overcome these deficiencies are % %
presented in [31], in which we discuss #&tgain atten- ok x
uation scheme for linear systems with actuator saturation AQ Jr BY B Q ]| (4a)
tha_t |_nvolves less conservatism tha_n previous sugg_estmns ClQ+D1uY D1 0 Al
Building on the work of [32], we include an additional
dissipation constraint into the on-line optimization peosh ( 2 0, (4b)
to guarantee closed-loop system dissipativity. This paper o
provides a continuation with the purpose of arriving at a ( C2Q + Dqu> >0 (4c)
robust MPC scheme that is tractable and guarantees nominal CQQ + Dgu ) Q =
and robustH ., performance. Z;; < Z%j,mw
The remaining paper is structured as follows: Section I _ T T
gives the setup of the proposed robust MPC scheme in (po Ph=t J;E(k];) Piaz(k) $<g) ) >0, (4d)

the framework of LMI optimization. Guarantedd.. per-
formance for the closed-loop system and the dissipatiotherep, = z(0)” Pyz(0) andpy, is recursively updated to
constraint are discussed in Section Ill. Based on a 2 DOF T T
quarter-car model, we apply the proposed MPC scheme to’* "~ Pk=1 7~ [2(k)" Prora(k) — z(k)" Pez(k)] . (9)
provide a solution of an active suspension control problenissume that the above optimization problem admits a (close
Simulation and comparison results are given in Section Mo optimal) solution denoted &3, Qx, Yx, Zi). Then, the
In conclusive remarks, we highlight the potentials for guarfeedback control is defined as follows:
anteeing robust{., performance.

u(t) = Kpx(i) Vi>k (6)
with K =Y, P, and P, = Q,;l. According to the principle
of MPC, only the first control actioni.e.,, for i = k)
is injected into the system until the next sampling time.
Consider systems to be controlled that are described as Updated by the actual closed-loop state, the above opti-

mization problem is solved again. We stress that the actual
z(k+1) = Az(k) + Byw(k) + Byu(k) (la) stater(k) does indeed appear in the matrix inequalities (4b)

II. AN LMI BASED MPC SCHEME

21 (k) = Cra(k) + Diw(k) + Digu(k) (1) and (4d). Hence, any solutio_n of the optimization problem
and, in turn, the actual applied feedback g&in depend
22(k) = Cax(k) + D2yu(k) (1) on the actual state(k). Throughout this paper we drop this
dependence for notational simplicity.
subject to the following time-domain constraints: The implementation of this MPC scheme is possible since
P,_, andpi_, have been determined at the previous time
|22i(k)| < 22imax Yk >0, i=1,2,...,po. (2) instantk —1 and are held fixed, which implies that (4d) is

affine inQ. Moreover, (4a) also defines an LMI constraint in
v, @ andY'. Finally, for some fixed, (4c) is an LMI inQ,

Y and Z. Hence, for a fixed-, (3) is an LMI optimization
problem that can numerically solved on-line. Note that (4d)
an be dropped for timé = 0 as it will become clear in

Here x € R™ denotes the vector of states, € R"™ the
vector of external inputsy € R™2 the vector of control
inputs,z; € RP! the vector of performance outputs ande

RP2 the vector of constrained outputs. Note that contro?

constraints can be described in (1c) and (2) with = the following discussion. i
and Oy, = I. We assume thatd, B.,,) is stabilizable and It is easy.to show that (4a) arises from a standard LMI
(C1, A) is detectable. based solution of the unconstraingtl,, control problem.

With a Lyapunov-type functioW (z) := 27 Pz, P = Q7!,

The basis of model predictive control is the on-ling the feasibility of (4a) leads to the dissipation inequality

solution of an optimization problem with control and output
constraints, updated by the actual measurement at eachV (z(i + 1)) + |21 ()||2 — V2w (@)|? < V(z(3))  (7)
sampling time [6], [7]. The obtained control action is
injected into the system until the next sampling time.

In this paper, we suggest to repeatedly solve a constrain
H~ control problem on-line. At timek > 0 with the
actual stater(k), the optimization problem is formulated EPr):={xcR":V(x) <r} (8)
as follows:

for any ¢« > k. By taking the Schur complement, (4b) is
8U|valent tor —x (k)T Pz(k) > 0. Hence, LMI (4b) forces
e actual state: (k) to be contained in the ellipsoid

Remark 1:If z(0) € £(P,r) and if the system were
. 3 controlled with the feedback law (6) for all future times,
S Q=QT ¥ z=zT | ) then one can easily show with (7) that the energy of the
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performance outputs would be boundeddas” , ||z(i)||> < for &k = 0,1,...,! has been used to control the system.
r + 72a, if the disturbance energy were bounded a&xploiting (7) fork =0,1,...,1 leads to
Yoo llw(@)|[* < a. This can serve as an indication for
choosing the tuning parameter However,r should not be  [121(0)[I> =3 1lw(0)[|* < 2(0)" Pox(0) — z(1)" Poz(1)
chosen too small in order to avoid that the LMI (4b) is ||z, (1)]|2 — v2[w(1)|? < 2(1)T Pyz(1) — 2(2)T Pi2(2)
infeasible.

