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A note on asymptotic stabilization of linear

systems by periodic, piecewise constant, output
feedback

Hui Ping Wong and Alessandro Astolfi'

Abstract—This note studies the asymptotic stabilization
problem for controllable and observable, single-input single-
output, linear, time-invariant, continuous-time systems by means
of memoryless output feedback of the form u(?) = k(t) y(¥), with
k(f) periodic and piecewise constant. A necessary and sufficient
condition, together with a simpler to test sufficient condition,
given in terms of a bilinear matrix inequality, is presented. A
simple example completes the paper.

1. INTRODUCTION

Consider a controllable and observable, single-input single-

output, linear, time-invariant, continuous-time system
described by equations of the form

x(t) = Fx(1) + gu(1), y(#) = hx(z) M
with state  x(¢) € R", output p(¢)€R and input

u(t) € R. If the uncontrolled system X(¢) = Fx(f) is not

asymptotically stable, then it is natural to address the
feedback stabilization problem. Classically, this problem has
been addressed in two ways. If the state of the system is
measurable, then, by controllability, there exists a static state
feedback control law asymptotically stabilizing the system. If
only the output is available for feedback, then the problem
can be studied from several points of views.

The simplest approach is to select a static output feedback
control law, i.e. a control law described by equations of the

form u(t) =k y(t) . However, it is well known, see [4] for

detail, that such an approach is in general inadequate, i.e. the
set of systems which are stabilizable by static output feedback
is non-generic. A second possible approach is to use a
classical observer based design, which is feasible by
controllability and observability of the system. Alternatively,
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one can use generalized sampled-data output feedback with a
suitable sampling period. It has been shown that the use of
such control laws enables one to deal with problems
otherwise unsolvable with time-invariant output controllers,
such as pole assignment, simultaneous stabilization of a finite
number of plants and gain margin improvement, see [7].
However, such control laws cannot be considered as static
output feedback controllers: indeed they are at all effect
dynamical systems. The study of benefits and inherent
limitations of generalized sampled-data control systems are
on their way and some aspects are still to be understood [8].
Finally, it has been shown in [2] that the use of time-varying
memoryless output feedback provides a simple stabilization
tool which possesses more flexibility than static output
feedback: there are systems which are not stabilizable by
static output feedback, but which are stabilizable by time-
varying memoryless output feedback. The problem of
stabilization by means of time-varying memoryless output
feedback has been presented in [1] as one of the challenging
open problems in systems and control. Therein it has been
argued that the problem is not only interesting per-se, but it
has several links to controllability and stabilizability problems
for bilinear systems (hence it may have interesting
applications in the control of quantum systems, see e.g. [9],
and nonholonomic systems, see [1] and references therein),
and can be also generalized in several directions. Despite
these interesting implications and connections, with the
exception of the early paper [5] (and related results), which
however deals with discrete-time systems, the problem of
asymptotic  stabilization by means of time-varying
memoryless output feedback has received little attention. This
is due to the complexity of the problem and the difficulty in
providing simple characterizations. Partial results for special
classes of systems have been derived. In particular, the recent
paper [2] studied the effect of a time-varying memoryless
output feedback of the form u(¢) = (k, + kywcos(w?))y(¢) on a
second-order, linear time-invariant, continuous-time system.
The main tools used in [2] are averaging theory and time-
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varying coordinates transformations. The result in [2] has
been extended to three-dimensional systems in [6]. In the
present paper we address the same problem, but for general n-
dimensional systems. Unlike [2,6], we consider control laws
described by equations of the form u(?) = k(?) y(t), with k(¢)
periodic and piecewise constant. We will provide a simple,
though difficult to test, characterization, and a somewhat
simpler to test sufficient condition. As a result, this short
paper can be regarded as a first step toward the solution of the
general problems raised in [1].

The paper is organized as follows. In Section 2 we pose the
problem addressed and we provide a preliminary result. In
Section 3 we present the main result of the paper, namely a
sufficient condition for the solvability of the considered
stabilization problem, and in Section 4 we illustrate the theory
with a few examples. Finally, Section 5 contains some
concluding remarks.

II. PROBLEM STATEMENT AND A PRELIMINARY RESULT

Consider the system (1) and a time-varying memoryless
output feedback described by

u(t) = k(1)) o
with
if 0<¢t<ZL
wo={ o G)
fo if L<e<T
/1, and f; constant, 7>0 and
k(i +T)=k(2). )

The problem addressed in this paper can be stated as follows.
See also [1] for further details.

Problem 1. Given a controllable and observable, single-input
single-output, linear, time-invariant, continuous-time system
described by equations (1) and the control law (2), with k(z)
such that (3) and (4) hold, find (if possible) constants 7' > 0,
fi, and f; such that the closed-loop system is asymptotically
stable.

Problem 1 can be given a very simple characterization, as
illustrated in the following statement, the proof of which is
trivial hence omitted.

Lemma 1. Problem 1 is solvable if and only if there exist
T >0, f, and f, such that all eigenvalues of the matrix

M(f;, /) =expl(F + ghf)) Z)ext(F + ghf;) L) (5)

have modulus strictly less than one.

