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Abstract— We present a new state-space approach for de-
signing a dynamic output feedback control law which stabilizes
a class of linear time invariant systems. All the states of
the given system are not measurable and only the output
is used to design the stabilizing control law. In the design
scheme, however, we first assume that the given system can be
stabilized by a feedback law composed of the output and its
derivatives of a certain order. Beginning with this assumption,
we systematically construct a dynamic system which removes
the need of the derivatives. The actual order of the constructed
dynamic feedback controller is the dimension of the output
times the order of derivatives that are necessary. Therefore, it
may be useful for order reduction of dynamic controllers. A
set-point regulation problem for a magnetic levitation system
is also solved without using the velocity measurement.

I. I NTRODUCTION

In this paper, we consider the stabilization problem of a
system represented by

ẋ = Ax + Bu

y = Cx
(1)

wherex is the state inRn; u is the input inRm; y is the
measurable output inRp.

We suppose that the system (1) is not able to be stabilized
by anystatic output feedback. While the measurable states
are not sufficient to design a stabilizing static control law,
we assume that, if the output and ‘its derivatives of a
certain order’ are available to be used, then a static feedback
exists for stabilization. In this paper, we present a new
way to replace the required derivatives by adding some
dynamics in the feedback. This is, in fact, inspired by [1],
where a passivity-based dynamic output feedback control
has been proposed for inherently non-passive LTI systems
by virtue of paralleling a feedforward compensator. In [1],
it has also been observed that, when a system is stabilized
by a proportional-derivative control, the derivative term
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can be replaced1 with a compensator which has the same
dimension as the system’s input. The idea of replacing the
derivative term is further exploited in this paper up to any
order.

The only assumption in this paper is the following.
Assumption 1: Let us define

Gk :=
[
K0 K1 · · · Kk

]
and Hk :=




C
CA

...
CAk


 .

For the system (1), there exists an integerr (1 ≤ r) such
that

Ar := A + BGrHr is Hurwitz.

♦
Remark 1: It is presumed in this assumption thatr ≥ 1

because, when Assumption 1 holds withr = 0, the system
(1) can be trivially stabilized by a static output feedback
without using additional dynamics. On the other hand, if the
system (1) is stabilizable and observable, then Assumption
1 trivially holds with r = n− 1. Indeed, in this case,Hr is
left-invertible due to observability, and thus, there always
existsGr with which Assumption 1 holds. ♦

In the next section, a dynamic output feedback controller
is presented for system (1) under Assumption 1, followed
by a recursive algorithm to design the gains of the proposed
controller in a systematic manner. Section III illustrates two
design examples with simulation results. Conclusions are
found in Section IV.

II. M AIN RESULTS

For the system (1) satisfying Assumption 1, we propose
a dynamic output feedback controller of orderpr, which
has the form of

λ̇ = Ψay + Ψbλ, λ ∈ Rpr,

u = Φay + Φbλ.
(2)

The output feedback stabilization problem is solved if we
find Ψ = [Ψa, Ψb] andΦ = [Φa,Φb] such that the following

1The design of a dynamic system for replacing the velocity measurement
has been studied by several authors [2–5].



closed-loop system

ẋ = Ax + BΦaCx + BΦbλ

λ̇ = ΨaCx + Ψbλ
(3)

is exponentially stable.
In the subsequent part of the paper, we propose a new

way to design the matricesΨ and Φ. Therefore, the main
contribution of the paper is summarized as follows.

Theorem 1: For the system (1) satisfying Assumption 1,
there exists a dynamic output feedback stabilizing controller
(2) with additionalλ-dynamics of order(p× r). ♦

The idea of constructing the controller (2) is to assume,
temporarily in the beginning, thatHrx is available for
measurement. This makes the output feedback stabilization
problem be solved by the static gain found in Assumption
1. Next, we change the temporary assumption such that
Hr−1x is available for measurement butHrx is not. (This
implies thatCAix, i = 0, · · · , r − 1, is measurable but
CArx is not.) Then, the control law designed at the previous
step, where we assumed thatHrx is measurable, is not
implementable because it depends on the signalCArx.
Hence, we separate the termCArx from the control law and
design additional dynamics with which the use ofCArx is
eliminated. In the next step, we proceed by assuming that
Hr−2x is measurable butCAr−1x is not. This recursion
goes to the end if we get a dynamic controller that requires
only the true measurement ofH0x = Cx but not others.

