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A New Approach to the Design of Dynamic Output Feedback
Stabilizers for LTI Systems

Young I. Son, H. Shim, Nam H. Jo, and Kab-Il Kim

Abstract—We present a new state-space approach for de- can be replacédwith a compensator which has the same
signing a dynamic output feedback control law which stabilizes  dimension as the system’s input. The idea of replacing the

a cla§s of linear time invariant systems. All the states of derivative term is further exploited in this paper up to any
the given system are not measurable and only the output order

is used to design the stabilizing control law. In the design o ) ] ]
scheme, however, we first assume that the given system can be The only assumption in this paper is the following.
stabilized by a feedback law composed of the output and its ~ Assumption 1: Let us define

derivatives of a certain order. Beginning with this assumption,

we systematically construct a dynamic system which removes C

the need of the derivatives. The actual order of the constructed CA

dynamic feedback controller is the dimension of the output G = [Ko K, - Kk] and Hj, :=

times the order of derivatives that are necessary. Therefore, it :

may be useful for order reduction of dynamic controllers. A C AF

set-point regulation problem for a magnetic levitation system

is also solved without using the velocity measurement. For the system (1), there exists an integefl < r) such
that

|. INTRODUCTION A, = A+ BG,.H, is Hurwitz.

In this paper, we consider the stabilization problem of a

system represented by ] o ) %
Remark 1: It is presumed in this assumption that- 1
&= Az + Bu W because, when Assumption 1 holds witk= 0, the system
y=Cx (1) can be trivially stabilized by a static output feedback

) ] . ) ) ) without using additional dynamics. On the other hand, if the
wherez is the state inR"; u is the input inR™; y is the  gystem (1) is stabilizable and observable, then Assumption

measurable output iR”. _ 1 trivially holds withr = n — 1. Indeed, in this caseH, is
We suppose that the system (1) is not able to be stabilizgskt-invertible due to observability, and thus, there always
by any static output feedback. While the measurable stategyists(, with which Assumption 1 holds. O

are not sufficient to design a stabilizing static control law, | the next section, a dynamic output feedback controller
we assume that, if the output and ‘its derivatives of § presented for system (1) under Assumption 1, followed
certain order’ are available to be used, then a static feedbagy 4 recursive algorithm to design the gains of the proposed
exists for stabilization. In this paper, we present a neWonroller in a systematic manner. Section I1l illustrates two

way to replace the required derivatives by adding somgesign examples with simulation results. Conclusions are
dynamics in the feedback. This is, in fact, inspired by [1lfound in Section IV.

where a passivity-based dynamic output feedback control
has been proposed for inherently non-passive LTI systems [I. MAIN RESULTS

by virtue of paralleling a feedforward compensator. In [1],

it has also been observed that, when a system is stabilizeaF or the system (1) satisfying Assumption 1, we propose

by a proportional-derivative control, the derivative ternﬁaiy;aer?g:rrﬁu;?m feedback controller of order, which
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closed-loop system

i=Ax + B®,Cx + BPpA

: @)
A=T,Cx+ T\

is exponentially stable.

In the subsequent part of the paper, we propose a new

way to design the matriceg and ®. Therefore, the main
contribution of the paper is summarized as follows.
Theorem 1: For the system (1) satisfying Assumption 1,

Proof of Initial Step.
First of all, note that
§=CA" '@+ A
= CA" YAz + BG,_1H, 1z + BK,v)
—(CA™'BG,_1H,_1x + CA" 'BK,v +v)
=CA"x —v.

We now define

there exists a dynamic output feedback stabilizing controller @)
(2) with additional\-dynamics of ordefp x r). O

The idea of constructing the controller (2) is to assumend change coordinatés” A7 into [T 4T]T. Then
temporarily in the beginning, that/,.x is available for §— A ABK.j
measurement. This makes the output feedback stabilization > " )Ty (9)
problem be solved by the static gain found in Assumption y=CA"{—CA"BK,j —v.

