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Abstract— This paper presents a new insight into the
problem of checking the stability of matrix families
formed by the convex combination of Hurwitz stable
matrices. The paper reviews the necessary and suffi-
cient vertex solution offered by the author for testing
the robust stability of this family and highlights the
difference between the multiple vertex (i.e. number of
vertex matrices being≥ 3) case and the two vertex case.
New insight is provided not only into this difference
between these two cases, but also on the importance
of computational awareness in the problem formulation
and the resulting differences in the vertex algorithm,
thereby clarifying many subtleties surrounding the pro-
posed algorithm and helping to explain why it has been
such a difficult task to understand and solve all this
time. Examples illustrating the application of the vertex
algorithm are given. Finally, some conclusions are drawn
along with future research directions.
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I. INTRODUCTION

The problem of analyzing the stability of matrix
families arises in many applications of systems and
control theory [1]. The most common matrix family
of interest is the family generated by a convex combi-
nation of arbitrary Hurwitz stable matrices. Consider
the matrix family given by

A =

{
A =

h∑
i=1

αiA
i, αi > 0,

∑
αi = 1

}
, (1)

whereh is an integer and all the vertex matricesAi

are Hurwitz stable (i.e. have eigenvalues with negative
real parts). Then the issue of research is to ascertain
if all the matrices belonging to the above convex
combination are also Hurwitz stable or not. The above

problem formulation of checking the Hurwitz stability
of a convex combination ofarbitrary Hurwitz stable
matrices has not been researched even though it turns
out to be a problem of interest in many applications
such as linear switched systems [2].
The author recently presented a necessary and suffi-
cient vertex algorithm as a solution to this problem
in the journal publication [3]. From this solution, it
is clear that there is an interesting and important
difference between the multiple vertex case (h ≥ 3)
and the two vertex case (h = 2). In this paper, we
delve deeper into the proof of the theorem provided in
[3] and clearly explain the reasons for the difference in
the solution for these two cases. In addition, this new
insight and emphasis on this difference between these
two cases is worth in its own right (as a separate paper
like this) because it not only alerts researchers about
the pitfalls in specializing multiple vertex result to two
vertex result as well as generalizing two vertex result
to the multiple vertex case, but also helps to apply
these fundamental concepts that differentiate these two
cases to any future, new problem formulation that
involves checking the stability of matrix families. With
this backdrop, the paper is organized as follows. In
the next section, we briefly introduce the problem
formulation of [3]. Then in section III, we revisit
the strategy of converting the stability problem to
that of checking nonsingularity via the ‘Kronecker
Lyapunov’ matrix space, along with the preliminaries
needed to state all the upcoming theorems.In section
IV, we review the ‘vertex solution’ that was presented
in [3], clearly restating the theorems that distinguish
between the two vertex case and multiple vertex case.
In section V, a new problem formulation with com-
putational awareness is posed and the corresponding
modification in the vertex algorithm is discussed. Then
in section VI, few examples are presented illustrating



the difference between these two cases. Finally in
section VII, some concluding remarks are presented
along with future directions of research.

II. PROBLEM FORMULATION A:CONCEPTUAL

CASE:

A. Two Vertex Case:

First, let us consider the two vertex case, i.e.

A =
{
A = α1A

1 + α2A
2, αi > 0,

∑
αi = 1

}
,(2)

In this case, it may be noted thatα2 = 1−α1 (or α1

= 1 − α2) and thus there is only one freely varying
coefficient.

B. Multiple Vertex Case:

Then, let us consider the multiple vertex case, i.e.

A =

{
A =

h∑
i=1

αiA
i, αi > 0,

∑
αi = 1

}
, (3)

For better exposition and ease in notation, from now
on let us takeh = 3. Thus, consider