Despite its simplicity, the result in Lemma 1 is not easy to
use, i.e. the computation of 7 > 0, f;, and f, has to be
performed numerically, e.g. using optimization algorithms.
Moreover, it is not easy to decide a priori on the existence of
constants 7 > 0, f|, and f, such that condition (5) holds. As a
result, Lemma 1 is of limited practical interest. Hence, in what
follows we present a simpler to test sufficient condition for
the solvability of Problem 1.

III. MAIN RESULTS

Since system (1) is controllable we may assume, without loss
of generality, that it is in controllability canonical form,
namely

0 1 0
x(t) = x(1) + 8 u(t) = Ax(t) + bu(t),
y(0)=le, ¢,y Je(0) = ex(@).

(6)

Note now that the output feedback control law described by
equations (2) and (3) can be rewritten as

u(t) = (ky + k,S(£)y(0) %
with

ky=3(fi+f)  k=3(/i-1) (8)

and S(%)is as depicted in Figure 1, where for future

reference we also plot its integral R(+), with R(0) = 0.

Substituting equation (7) into equation (6) yields the closed-
loop system

(0 =(A, + A, (O)x() ©)
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where

0 1
10
A, = N (10)
a, +kocy o oa,, tkee,
and
0 e 0
: : 11
Ay (D)= 0 0 an
kicyS(F) ke, ,S($)
t
A S(T)
1
» !
T2 T 2T
-1
t
A R(T)
T2 A
» !
17/2 T 2T

Figure 1: Graphs of the functions S(4) and R(£) .

In what follows we study the properties of system (9). To this
end, note that it is necessary to distinguish between the
general case c,.1 # 0, and the non-generic case c,.;= 0.

A. Thecasec, ;0

Consider system (9) with ¢,.; # 0 and define the coordinates
transformation

x(t) =®,(0)z(1) (12)

where @ (#) is the solution of the matrix differential

equation (i)n(t) =A,)P, () with ® (1)=1,1ie.

1 0
D (1=
S-(exp)-1) -+ 2(expl)-1) expp)

(13)

where

V= klc,HR(%) ) (14)

Define now

A* =exp(tk,c, R(£)) -1 (15)

and note that the matrices describing the coordinates
transformation and its inverse can be rewritten as

@, (1) =2-be+l, (16)
and
®.'()=2-be+1,. (17)

As a result, after simple calculations, it is easy to see that in
the new coordinates the closed-loop system is described by
equations of the form

0 1
2(t) = 0 1 (1) (18)
Gy o o B
_pO e Ry e pnfl_
with
SAT fori=0..m-2
g, =9 , (19)
AT+1 fori=n-1
and

1436



P = +he) Hay—3—a,, . %N i=0
p=@ +koc)+(a —, - 47‘2)& %N i=1.n-2
p=(a,,+kc, )2 A+ i=n—1.

(20)

System (18) can be studied using classical averaging theory
[3]. To this end, let

E*= HOT exp(£ ke, R(1))dt @1)
and note that

E* = klc,, —exp(ty tkc, \T)sinh(kc, \T) (22)
and

E'E = (k ——rsinh(3kc, 1T))z (23)

Therefore, for any (finite) 7, E'E is positive for any
=0, and

+o00. Hence

k, € R, has a minimum value equal to one when &,
tends towards +ocowhen k; tends towards
E"E™>1 for k, € R . This implies that we can assign any
number to #=FE'E —1by an

non-negative real

appropriate selection of ;.

Using the above definitions, the averaged closed-loop system
is given by

0 1

Z, () = 0 1 Z,, (1) 24

50 ¢7H

Dy o Do
with
— |Z(E*-1) i=0.n-2
qf{””i( . (25)

E i=n-1

and

ﬁi=(a0+koco)+(ao—°;‘f:+lf— — 1)(E -1)-
—Cjc”’j (E"-1) i=0
P =(a, +kyc))+(a,—=F—a, -+ )E —1)-
G (E* -1) i=l.n-2
=(a,, +ke, ) )-2=(E7-1)  i=n-L
(26)

To study the stability of such an averaged system consider the
characteristic polynomial associated with system (24) given

by

A+a, A+ +ad+a, 27)
with
a,,=—(a,, +kgc, )

=—(a, +kec,)+\a,., <= —%+i{“—2?—ai)y fori=1..n-2

C C
aoz_(ao"'koco)"'( N +- 20_ao),u

(28)

Remark 1. The coefficients of the characteristic polynomial
(27) are only function of g =ETE” —1 and not of

E"and E~ separately. To see that this is the case, denote
with " the matrix in equation (24) and compute the
determinant of Al - I" using the cofactors of the last column.

Averaging theory provides a sufficient condition for the
original closed-loop system (9) to be asymptotically stable,
namely if the averaged -closed-loop system (24) is
asymptotically stable, then the closed-loop system (9) is
asymptotically stable provided that T is selected sufficiently
small. We conclude this discussion with the following formal
statement.