1. Next, we change the temporary assumption such thafyce the matrixA, is Hurwitz, the system (9) can be
H,_,x is available for measurement bft.x is not. (This stabilized byv = D, with an appropriate gai, making

¢ =z + BK,j

implies thatC A%z, i = 0,---,r — 1, is measurable but
C A"z is not.) Then, the control law designed at the previou
step, where we assumed that.z is measurable, is not
implementable because it depends on the signdlx.
Hence, we separate the teffl”x from the control law and
design additional dynamics with which the use(Ofi”z is
eliminated. In the next step, we proceed by assuming th
H,_,z is measurable bu€ A"~z is not. This recursion

the matrix (7) Hurwitz. For exampleD, = d,.I with
Sufficiently larged, > 0 always performs this task. ¢

Consequently, we obtain the closed loop system; as
follows:

Gr,«_lH,»_ll‘ + KVFDT(CArilx + )\)
(GT—l + [ Omxp(rfl) K’!‘DT])HT—I‘T + KTDT)\
T = Ax + B(Gr,1 + [Omxp(r—l) KTDT]) H»,‘,lx

u

al

goes to the end if we get a dynamic controller that requireq . + BKTEM
only the true measurement éf,z = C'z but not others. A= - (CAT BGr1 + [ Opxp(r—1) M D Hyyx
The recursion begins by the following initial step. — MyA

(10)
A. Initial Ste
P where M, = (I+CA""'BK,)D,. The above system (10)

When the H,a is measurable, we easily obtain thejg giapie hecause its system matrix is similar to the matrix
following stable closed loop systeii. with the gainG, 7)

from Assumption 1:
B. Recursive Design of Output Feedback Controller

u = G.H,x
= G, 1H, 10+ K, (CA"x) We assume that, with some integetbetweenl andr,
S & = Ayx=(A+BG,H)x (4) it holds that H,x is measurable and the following output

feedback controller of ordes(r — k) stabilizes system (1)

. ) exponentially:
Now, we assume thakl/,_;x is available for measure-

ment butC A"z is not. Then, by introducing, we decom-
pose the systeny,. into the term including”’ A" 2 and the
rest (as follows):

Az + BG,_1H,_12+ BK,.(CA"x).

A=y Hix + Wy ),

(11)
u=®p Hix + Pp A,

where®y, ,, ®ip, Y1, and¥y, , are matrices of appropriate

u=G,_ 1H,_1x+ K,v (5a) dimension. In other words, the closed-loop system
T = Ax + BGTlerflu’C + BKT’U. (5b) g { T = Ax + B@k,aHk--T + B(I)k,b)‘ (12)
By o3
If the following dynamic system is appended to (5b) A= Vo Hpr + W pA

is exponentially stable, which can be concisely represented

A=—CA"'BG,_1H, 1z — (I+CA"'BK,)v (6a) oy

j=CA™ 1z 1 A, (6b)
Yy

L= Agz, (13)

then the augmented system (5b)—(6a) is stabilized by
D,y where D,. is chosen so that the following matrix is wherez := [z, AT]T and the Hurwitz matrix4,, is defined
Hurwitz as

A,
CA"

— A, BK,

. A—&-B(I)k’aHk B(I);%b
—CA"BK, — D, |’ ’

7 Ay, = 14
(") k Uy H, Ui (14)
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Now we postulate a new assumption thH}_ iz is

the (z, y)-coordinates instead dk,n). That is, the closed-

measurable butCA*z is not, so that the controller (11) loop system is now given by (17) and

cannot be implemented. Thus, we separate the @iz

from the controller equation (11) and replace it by a new.
q (11) P y i = CA" "1 (Az + BOy 1 Hy_1a + B®j, p) + Bby ao0)

signalv to be designed as follows:

A= g Hy 1z + U\ + Uy 00 C ARz
=V a1 Hpo12 4+ U p A+ Uy 000

U= Pp g Hy 17+ Py p\ + O, 02C A
= O g1 Hi—12 4+ Ppp A + D 020,

(15)

where Uy o = (Vg a1, Yoo and @, = [Pp a1, Pr g2
Then, the closed-loop system is rewritten by

T = Ax + B(I)k,alHk—lx + B(I)k,b)\ + B<I>;€7a2v

— CA" 'B®y o1 Hy 1w — CAF 1 Bd;
— (I + CAF 1By, 40)v
=CAFz — 0.