A =
{
A = α1A

1 + α2A
2 + α3A

3
}

, (4)

where0 < αi ¡ 1, and
∑

αi = 1.
Note that in this case,two αs are free or arbitrary with
the third coefficient being fixed. In addition,any two
αs are free with the third one being fixed. It is this
feature that becomes very crucial in explaining why
two vertex case algorithm is different from multiple
case algorithm. This will become clear in the devel-
opment of proof of the final vertex algorithm for these
two cases. Also another important point to note is that
theseαs are in the open interval(0, 1). For this reason,
this problem formulation is labelled as ‘conceptual’.
Note that in the two vertex case, there is a rigid
constraint on the two coefficients (of adding upto
one),which can be geometrically viewed as an ‘edge’
in the matrix space. However, in the multiple vertex
case, the ‘connection’ between anytwovertex matrices
is not through rigid constraint (of those two coeffi-
cients adding up to one) but instead it is as though all
these are ‘virtual edges’, ‘virtual faces’ etc and are all
‘collapsible’, and only the h vertices together keep the
‘polytope’ shape, because only the summation of all
these h coefficients together is constrained but there
is no constraint between any group of matrices less
than h. In other words, between any group of matrices
with less than h vertices, the family is a ‘positive real
linear combination’. This subtle point of the existence

of a positive real linear combination family within
the convex combination of multiple vertices (and the
absence of it in the two vertex case) can make a
difference in the final solution. It is this aspect we
want to elaborate in the next few sections.

III. STABILITY PROBLEM AS A NONSINGULARITY

PROBLEM VIA THE ‘K RONECKERLYAPUNOV’
MATRIX :

It is known from references [4], [5], [6], [7], [8]
that the stability assessment problems posed in the
introduction for both formulations can be converted to
a nonsingularity problem involving Kronecker based
matrix operations.The above cited literature presents
these conditions in terms of three matrices (each of
which employs different Kronecker based operations
) namely: (i) Kronecker Sum matrix (denoted as
K matrix) (ii) Lyapunov matrix (later in this paper
labeled as ‘Kronecker Lyapunov’ matrix to distinguish
it from the standard and familiar Lyapunov matrix
equation solution) denoted by L and iii) ‘Bialternate
Sum’ matrix, denoted by B matrix. In this research,
we consider only the second of these matrices i.e. the
‘Kronecker Lyapunov’ matrix denoted byL i.e.

L = A† = A× In + In ×A (5)

where ‘×’ denotes an operation similar to the
Kronecker Sum (see Jury [7]) for details ). In
order to conserve notation, henceforth, we will
label the matrix given in ( 5) as the ‘Kronecker
Lyapunov’ matrix and denote the matrix operation as
‘dagger’ operation. Note thatL is a square matrix
of dimensionm = 1

2n(n + 1),whose eigenvalues are
the pairwise summation of the eigenvalues ofA. In
Tesi and Vicino [9] and in Jury [7] , simple computer
amenable methodologies are given to formL matrix
from the given matrix A.
Example 1: For n=2,

A =

[
a11 a12

a21 a22

]
with µ1 and µ2 as eigenvalues, the Kronecker Lya-
punov matrixL is given by

L =

 2a11 2a12 0
a21 a11 + a22 a12

0 2a21 2a22


with eigenvaluesµ1 + µ2, 2µ1 and2µ2.
Note that there is an alternative form for the above L
matrix where the elementaij could be interchanged
with the elementaji.



Mathematical Preliminaries Related to ‘Kronecker
Lyapunov’ Operation:

• Property 1:
For two square matricesA1 andA2,

(k1A1 + k2A2)† = k1A1
† + k2A2

† (6)

wherek1 andk2 are scalars.
We define the vertex matricesLi as follows:

Li = (Ai)†. (7)

Machinery and Concepts Needed to State the Main
Theorems:

In this section we present the necessary concepts
needed to set the stage to state the ‘Theorems’ of this
paper. The following holds for anyh ≥ 2.

‘Virtual Center’ matrix:: Let Lvc,h denote the
‘virtual center’ matrix formed with all the h vertex
matricesL1 ,L2..Lh taken together at a time given by

Lvc,h = (L1 + L2 + L3 + ...Lh) (8)

The corresponding ‘virtual center’(or ‘summation’)
matrix Avc,h can also be easily defined for the original
matrix space.
A Necessary Condition For Stability: All the matri-
ces belonging to the given matrix family are Hurwitz
stableonly if
the ‘virtual center’ matrixAvc,h is Hurwitz stable.
So in the rest of the statements of the main theorems,
we assume that this necessary condition is satisfied.
In order to state the theorems in later sections, we
need a set of ‘point’ matrices labeled ‘Kronecker
Nonsingularity Matrices’ as follows:
‘Kronecker Nonsingularity’ Matrices: These special
matrices are ‘point’ matrices given by