The dissipation constraint (4d), firstly appearing in [32], :
is introduced in order to guarantdé., performance for 22 (D12 = A2 wD)|? < ()T P(l) — z(i+1)T P(1+1)
the closed-loop moving horizon system, as discussed in
Section Ill. By minimizing theH., performance indexy, and hence
the presented scheme is able to shape solutions in terms l
of the actual state so as to manage automatically the trade- 9 9 9 T
off between requiring high performance and respecting hard kzo lz1 (R = vellw(R)II" < 2(0)" Pox(0)—

constraints. l

The properties of the suggested MPC scheme are as _ TP (k) — ()T Poa (k)] —
follows: ]; [2(k)" Pr_ya(k) — (k)" Pox(k))]
« a constrainedH,, control problem is solved on-line, —a(l+ 1)Tpl$(l +1). (1)

updated with the actual state, unlike standard MPC
schemes where an open-loop optimal control problerBy (10), we infer
is involved, and unlike [10] that solves a constrained
(robust) LQR problem; !
. similarly to [10], a state feedback gain (and not an Y _ llz1(k)[I> — max{~o, 71, ..., n}*[w(k)|* <
open-loop control sequence) is computed by solving k=0

the optimization problem; < z(0)T Pyz(0) —z(l + )T Px(l+1), (12)
« the objective functional to be minimized is thé. o o .
norm from the external inputs to the performance Which implies dissipation with levemax{~o, 71, ..., %}.

output 21, with the purpose to manage automaticall))Ne are now in the position to state the following result.
the trade-off between requiring high performance and Theorem 1:Suppose that

respecting hard constraints; « (A, B,) is stabilizable andC1, A) is detectable;

« an additional dissipation constraint is introduced to « at each timek, there exists am such that the op-
guarantee dissipativity and hentg,, performance for timization problem (3) with the actual statgk) as
the closed-loop moving horizon system. initial condition admits an (almost) optimal solution

(Yrs Qs Yi, Zi).
If controlling the system withu(k) = Kyx(k) with the
In this section, we show that with the help of the adfeedback gaink; = Y;Q;', the closed-loop moving
ditional dissipation constraint (4d) the closed-loop nmgvi horizon system has the following properties:

horizon system is dissipative, along the line of [32]. Takin (i) for vanishing disturbances it is asymptotically stable
the Schur complements in (4d) implies (i) the hard constraints (2) are respected;

20 — Pt + 2(k)T Po_ra(k) — 2 (k)T Pex(k) > 0. (9) (i) the dissipation inequality

Ill. CLOSED-LOOPH,, PERFORMANCE

k
This inequality can be compingd vyith the reqursion (5) in Z 120()12 = 72| w(@)|? < 2(0)T Poz(0)  (13)
order to conclude that the dissipation constraint enforces P
LI . . . is guaranteed fok > 0, with v := max{7o, ...,V

> [e(@)" Pioya(i) - 2()) " Pa(i)] 2 0. (10) (which is finite due to feasibility); { }

=1 (iv) the discrete-timd,-gain fromw to z; is guaranteed
Assume that at each timé > 0, the LMI optimiza- to be not larger than.
tion problem (3) admits an (almost) optimal solutionProof: Define v := max{vo,71,...,7} Which is finite

(v, Qk, Y, Zi) and defineK;, = Y,Q,' as well as due to the assumption of feasibility. Then (12) implies
P, = Q,;l. Then the feasibility of (4a) implies that the property (iii) due toP > 0 and hence property (iv) for
dissipation inequality (7) is satisfied with = ~, and «(0) = 0. Moreover, the stability property (i) is proved
V(z) = 2T P for eachk > 0. We stress that this by showing thaty">° |z (i)||? is bounded and exploiting
does not imply dissipativity of the closed-loop movingdetectability of (Cy, A). At each timek, the feasibility
horizon system. Indeed, assume that, up to time0, the of (4b) forces the actual state(k) to be contained in the
feedback control sequence computeddfyt) = Kjrz(k) ellipsoid £(Py,r). Hence, the time-domain constraints (2)
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are respected since 8 f

|22i(k‘)\2 < max ‘(02 + DguYQ_l)ia:’2 <

z€E(Py,r) u
9 ksSec s
<r|((C:Q+ D)@ ) || < e (19) :
ill2 ’
follows from (4c). ]

Remark 2:In the above, we prove the property (ii) with-
out restricting the disturbance energy. On the other hdnd, i S
the disturbances satisfjw(k)||? < %:P”(’“) it can —
be shown that the feasibility of the optimization problem (3
at time & = 0 implies its feasibility at anyt > 0.

ku

Fig. 1. 2 DOF quarter-car model with an active suspension

Discussion of dissipation constraint . .
displacement caused by road unevennegsis the scalar

Let us now highlight the dissipation constraint (4d). Itactive force generated by a hydraulic actuator and can be
follows from (10) that fork = 1, the dissipation constraint -onsidered as control input.