Now we change the coordinatés, ) into (£,y) once
again with a new variablé := z + Lg. That is,

€= (Fz+ Lv) + (LCAFz — Lv) = Ayz

N=Up g Hy 1z + U o\ + Uy o0, (16) = Ar§ — AxLy
or J=[CA*, Opypir—iy)z — v
= [CA*, 0y p(r—i)|€ — [CA* 0psip(r—y | LY — v
t=Fz+4 Lv an _ [CAk,Opo(T,k)]ﬁ . CAkBq)k’agﬂ —w
where v = Dyy.
r_ A+ B®y o1 Hp B(I)Imb] I— |:B(I)k,a2:| o o
Uy a1 Hi—1 Upp |’ U a2 Therefore, it is seen that iD; is chosen such that the

matrix (20) is Hurwitz, the above closed-loop system is
which is equivalent to (12) (or to (13)) if = CA*z. Note  exponentially stable. n

_ k
that Ay = F + LiCA ,Opxp(r,_k)]. ~ Remark 3: As aresult of Theorem 2, it follows that the
The followmg.theorem provides a key t]? the recursion iy erall closed-loop system, which is obtained from (16),
the sense that it shows how to replaCel”= term by an  (18) and (19), is exponentially stable. The single equation
additional dynamics. (21) is the closed-loop system, whose system matrix will

Theorem 2: Suppose that system (16) (or, (17)) is eXxpecome the matrixl;_; in the next iteration step. ¢
ponentially stable ift = C'A*z; that is, the matrixA4, is

Hurwitz. If the following dynamic system is appended to The recursion procedure is now qite obvious. Since
(16) (or. (17)) 9 dy y PP r at the initial step,¥, ,, ¥,, and ®,; are null matrices

(i.e., empty) and the controller (18) becomes just a static
feedback: = G, H,z (i.e., ®,, = G,) from Assumption 1.
Therefore, we have the Hurwitz matrik. = A+ BG . H,.

By Theorem 2, unmeasurable te@®A"x is replaced by
the dynamic controller (18) and (19). Now, we regard the
staten of (18) as the state of (11) (i.e. (6) and (10)) for
then the augmented system (16), (18) (or, (17).(18)) ihe next iteration. (The next step begins with the equation
exponentially stabilized by (11).) In particular, from (10) it is obtained that

i =—CA" 'Bdy o1 Hy_1o — CAF "1 Bd; A
— (I +CA*'Bdy 42)v, n € RP, (18a)
g=CAF 1z 4+, (18b)

v =Dy, (19)
\I/T—l,a = - (CAT_qu)T',al
+ [ Opxp(r—1y, (I+CA™'B®, 42)D, ])
(20) \Ifrfl_’b == —(I + CAriqu)ryaz)Dr
(I)T—Lﬂr = (I)T,(ll + [OmXp(r—1)7 ‘I)r,aQDr]
(I)r—l,b = q)r,aZDr

where the matrixD;, is chosen such that

Ak, _Ak’L
[CAF Opypr—ky] —CA*B® 49 — Dy

is Hurwitz. %
Remark 2: Note that the matrix (20) always can be

made Hurwitz by appropriate matri®,, which can be where .., — G,_, and .5 — K,. Likewise, the

found by LM tqol or by choosing sufficiently large ConStantiteration proceeds until we have a controller of (11) with

dy > 0 and letting Dy, = dyI. O} — 0. Therefore, we obtain the gains of (2) as follows:
Proof: With the control law (18) and (19), the closed- ' '

loop system is given by (17) and (18a) with (19). In order to

analyze its stability, the closed-loop system is represented inW¥, = ¥o,, ¥, = Vg,