The recursion begins by the following initial step.

A. Initial Step

When the Hrx is measurable, we easily obtain the
following stable closed loop systemSr with the gainGr

from Assumption 1:

Sr :





u = GrHrx
= Gr−1Hr−1x + Kr(CArx)

ẋ = Arx = (A + BGrHr)x
= Ax + BGr−1Hr−1x + BKr(CArx).

(4)

Now, we assume thatHr−1x is available for measure-
ment butCArx is not. Then, by introducingv, we decom-
pose the systemSr into the term includingCArx and the
rest (as follows):

u = Gr−1Hr−1x + Krv (5a)

ẋ = Ax + BGr−1Hr−1x + BKrv. (5b)

If the following dynamic system is appended to (5b)

λ̇ = −CAr−1BGr−1Hr−1x− (I + CAr−1BKr)v (6a)

ȳ = CAr−1x + λ, (6b)

then the augmented system (5b)–(6a) is stabilized byv =
Drȳ where Dr is chosen so that the following matrix is
Hurwitz [

Ar −ArBKr

CAr −CArBKr −Dr

]
. (7)

Proof of Initial Step.
First of all, note that

˙̄y = CAr−1ẋ + λ̇

= CAr−1(Ax + BGr−1Hr−1x + BKrv)

− (CAr−1BGr−1Hr−1x + CAr−1BKrv + v)
= CArx− v.

We now define

ξ := x + BKrȳ (8)

and change coordinates[xT λT ]T into [ξT ȳT ]T . Then

ξ̇ = Arξ −ArBKrȳ

˙̄y = CArξ − CArBKrȳ − v.
(9)

Since the matrixAr is Hurwitz, the system (9) can be
stabilized byv = Drȳ with an appropriate gainDr making
the matrix (7) Hurwitz. For example,Dr = drI with
sufficiently largedr > 0 always performs this task. ♦

Consequently, we obtain the closed loop systemSr−1 as
follows:



u = Gr−1Hr−1x + KrDr(CAr−1x + λ)
=

(
Gr−1 + [ 0m×p(r−1) KrDr]

)
Hr−1x + KrDrλ

ẋ = Ax + B
(
Gr−1 + [ 0m×p(r−1) KrDr]

)
Hr−1x

+ BKrDrλ

λ̇ = − (
CAr−1BGr−1 + [ 0p×p(r−1) Mλ ]

)
Hr−1x

− Mλλ
(10)

whereMλ = (I +CAr−1BKr)Dr. The above system (10)
is stable because its system matrix is similar to the matrix
(7).

B. Recursive Design of Output Feedback Controller

We assume that, with some integerk between1 and r,
it holds thatHkx is measurable and the following output
feedback controller of orderp(r − k) stabilizes system (1)
exponentially:

λ̇ = Ψk,aHkx + Ψk,bλ,

u = Φk,aHkx + Φk,bλ,
(11)

whereΦk,a, Φk,b, Ψk,a andΨk,b are matrices of appropriate
dimension. In other words, the closed-loop system

Sk :
{

ẋ = Ax + BΦk,aHkx + BΦk,bλ

λ̇ = Ψk,aHkx + Ψk,bλ
(12)

is exponentially stable, which can be concisely represented
by

ż = Akz, (13)

wherez := [xT , λT ]T and the Hurwitz matrixAk is defined
as

Ak =
[
A + BΦk,aHk BΦk,b

Ψk,aHk Ψk,b

]
. (14)



Now we postulate a new assumption thatHk−1x is
measurable butCAkx is not, so that the controller (11)
cannot be implemented. Thus, we separate the termCAkx
from the controller equation (11) and replace it by a new
signalv to be designed as follows:

λ̇ = Ψk,a1Hk−1x + Ψk,bλ + Ψk,a2CAkx

= Ψk,a1Hk−1x + Ψk,bλ + Ψk,a2v

u = Φk,a1Hk−1x + Φk,bλ + Φk,a2CAkx

= Φk,a1Hk−1x + Φk,bλ + Φk,a2v,

(15)

where Ψk,a = [Ψk,a1, Ψk,a2] and Φk,a = [Φk,a1, Φk,a2].
Then, the closed-loop system is rewritten by

ẋ = Ax + BΦk,a1Hk−1x + BΦk,bλ + BΦk,a2v

λ̇ = Ψk,a1Hk−1x + Ψk,bλ + Ψk,a2v,
(16)

or

ż = Fz + Lv (17)

where

F =
[
A + BΦk,a1Hk−1 BΦk,b

Ψk,a1Hk−1 Ψk,b

]
, L =

[
BΦk,a2

Ψk,a2

]
,

which is equivalent to (12) (or to (13)) ifv = CAkx. Note
that Ak = F + L[CAk, 0p×p(r−k)].

The following theorem provides a key to the recursion in
the sense that it shows how to replaceCAkx term by an
additional dynamics.

Theorem 2: Suppose that system (16) (or, (17)) is ex-
ponentially stable ifv = CAkx; that is, the matrixAk is
Hurwitz. If the following dynamic system is appended to
(16) (or, (17))

η̇ = −CAk−1BΦk,a1Hk−1x− CAk−1BΦk,bλ

− (I + CAk−1BΦk,a2)v, η ∈ Rp, (18a)

ȳ = CAk−1x + η, (18b)

then the augmented system (16), (18) (or, (17),(18)) is
exponentially stabilized by

v = Dkȳ, (19)

where the matrixDk is chosen such that
[

Ak −AkL[
CAk 0p×p(r−k)

] −CAkBΦk,a2 −Dk

]
(20)

is Hurwitz. ♦
Remark 2: Note that the matrix (20) always can be

made Hurwitz by appropriate matrixDk, which can be
found by LMI tool or by choosing sufficiently large constant
dk > 0 and lettingDk = dkI. ♦

Proof: With the control law (18) and (19), the closed-
loop system is given by (17) and (18a) with (19). In order to
analyze its stability, the closed-loop system is represented in

the (z, ȳ)-coordinates instead of(z, η). That is, the closed-
loop system is now given by (17) and

˙̄y = CAk−1(Ax + BΦk,a1Hk−1x + BΦk,bλ + BΦk,a2v)

− CAk−1BΦk,a1Hk−1x− CAk−1BΦk,bλ

− (I + CAk−1BΦk,a2)v

= CAkx− v.

Now we change the coordinates(z, ȳ) into (ξ, ȳ) once
again with a new variableξ := z + Lȳ. That is,

ξ̇ = (Fz + Lv) + (LCAkx− Lv) = Akz

= Akξ −AkLȳ

˙̄y = [CAk, 0p×p(r−k)]z − v

= [CAk, 0p×p(r−k)]ξ − [CAk, 0p×p(r−k)]Lȳ − v

= [CAk, 0p×p(r−k)]ξ − CAkBΦk,a2ȳ − v

v = Dkȳ.

Therefore, it is seen that ifDk is chosen such that the
matrix (20) is Hurwitz, the above closed-loop system is
exponentially stable.

Remark 3: As a result of Theorem 2, it follows that the
overall closed-loop system, which is obtained from (16),
(18) and (19), is exponentially stable. The single equation
(21) is the closed-loop system, whose system matrix will
become the matrixAk−1 in the next iteration step. ♦

The recursion procedure is now quite obvious. Sincek =
r at the initial step,Ψr,a, Ψr,b and Φr,b are null matrices
(i.e., empty) and the controller (18) becomes just a static
feedbacku = GrHrx (i.e.,Φr,a = Gr) from Assumption 1.
Therefore, we have the Hurwitz matrixAr = A+BGrHr.
By Theorem 2, unmeasurable termCArx is replaced by
the dynamic controller (18) and (19). Now, we regard the
stateη of (18) as the stateλ of (11) (i.e. (6) and (10)) for
the next iteration. (The next step begins with the equation
(11).) In particular, from (10) it is obtained that