L(ns;h; j) = −[(L(vc;h))−1Lj ] (9)

(j = 1, 2, ..h) (10)

For example, in a 3 vertex case,L(ns; 3; 1) denotes
the matrix−[(L1 + L2 + L3)−1L1] and L(ns; 3; 2)
denotes the matrix−[(L1 +L2 +L3)−1L2]. Note that
there are h KN matrices. For the two vertex case, the
two KN matrices are given by−[(L1 +L2)−1L1] and
−[(L1 + L2)−1L2].

• ‘Real Axis Stability’: We say a matrix is Real
Axis Stable if its real eigenvalues are all negative.

• Another Necessary Condition [3]: The matrix
family is stable only if all the KN matrices are
real axis stable.

IV. N ECESSARY ANDSUFFICIENT VERTEX

SOLUTIONS FORCHECKING THE ROBUST

STABILITY OF A CONVEX COMBINATION OF

HURWITZ STABLE MATRICES’:[3]

A. Theorem for Two Vertex Case:

Theorem 1:All the matrices belonging to the con-
vex combination matrix family (with vertex matrices
A1 and A2 and the ‘virtual center’ matrixA1 + A2

being Hurwitz stable) are Hurwitz stable
if and only if
the two ‘Kronecker Nonsingularity Matrices’ (KN
matrices), namely

−[(L1 + L2)−1L1] and (11)

−[(L1 + L2)−1L2] (12)

are Real Axis Stable.
Remark 1: The above theorem does not shed any light
on the behavior of the complex eigenvalues of the two
KN matrices involved. It leaves us with the question of
whether one can have a Hurwitz stable matrix family
with only negative real eigenvalues but with positive
real part eigenvalues ineachof the two KN matrices.
But the next theorem answers that question (and rules
out that possibility).
Thus we now state an alternative theorem for the two
vertex case.

B. Alternative Theorem for Two Vertex Case:

Theorem 2:All the matrices belonging to the con-
vex combination matrix family (with vertex matrices
A1 and A2 and the ‘virtual center’ matrixA1 + A2

being Hurwitz stable) are Hurwitz stable
if and only if
out of the two ‘Kronecker Nonsingularity Matrices’
(KN matrices), namely

−[(L1 + L2)−1L1] and (13)

−[(L1 + L2)−1L2] (14)

one of them is Hurwitz stable and the other is real
axis stable.
Next, we switch our attention to the multiple vertex
case.

1) Theorem for the Multiple Vertex Case::

• A Necessary Condition[3]: The matrix family is
stable only if(h − 1) KN matrices are Hurwitz
stable and the other one is real axis stable.

Now we state the main result taken from [3] special-
izing it for the present case.



Theorem 3:All the matrices belonging to the con-
vex combination matrix family (with vertex matrices
Ai and the ‘virtual center’ matrixA1+A2+A3+ ..Ah

being Hurwitz stable) are Hurwitz stable
if and only if
the h ‘Kronecker Nonsingularity Matrices’ (KN ma-
trices), namely

L(ns;h; j) = −[(L(vc;h))−1Lj ] (15)

(j = 1, 2, ..h) (16)

are all Hurwitz stable.
For example, forh = 3 case, the above theorem reads
as follows:

2) Illustrative Theorem for Three Vertex Case::
Theorem 4:All the matrices belonging to the con-

vex combination matrix family (with vertex matrices
A1, A2 and A3 and the ‘virtual center’ matrixA1 +
A2 + A3 being Hurwitz stable) are Hurwitz stable
if and only if
the three ‘Kronecker Nonsingularity Matrices’ (KN
matrices), namely

−[(L1 + L2 + L3)−1L1] and (17)

−[(L1 + L2 + L3)−1L2] and (18)

−[(L1 + L2 + L3)−1L3] (19)

are all Hurwitz stable.
Proof: It is available in [3]. However, here we dis-
cuss some salient points of that proof. In [3], it
is shown that, because of the special nature of the
dagger space matrices, in the linear domain of dagger
space (i.e. addition of matrices), nonsingularity and
stability are equivalent. In other words, the real parts
of complex eigenvalues and the real eigenvalues are
coupled and for nonsingularity (i.e. stability) the real
parts are required to behave the same way as the
real eigenvalues. Then the necessity of stability of the
product domain KN matrices is established based on
the generalized eigenvalue problem of the ‘virtual ray’
matrix Lvc + ρLi, where the positive scalar variableρ
varies within the open interval(0,∞).