D, =Dg, Py =Dpy.
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z A+ Bq)k,alkal + B(I)k’angCAk71 Bq)k,b B(I)kyang x
A= Uya1Hg—1 + Vg 00D CARY Wb W a2 Dy Al (2))
n 70Ak713®k7a1Hk_1 — (I+ CAkilB‘ﬁk’aQ)DkCAkil 7CAkiqu3k7b 7(I+ CAkilB(I)]“aQ)Dk n

For convenience, we include a formula for the iteration:  Therefore, with the following additional dynamics

Uy a1 + [ Oper—k) xp(k—1)» Yi,a2 Dy | A = —900y — 30\ — 900n 27)
\Pkfl’a = (_CAk_lB‘bkl'c,all - [Opxp(kflﬁ ) 77 = —30y — 307’]7
I+ CA B®y 40)D - . .
(I+ ka2) D | the stabilizing control law for (22) is obtained by
o _ Uy b Uy a2 Dy
R T _CARTIB®y,  —(Lxp+ CAFTIB®y, 40) Dy, u = —11150y — 330\ — 111001. (28)
Pp-1,0 = Pha1 + [Omxp(k-1)> Ph,a2Di] Figure 1 shows the simulation result (solid curve) of the
Qp_1p = [(I);“b, @k,ang] . proposed controller. The simulation is performed dot 2,

although its nominal value i4, to see some robustness
property that the proposed controller might have. In the
. . . figure, we added a saturation whose level is 50, and also
EX?‘mp'e L.We |.Ilustrate the proposed design method W'thcompared the plots with the results (dotted curve) obtained
a simple numerical example:

from the classical observer-based control (the Luenberger

IIl. | LLUSTRATIVE EXAMPLES

0 a O 0 observer plus a state feedback) [6]. All the initial conditions
£ = |0 0 1|la+ [0|u 29 of the systems are set to 1 while all the initial states of the
0 00 1 (22) additional dynamics and the observer are set to 0.

y = 1 0 Oz

wherea = 1. The system (22) satisfies Assumption 1 withDE;ﬁ T;E)/Iiteat%r?g;:'::emr [t;]]? linearized model of a magnetic

r = 2. In fact, with the following control law
.2'71 = T2
Ty = 2800x1 — 19600x3
the eigenvalues of the matriz, = A + BG,H, are given 733 = —206.667x3 + 2.4242u’
by {—5, -3+ }. Hence, the closed loop system (22)—(23) Ty =T1 — Te
is stable and we obtai; = [-50 —40] and K, = —11
for the iteration.

Now, in order to replace th€’ A%2z-term in Hox as the
initial step, we consider the matrix of (7) for the systenr
(22). Indeed, withD, = 30, the matrix (7) is given by

0 1 0 0
0 0 1 11 o
S50 —40 —11 —121 @4
o 0 1 19 [ .

0 2 4 6 8 10 0 2 4 6 8 10

Z1

T4

u=GyHyr =[50 —40 —11] Hyz,  (23)

State <x,> State <x,>
1

1 s

which is Hurwitz.
However, since th€' Az-term in Hyx is neither measur- (a) State i1’ (b) State o’

able, we proceed one step further by Theorem 2. From the

previous step, the parameters of (11) can be regarded ac,, sopr

\I’l,a = [0 - 30], \1117() = —307 .
(I)l,a = [—50 - 370]7 q)l,b = —330. (25) :‘ . State <xg>
With these parameters the mati in (14) is given by T
0 1 0 0
0 0 1 11

-50 =370 0 -330
0 =30 0 =30

Control Input

--- With Observer --- With Observer
—— Proposed —— Proposed

4 6 8 10 0 2 4 6 8 10

A= (26)