Ψr−1,a = − (
CAr−1BΦr,a1

+ [ 0p×p(r−1), (I + CAr−1BΦr,a2)Dr ]
)

Ψr−1,b = −(I + CAr−1BΦr,a2)Dr

Φr−1,a = Φr,a1 + [ 0m×p(r−1), Φr,a2Dr]
Φr−1,b = Φr,a2Dr

where Φr,a1 = Gr−1 and Φr,a2 = Kr. Likewise, the
iteration proceeds until we have a controller of (11) with
k = 0. Therefore, we obtain the gains of (2) as follows:

Ψa = Ψ0,a, Ψb = Ψ0,b, Φa = Φ0,a, Φb = Φ0,b.






ẋ

λ̇
η̇


=




A + BΦk,a1Hk−1 + BΦk,a2DkCAk−1 BΦk,b BΦk,a2Dk

Ψk,a1Hk−1 + Ψk,a2DkCAk−1 Ψk,b Ψk,a2Dk

−CAk−1BΦk,a1Hk−1 − (I+ CAk−1BΦk,a2)DkCAk−1 −CAk−1BΦk,b −(I+ CAk−1BΦk,a2)Dk






x
λ
η


 . (21)

For convenience, we include a formula for the iteration:

Ψk−1,a =




Ψk,a1 + [ 0p(r−k)×p(k−1), Ψk,a2Dk ](−CAk−1BΦk,a1 − [ 0p×p(k−1),
(I + CAk−1BΦk,a2)Dk ]

)



Ψk−1,b =
[

Ψk,b Ψk,a2Dk

−CAk−1BΦk,b −(Ip×p+ CAk−1BΦk,a2)Dk

]

Φk−1,a = Φk,a1 + [0m×p(k−1), Φk,a2Dk]
Φk−1,b =

[
Φk,b, Φk,a2Dk

]
.

III. I LLUSTRATIVE EXAMPLES

Example 1.We illustrate the proposed design method with
a simple numerical example:

ẋ =




0 a 0
0 0 1
0 0 0


 x +




0
0
1


 u

y =
[
1 0 0

]
x

(22)

wherea = 1. The system (22) satisfies Assumption 1 with
r = 2. In fact, with the following control law

u = G2H2x =
[−50 −40 −11

]
H2x, (23)

the eigenvalues of the matrixA2 = A + BG2H2 are given
by {−5,−3± j }. Hence, the closed loop system (22)–(23)
is stable and we obtainG1 =

[−50 −40
]

andK2 = −11
for the iteration.

Now, in order to replace theCA2x-term in H2x as the
initial step, we consider the matrix of (7) for the system
(22). Indeed, withD2 = 30, the matrix (7) is given by




0 1 0 0
0 0 1 11
−50 −40 −11 −121
0 0 1 −19


 (24)

which is Hurwitz.
However, since theCAx-term inH1x is neither measur-

able, we proceed one step further by Theorem 2. From the
previous step, the parameters of (11) can be regarded as

Ψ1,a = [0 − 30], Ψ1,b = −30,
Φ1,a = [−50 − 370], Φ1,b = −330.

(25)

With these parameters the matrixA1 in (14) is given by

A1 =




0 1 0 0
0 0 1 11
−50 −370 0 −330
0 −30 0 −30


 . (26)

Hence, the gainD1 is chosen such that the matrix in (20)
is Hurwitz, which is achieved byD1 = 30.