V. COMPUTATIONAL AWARENESS IN THE

PROBLEM FORMULATION AND SOLUTION:

It is important to realize that the vertex solution
presented for problem formulation A can only be
proved through analytical and conceptual arguments as
is done in [3] and may not yield accurate results all the

time for all problems because in a computational envi-
ronment, there is no way to implement the open inter-
val nature ofαs (andρ) described above. Interestingly,
the open interval nature ofαs (andρ) is what imparts
the Hurwitz stability of KN matrices as a necessity.
So in a computational environment, while the(h− 1)
KN matrices being Hurwitz stable as a necessity can
be achieved, there is a possibility that this necessity
may be lost for the lone remaining KN matrix. This
is because in the computational implementation,αs
can only belong to a semiclosed interval with[ε, 1)
whereε is a very small positive scalar and the moment
this happens, the necessity of stability of the lone KN
matrix may be lost because the theoretically present
strong coupling between real and real part eigenvalues
in the KN matrix may not be manifested. Whether this
happens or not depends on the conditioning of the
matricesLi andLvc.This possibility exists especially
when these matrices are near singularity because the
KN matrix has an inverse operation,and a product
operation and finally the operation of finding the
eigenvalues. In the rare case this happens, the dilemma
would be to decide whether the presence of positive
real parts of any complex pair is due to instability
in the family or is due to weak coupling between
the real and real parts of that specific KN matrix,
necessarily present in a computational environment.
Fortunately, there is a simple way to decide. If the
sum of the positive real parts of the complex conjugate
pair in the KN matrix is less than a ‘coupling bound’,
κ, then it is a case of weak coupling and then for
that case, that complex conjugate pair with positive
real part does not contribute to the stability condition.
Obviously, this boundκ is very much dependent on
the nature and conditioning of the vertex and virtual
center matrices for the problem under consideration.
For the 3 vertex problem, when the vertex matrices are
arbitrary Hurwitz stable matrices, this coupling bound
κ is shown to be equal tom/3. Because of space
considerations, the derivation of this bound is not
presented here. Similar condition can be obtained for
the other multiple vertex case as well. An eigenvalue
distribution in which all the eigenvalues except for
one complex conjugate pair have negative real and
real parts and the coupling boundκ on the positive
real part is known (to render it inconsequential), can
be labelled as ‘imminently stable’. Suppose we label
the concepts of ‘imminent stability’ and ‘Hurwitz
stability’ together as ‘virtual stability’. That is, ‘virtual
stability’ includes both ‘Hurwitz stability’ as well as



‘imminent stability’. Then, to summarize, we have a
new computationally aware problem formulation and
the corresponding vertex solution as follows:

A. Problem Formulation B: With Computational
Awareness:

Now, consider the three vertex problem with

A =
{
A = α1A

1 + α2A
2 + α3A

3
}

(20)

whereεi ≤ αi < 1 and,
∑

αi = 1.
For this case the vertex solution gets modified as
follows:

Theorem 5:All the matrices belonging to the con-
vex combination matrix family (with vertex matrices
A1, A2 and A3 and the ‘virtual center’ matrixA1 +
A2 + A3 being Hurwitz stable) are Hurwitz stable
if and only if
out of the three ‘Kronecker Nonsingularity Matrices’
(KN matrices), two are Hurwitz stable and the other
one is ‘virtually stable’.
Note that the computation of the ‘coupling bound’,κ
is depenedent on the nature of vertex matrices. A
method to compute this bound is presented in a future
conference paper(currently under review). Note that
this type of situation cannot occur for the two vertex
problem.