(c) State 3’ (d) Control Input '’
Hence, the gairD; is chosen such that the matrix in (20)
is Hurwitz, which is achieved b)D1 = 30. Fig. 1. Simulation Results (proposed: solid).
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wherez; is the distance of the ball from the electromagnet
face; x5 is the velocity of the ball;z3 is the current in
the magnet coil;z,4 is the integral of the position error
e =x1 —x. (xr. = 7), andu is the input voltage applied
to the coil. The model (29) is obtained by linearizing the
nonlinear dynamics about the point = 7, xo = 0, z3 = 1.
In addition, we assume that the states x3 and x4 are
measurable.

To translate the equilibrium into the origin, we first define

Position <x>

a new variablez = [z, — 7, x, 23— 1, 14]T. Then, 4
we can find an LQR controller of the form 2t W
) ) — Proposed
U, = —kz = — [k‘l kg ]{33 k‘4] z (30) O0 0.5 1 15 2

that stabilizes the system and minimizes the performance
indexJ = [;°(27Qz + vl Ru.)dt [8]. For example, with

Q = diag[l 0 1 1] and R = 10, the state feedback gain

k is obtained as

ko=[k ko ks ki
=|-9464 —0.179 43.862 —0.316].

With the controlu = u, + 11, the poles of closed-loop
system are located dt55.74, —49.38, —27.68, —0.20}.

Now, we will show that the system (29) can be stabilized
by the proposed method without the measurementsof
that was used in (30). Note that if we design the additional
system (2) with the outpuy,,, the constructed dynamics
become a system of order 3. Sinee is the only state
that should be differentiated, however, we let= z; and
u, = uy + ugy Where

(a) State &7’

50

(3 1) Velocity <dot x>

--- With Velocity
— Proposed

1 15 2

(b) State &2’

Uy = —k1z1 — ngz, U9 = —k323 — k4Z4. (32) 25
By doing this we will show that one dimensional additional 2
system is enough to stabilize the given system. Lsf | Cunent <is
With the control inputus only, we first get the system 1
matrices 05
0 1 0 0 0 of ]
_ 2800 0 —19600 0 1 0 -0.5} ’—[ With Velocity
A= 0 0 -—133.0 0.767  B= 2424’ (33) - - - *f;"p"sed )
1 0 0 0 0 ' '
C=[1 0 0 0]. (©) State &y’
Next, we can write control law:; as
Uy = —lez — k’QCAZ, (34) 100
from which we can gety; that is necessary for the design
of the compensator. 50
From the above equations we can obtaip = —k; and Control Input
K, = —ko, and hence the system (6) is given by
. ol
Lizat @
_ _ —
With v = gy for sufficiently large ¢, it can be % 05 1 15 2
seen that the system (33)—(35) is stabilized by =
—kiz1 — kovy (v > 1). The poles of the closed-loop (d) Control Input %’
system foriyy) = 200 are given by{—258.13, —28.856 +
751.467,—16.955, —0.1972}. As a result, we can conclude Fig. 2. Simulation Results (proposed: solid).
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that the system (29) can be stabilized by the following
control input: 1]

u=—ki(v1 — ) — k3(rs — 1) — kaxg — kotpy + 11.

2

Figure 2 shows the simulation results with the initial[]
conditionz(0) = [14,0,0,0] andz. = 7. The performance [3!
of the proposed controller is compared with the controller
(30) that requires the velocity information. In this figure,[4]

solid and dotted curves represent the result of the proposed
controller and that of the controller (30), respectively. [5]

IV. CONCLUSION
[6]

In this paper, we have presented a new recursive algo-
rithm to design a dynamic output feedback control law’]
which stabilizes linear time-invariant systems that can bg
stabilized by a static feedback of the output and its deriva-
tives. Examples with simulation results are presented. From
the proposed recursion algorithm, it is not difficult to
develop an automated design package on a PC.
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