Therefore, with the following additional dynamics
{

λ̇ = −900y − 30λ− 900η
η̇ = −30y − 30η,

(27)

the stabilizing control law for (22) is obtained by

u = −11150y − 330λ− 11100η. (28)

Figure 1 shows the simulation result (solid curve) of the
proposed controller. The simulation is performed fora = 2,
although its nominal value is1, to see some robustness
property that the proposed controller might have. In the
figure, we added a saturation whose level is 50, and also
compared the plots with the results (dotted curve) obtained
from the classical observer-based control (the Luenberger
observer plus a state feedback) [6]. All the initial conditions
of the systems are set to 1 while all the initial states of the
additional dynamics and the observer are set to 0.

Example 2. Consider the linearized model of a magnetic
ball levitation system [7]:





ẋ1 = x2

ẋ2 = 2800x1 − 19600x3

ẋ3 = −26.667x3 + 2.4242u
ẋ4 = x1 − xc

, ym =




x1

x3

x4


 (29)
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Fig. 1. Simulation Results (proposed: solid).



wherex1 is the distance of the ball from the electromagnet
face; x2 is the velocity of the ball;x3 is the current in
the magnet coil;x4 is the integral of the position error
e = x1 − xc (xc = 7), andu is the input voltage applied
to the coil. The model (29) is obtained by linearizing the
nonlinear dynamics about the pointx1 = 7, x2 = 0, x3 = 1.
In addition, we assume that the statesx1, x3 and x4 are
measurable.

To translate the equilibrium into the origin, we first define
a new variablez =

[
x1 − 7, x2, x3 − 1, x4

]T
. Then,

we can find an LQR controller of the form

uz = −kz = − [
k1 k2 k3 k4

]
z (30)

that stabilizes the system and minimizes the performance
index J =

∫∞
0

(zT Qz + uT
z R̄uz)dt [8]. For example, with

Q = diag[1 0 1 1] and R̄ = 10, the state feedback gain
k is obtained as

k =
[
k1 k2 k3 k4

]
=

[−9.464 −0.179 43.862 −0.316
]
.

(31)

With the controlu = uz + 11, the poles of closed-loop
system are located at{−55.74,−49.38,−27.68,−0.20}.

Now, we will show that the system (29) can be stabilized
by the proposed method without the measurement ofz2

that was used in (30). Note that if we design the additional
system (2) with the outputym, the constructed dynamics
become a system of order 3. Sincez1 is the only state
that should be differentiated, however, we lety = z1 and
uz = u1 + u2 where

u1 = −k1z1 − k2z2, u2 = −k3z3 − k4z4. (32)

By doing this we will show that one dimensional additional
system is enough to stabilize the given system.

With the control inputu2 only, we first get the system
matrices

A=




0 1 0 0
2800 0 −19600 0

0 0 −133.0 0.767
1 0 0 0


, B=




0
0

2.424
0


,

C =
[
1 0 0 0

]
.

(33)

Next, we can write control lawu1 as

u1 = −k1Cz − k2CAz, (34)

from which we can getG1 that is necessary for the design
of the compensator.

From the above equations we can obtainK0 = −k1 and
K1 = −k2, and hence the system (6) is given by

{
λ̇ = −v
ȳ = z1 + λ

(35)

With v = ψȳ for sufficiently large ψ, it can be
seen that the system (33)–(35) is stabilized byu1 =
−k1z1 − k2ψȳ (ψ À 1). The poles of the closed-loop
system forψ = 200 are given by{−258.13,−28.856 ±
j51.467,−16.955,−0.1972}. As a result, we can conclude
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that the system (29) can be stabilized by the following
control input:

u = −k1(x1 − xc)− k3(x3 − 1)− k4x4 − k2ψȳ + 11.

Figure 2 shows the simulation results with the initial
conditionx(0) = [14, 0, 0, 0] andxc = 7. The performance
of the proposed controller is compared with the controller
(30) that requires the velocity information. In this figure,
solid and dotted curves represent the result of the proposed
controller and that of the controller (30), respectively.

IV. CONCLUSION

In this paper, we have presented a new recursive algo-
rithm to design a dynamic output feedback control law
which stabilizes linear time-invariant systems that can be
stabilized by a static feedback of the output and its deriva-
tives. Examples with simulation results are presented. From
the proposed recursion algorithm, it is not difficult to
develop an automated design package on a PC.
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