_enforcem(l)TPox(l) — (1) Pa(l) > 0. Hence, switch-  performance requirements for advanced vehicle suspen-
ing the control from the feedback ga:,'f‘fo with Py t0 @  gjons include isolating passengers from vibration and lshoc
new K W'tg Py is only allowed ifz(1)" Piz(1) does not  arising from road roughness (ride comfort), suppressieg th
exceedr(1)” Pyz(1) (which is implied byP < Fy). ~ hop of the wheels so as to maintain firm, uninterrupted
For i = 2, however, the dissipation constraint requires contact of wheels to road (good handling or good road hold-

T T ing) and keeping suspension strokes within an allowable

[x(l) Pox(1) — (1) Plx(l)} + maximum (e.g. [34]). In fact, the active suspension control

+ [2(2)" Pz(2) — 2(2)" Px(2)] > 0. (15) problem can be formulated as a constrained disturbance

r [x(l)TP 2(1) —x(l)Tplcc(l)] > 0, our scheme permits attenuation problem. To quantify ride comfort, the body
that [m(Q)TQPlx(Q) B x(Q)TPQ:c(Q)] b’ecomes negative. In acceleration is chosen as controlled performance output, i

p B T . X z1 = &4. In order to ensure a firm uninterrupted contact of
general,[x(k) D1z (k) — (k) ka(k)] < 0 is allowed wheels to road, the dynamic tire load cannot exceed the

for k > 2 if sufficient reserves’ have been accumulated in, . .
static ones [35], i.e.,

the value of
k-1 ku (2 (t) — 20(t)) < (ms +my)g VE>0. (16)
AT D N T D .
2 [x(z) Picax(i) — (i) P“T(Z)] Moreover, the suspension stroke limitation in the form of
(which is nonnegative by (10)). This contrasts with the |2s(t) = 2u(t)] < Tmas VE =0 (17)

much stronger constrain® < P, as imposed in [24], has to be taken into account to prevent excessive suspension
thus leaving more freedom in the optimization to aCh'eV%ottoming, which can lead to rapid deterioration of ride
smaller values ofy and hence better performance. In othegomiort and possible structural damage. Due to actuator

words, with the dissipation constraint we capture how tQatyration, it is in addition assumed that the active fosce i
save ‘energy’ from the actual decrease of the dissipatiofynded as

level, in order to render the requirement of non-increase
less stringent for the subsequent time-instant, while even lur ()] < wmae V2 0. (18)

allowing for accumulat_ing s_uch ‘re;erves’ SO as to enha_nc&ea”y, (16) — (18) are hard time-domain constraints.
performance. From this point of view, the introduced diSpgnce e choose the normalized active force, the normal-

sipation constraint is less conservative than requiring th, ¢4 syspension stroke and the relative dynamic tire load as
value function to be non-increasing, as in [33], in order to (

achieve robust stability. constrained outputs, i.ez; =
with 22i,maxr = 1,:=1,2,3.
IV. APPLICATION TO ACTIVE SUSPENSION Definex = (x5 — &y, s, Ty — To, iu)T as state vari-

In this section, we apply the proposed robust MP@bles and consider the ground velocity as disturbance.input
scheme to provide a solution of the active suspensiohhen, by discretizing the ideal dynamics equations of the
control problem. As an example, we consider a 2 DORuarter-car model with a sampling time &f= 0.02s, we
quarter-car model shown in Fig. 1, whefk,, c,) consist obtain a system in the form of (1). For the simulation we
of the so-called passive suspensidn; stands for the have chosen the following nominal values for the physical
tire stiffness;m, and m,, represent sprung and unsprungparameters (cf [35]):
masses, respectively. Moreovet, — z,, is the suspension kN kNs
stroke,z, —z, the tire deflection and, the vertical ground s = 320kg, my = 40kg, ks = 18—, ¢; =1