Proposition 1. Consider the controllable and observable,
single-input single-output, linear, time-invariant, continuous-
time system (6). Let ¢, # 0. There exists a periodic piecewise
constant output feedback described by equation (7) that
renders the closed-loop system asymptotically stable if there

exist constants k, € R and y € [0,40) , and a Hermitian,

positive definite matrix P =P such that
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[ P =T e
ATP+PA+kJATP+PA%4{A‘P+PA)<O

(29)
where
0 1
A= , 30
0 1 (30)
aO an—l
0 - -~ 0
A =bc = , 31
0 - -~ 0 G
CO cn—l
0 . . 0
A= 3
0 o 0 (32)
—7 Vo O
with
a, =+ —‘Zj*zi" —-a, fori=0
17, s g fori=1.a-2.
(33)

Remark 2. The result in Proposition 1 can be re-interpreted as
follows. Problem 1 is solvable if the (standard) static output
feedback problem for the system

0 1 0
(1) | () + ° O
x(t) = X u
_ao DY DY an71 1
c DY c C
vio=| }x(t)
__ 7/0 - 71172 O
is solvable with a feedback gain
K=[k k] (3%)

such that k, > 0. This implies that the effect of a time-
varying feedback can be understood as the addition of a
further measurable signal which is available for feedback.
Note however that the static output feedback stabilization
problem for system (34) has to satisfy the gain constraint

k, =2 0. Following this observation one may be tempted to

conclude that if the function k(%) is periodic with 7 different
levels, then the resulting stabilization problem with
memoryless periodic output feedback may be re-cast as a
static output feedback stabilization problem for an auxiliary
system with 7 outputs. This is unfortunately not the case. In
fact it can be shown that the only quantities which play a role
in establishing the sufficient condition in Proposition 1 are the
mean value and the peak-to-peak value of k(#), and these are

uniquely related to the constants k&, and £ .

Remark 3. Equation (29) is a bilinear matrix inequality

(BMLI), in the unknown P, k, and ¢, hence it is in general

hard to solve. Note also that selecting ££ = 0 yields the BMI

associated with a (standard) static feedback

stabilization problem.

output

Remark 4. A simple computation shows that, for two
dimensional systems, the condition in Proposition 1 reduces
to the condition given in Theorem 1 of [2]. Note however that
therein a different structure for the time-varying gain is
assumed: the gain is composed of a constant term and of a
sinusoidal term. This implies that the particular structure of
the feedback gain is not relevant, and only its average and its
peak-to-peak value are of interest. This conclusion should be
not surprising, as the sufficient conditions are derived using
averaging theory.

B. Thecasec,.;# 0

In the non-generic case c,.; = 0 it is possible to repeat, with
proper modifications, the same discussion carried out in
Section 3.1 obtaining the following result.

Proposition 2. Consider the controllable and observable,
single-input single-output, linear, time-invariant, continuous-
time system (6). Let ¢,.; = 0. There exists a periodic piecewise
constant output feedback described by equation (7) that
renders the closed-loop system asymptotically stable if there

exist constants k; € R and  €[0,+00) and a Hermitian,

positive definite matrix P = P such that
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S — =T _—
ATP+PA+k0(A]TP+PA1)+y(A] P+PA]j <0

(36)
with A as defined in (30),
0 -+ -+ 0
Xl:bc: 0 e 0l @7
o c,, 0
and
0 . 0
Zl | o . 0l (38)
-7 ~7ua2 O
where
7 = 25CoCrn (le)2 i=0 59
l ﬁcicn_z(le)z i=1l.n-2.

Remark 5 The non-generic case c,.; = 0 can not be deduced
from the generic case discussed in Section 3.1 simply letting
¢,.1= 0 in equations (31) and (32). In fact, the matrices therein
are not defined for ¢,.; = 0. This is due to the fact that the
solutions  of the  matrix  differential  equation

® (1)=A, ()@, (f)with ® _(0)=1_ in the case c, =

0 and in the case of nonzero ¢, are qualitatively different.

IV. A SIMPLE EXAMPLE

To illustrate the general theory developed we discuss a simple
example. Consider the system

01 0 0
=10 0 1 [x()+|0u@
2 -1 -3 1

vy =[-1.6 0.8 2]x@)

with poles at s=0.618, s=-1.6 and s=-2.000, and zeros at s=
0.71 and s=-1.1. This system is not stabilizable using static

output feedback. In fact, selecting u(f)=ky(¢), with

k =1.25 yields a closed-loop system with two poles for s=0,
whereas any other selection of k yields a closed-loop system

with at least one pole with positive real part. Nevertheless, it
is easy to show that condition (29) of Proposition 1 holds with

k=125 and g any strictly positive constant, i.e. the

system is asymptotically stabilizable by periodic memoryless
output feedback.

V. CONCLUSION

This paper has dealt with the asymptotic stabilization problem
for a controllable and observable, single-input, single-output,
linear, time-invariant, continuous-time system by means of
periodic piecewise constant output feedback described by
equations (2), (3) and (4). By applying averaging theory, a
sufficient condition has been obtained. The theory has been
illustrated with two simple examples showing the applicability
of Propositions 1 and 2, as well as their shortcomings.
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