VI. I LLUSTRATIVE EXAMPLES:

Example 1:Let us consider the convex combination
of two ‘vertex’ matrices given by

A1 =

[
−1.1 −1

5 −4.1

]
A2 =

[
−1.1 5
−1 −4.1

]
(21)

The two vertex matrices are Hurwitz stable and the
‘Virtual Center’ matrix is also verified to be Hurwitz
stable. The two ‘Kronecker Nonsingularity Matrices’
−(L1 +L2)−1L1 and−(L1 +L2)−1L2 are seen to be
real axis stable. Also it can be seen that one of the
KN matrices is Hurwitz stable. In fact in this problem
both KN matrices happen to be Hurwitz stable. From
the necessary and sufficient conditions proposed in the
Main theorem, we thus conclude that the above convex
combination of matrices is stable.
Example 2: The author would like to thank one
anonymous researcher who provided this as well as the
next example: Let us consider a convex combination
of two arbitrary Hurwitz stable matrices given by

A1 =

 0 1 0
−1 0 −0.5
0 0.5 −1

 A2 =

 0 1 0.1
−1 0 0.3
−0.1 −0.3 −1


(22)

The two vertex matrices are Hurwitz stable and the
‘Virtual Center’ matrix is also verified to be Hurwitz
stable. The two ‘Kronecker Nonsingularity Matrices’
−(L1 +L2)−1L1 and−(L1 +L2)−1L2 are seen to be
real axis stable. In addition the KN matrix−(L1 +
L2)−1L1 is seen to be Hurwitz stable. It is interesting
to observe that the KN matrix−(L1 + L2)−1L2 is
real axis stable but unstable with positive real part
eigenvalues. However that is inconsequential because
from the necessary and sufficient conditions proposed
in the Main theorem, we can conclude that the above
convex combination of matrices is Hurwitz stable.
This fact can of course be independently verified by
applying the result of [4].
Example 3:Now let us consider a convex combination
of three Hurwitz stable matrices given by

A1 =

 0 1 −0.25
−1 0 0
0.25 0 −1


A2 =

 0 1 0
−1 0 −0.5
0 0.5 −1


A3 =

 0 1 0.1
−1 0 0.3
−0.1 −0.3 −1


The three vertex matrices are Hurwitz stable. Note
that the vertex matricesA2 and A3 are same as
the two vertex matrices considered in the previous
example. Considering two vertex matrices at a time,
it can be verified that the individual ‘edge’ matrix
families are Hurwitz stable by applying the theorem
of two vertex case of the paper. But now considering
all three vertex matrices at a time, we apply the
theorem corresponding to the multiple vertex case. So
we form the ‘Virtual Center’ matrix(L1 + L2 + L3)
which is verified to be Hurwitz stable. Then we form
the three ‘Kronecker Nonsingularity (KN) Matrices’,
namely−(L1 +L2 +L3)−1L1, −(L1 +L2 +L3)−1L2

and−(L1 + L2 + L3)−1L3. It turns out that one of
these KN matrices is unstable with one positive real
part complex conjugate pair. The summation of these
positive real parts is 2.4 which is greater than 2 (m = 6
for this example). Hence we conclude that the above
convex combination matrix family is unstable. Indeed,
it can be seen that there are some unstable interior
matrices such as0.2A1 + 0.3A2 + 0.5A3.
Examples 2 and 3 clearly illustrate the difference in
the proof between the multiple vertex case and the two



vertex case, which is the main emphasis of this paper.

VII. C ONCLUSIONS:

This paper presents a new insight into the problem
of checking the stability of matrix families formed by
the convex combination of Hurwitz stable matrices.
The paper reviews the necessary and sufficient vertex
solution offered by the author for testing the robust
stability of this family and highlights the difference
between the multiple vertex (i.e. number of vertex
matrices being≥ 3) case and the two vertex case.
Future research points to looking for methods to
assess the bound on the coupling to guarantee virtual
stability, which needs to consider the specific nature
(conditioning) of the vertex matrices and the interre-
lationship (if any present) between these matrices. In
other words, the result for the case of arbitrary Hurwitz
stable convex combination problem solution may turn
out to be different from the convex combinations
generated by interval parameters,a case in which the
vertex matrices are interrelated.
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