U xo—my ku(@u—o)
Umaz’ Tmaz (ms+mu)g

m
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kN

2;
ku = 200—’ Tmazr = 0087717 Umaz = 1.5kN. body acceleration [m/s?]
m 5L 1\ il

In the context of vehicle ride and handling, road dis- ./« A ——
turbances can in general be classified as vibration an . /
shock [34]. Vibrations are consistent and typically spedifi '
as random process. Shocks are discrete events of relative o e
short duration and high intensity, caused for example by ¢
pronounced bump or pothole on an otherwise “smooth” roac os
and can be viewed as energy-bounded signals. An excessi' ,
suspension bottoming or wheel-hop may happen in this | .
case. Hence, we consider the case of an isolated bum B w w e m e m w100
in an otherwise smooth road surface. The correspondint ,_
disturbance (ground velocity) is given by 05

0

-0.5

VA ;. 27V L
2 smTt 0§t§v7
0 t> &,

where V' is the vehicle forward velocityd and L are the )
height and the length of the bump, respectively. Fig. 2 show: |
bump responses, wheté = 0.1m, L = 5m andV = .
60’%”. For the model predictive controller with guaranteed |
Hoo performance, we choose = 5.0. The optimization Ll
problem is feasible at each time, hence, it is guarantee ° o 20 3 40 5 6 70 80 %0 100
to respect control and output constraints. For reasons c !
comparison, we designed two constrairfgd, controllers °'Z’
by minimizing (3) subject to (4a) and (4c), far = 5.0 o5k
and r = 15.0 respectively, and fix the obtained feedback -,
gains. According to [31], the fixed controllers are guar- 0 20 3 s = o 70 8w w0 10
anteed to respect the constraints if the disturbance enerc ‘
is less th<31n0.097:—22 and 0.11’:—22, respectively. Moreover, | i
the disturbance attenuation levetakes the valueg.5 and
11.7, respectively. Note that the energy of the disturbance ir
Fig. 2 takes the value of.2, which is much larger than 'L A S S
the allowable value for the two fixed controllers such that .
there is no guarantee that they respect the constraints. The time &

. . Fig. 2. Bump responses: MPC witti~, performance {—), fixed Hoo
results are plotted in Fig. 2 as dashed=(5.0) and dash-  conyoliers forr — 5.0 (——) andr = 15.0 (— - )
dotted ¢ = 15.0) lines, respectively. It can be clearly seen
that the MPC withH,, performance respects constraints
by relaxing on-line the performance level (see the bottoranhance it when sufficient 'reserves’ have been accumulated
picture in Fig. 2) and achieves much better performangg the system, measured by the dissipation constraint.
(ride comfort) than the fixed controller with = 15.0 It is interesting to observe that the suggested dissipation
which in turn violates the control constraint slightly. Theconstraint is quite general. For example, the setup of the

fixed controller_ withr = §.0 achieves. the best performanceoptimization problem (3) can also be adapted for uncertain
among all designs, but it strongly violates both the contrcgystems described by (1) with

and the output constraints.

A B B,
V. CONCLUSIVE REMARKS ON ROBUSTH o, ¢, D D) eq, (19)
PERFORMANCE
Cy 0 Day,

For linear systems with control and output constraints
we have proposed a robust MPC scheme in which a comhereQ C R("+ri+p2)x(ntmit+mz) denotes the uncertainty
strainedH, control problem is solved on-line within the set. Similarly as discussed for nominal performance, we can
framework of LMI optimization. A dissipation constraint guarantee robust{,, performance for a receding horizon
that is less conservative than requiring monotonicity @ thimplementation based on the following result.
value function is introduced to guarantee closed-loopesyst  Theorem 2:Suppose that the assumptions in Theorem 1
dissipativity and, hencel,, performance. Moreover, the are satisfied for all system matrices satisfying (19). Thgn,
proposed MPC scheme is able to automatically relax thaefining the feedback gaifi; = Y;,Q; ' at each sampling
performance level in order to obey hard constraints angime k, and by controlling the system with(k) = Kyx(k),
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the closed-loop moving horizon system achieves the prop2]
erties (i) — (iv) in Theorem 1 robustly for all uncertain
systems.

For rather general uncertainty sefs the corresponding

family of LMI problems might not be easily (or efficiently)
solvable. For polytopic system uncertainty

(23]

[14]

A; Bii By [13]
Q=Co Cl,i Dl,i Dlu,i s 1= 1,2,...71 (20)
Coi 0 Doy, [16]

with a moderate numbelr of generators we can proceed[17]
in a standard fashion, which just requires to replace (4a)
and (4c) with [18]

Q * * *
0 ’yI * * [19]
AiQ + Bu’zY Blﬂ’ Q * > 07 (Zla)
CiQ + Du,zY Dl,i 0 fy[ [20]
+Z C2,;Q + Day, Z—Y)
! ’ 7 ) >0, (21b
<(C2,iQ + DoY) Q > 0, (21b) 21
ZJJ SZQj.,ma,a:a 1= 1,2,...,l.

: . . [22
Hence our scheme is applicable to polytopic uncertalh ]

systems without any complication.
[23]
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