
Synthesis of An Event Based Supervisor For Deadlock Avoidance
In Semiconductor Manufacturing Systems

†
Wenle Zhang

School of Electrical Engineering and
Computer Science
Ohio University

Athens, Ohio 45701

Ziqiang John Mao
Intel Corporation

California Technology Manufacturing
2200 Mission College Blvd.

Santa Clara, CA 95052

† Corresponding author. Phone: 740-597-1481, Fax: 740-593-0007,
Email: zhangw@bobcat.ent.ohiou.edu

Abstract With the emerging of highly automated and flexible
manufacturing systems in semiconductor fabrication, reliability
and optimal productivity of such systems require very intelligent
and complex control systems. Deadlock issue arises easily in
these systems due to shared equipment usage and high production
flexibility. This paper presents a new event-based deadlock
avoidance supervisor. The supervisor is able to efficiently and
smartly avoid the deadlock state space explosion problem. The
method is built upon a directed graph model of process flows.
Concepts such as compound events, operation strings and
deadlock strings are introduced. Major features in the proposed
method includes: i) it enables the optimal deadlock free operation
of regular systems; and ii) it runs in polynomial time (fast online
computation) provided that the set of deadlock strings is calculated
offline. Examples are provided to show the effectiveness of the
method.

Keywords: semiconductor manufacturing system, discrete event,
digraph, circuit, deadlock avoidance.

1. Introduction
Currently productivity and equipment utilization is critical in
semiconductor industry to reduce the cost of product and support
decreasing trend of average sale price (ASP). The goal of
manufacturing scheduling and deadlock avoidance is to ensure an
optimal solution for the manufacturing operations that maximizes
product output, equipment utilization and availability; and
minimizes the wafer process throughput-time and cost. Optimal
scheduling of these working entities can have as a big impact at
millions of dollars per year.

The manufacturing operation is a process with equipment, wafers,
and technicians. At each step, if any one of them is not available, a
wafer processing step cannot continue. Many problems exist in
manufacturing, such as, i) equipment waits for wafers; ii) wafers
wait for equipment; iii) tool waits for a technician’s response
(setup, un-loading, assist, etc.); iv) wafers and technicians are
available, but tool is idle and waits for loading. For example, the
multi-million dollar lithographic equipment is the key bottleneck
components in a fab. The wafers to be processed in
photolithography step come from different process functional
areas such as diffusion, thin film, polish etc. The optimized
scheduling of wafer movement and litho equipment utilization are
critical to the total throughput. Also, the wafers from different
areas into one area can encounter traffic jam and slow down the
process flow.

One way to minimize the throughput time is to increase the
quantity of capital. After increasing the number of very
expensive equipments, more equipment idle time is observed. A
fab (fabrication site) is always equipped with certain number of
similar equipment. For example, a Fab may have 10-20

lithography steppers/scanners. So the minimization of throughput
time and minimization of equipment idle time and cost requires a
balanced optimization on both. Also, with minimized number of
machines, a deadlock-free wafer flow is required. A deadlock free
system is crucial for manufacturing to achieve the minimal
throughput time minimal equipment idle time and maximum
productivity.

Zhou [16] presented a Petri net method for modeling, analysis and
control of a general semiconductor manufacturing system.
Modeling and performance analysis of cluster tools were given by
Srinivasan [9]. Deadlock free scheduling of a track system for
semiconductor fabrication was proposed by Yoon [13].

Deadlock detection, prevention and avoidance for general flexible
manufacturing systems have been studied extensively. Some of the
significant work have adopted Petri net (PN) models
[1,2,4,10,12,15] as a formalism to describe the manufacturing
system. Banaszak[1] proposed a deadlock avoidance algorithm
(DAA) that developed a restriction policy to guarantee that no
circular wait situations will occur. Viswanadham [10] developed a
deadlock avoidance algorithm which suggested using a recovery
mechanism in case of system deadlock. Zhou [15] developed the
sequential mutual exclusions (SME) and parallel mutual
exclusions (PME) concepts and derived the sufficient conditions
for a PN containing such structures to be bounded, live, and
reversible. Structural properties of PNs such as siphons and traps
were used in [2,4] to determine potential deadlock situations.

Another formalism is to describe the manufacturing system using
graphs [3,5,7-8,11,14]. In this approach the vertices represent
resources and the arcs (edges) represent product part flows
between resources. Cho [3] developed the concept of bounded
circuits with empty and non-empty shared resources to detect
deadlock. Judd [7] derived a set of static linear inequalities that
when they are satisfied deadlock is avoided. Lipset [8] expanded
upon [7] and quantified both necessary and sufficient conditions
for deadlock to occur in a manufacturing system.

However, the deadlock problem has not been well studied from
the event point of view. This paper presents an event-based
framework for deadlock avoidance in manufacturing systems. The
major contribution of this paper is to propose a new high efficient
event based deadlock avoidance supervisor. The supervisor
smartly avoids the deadlock state space explosion problem. The
method is built upon a directed graph model of process flows.
Concepts such as compound events, operation strings and
deadlock strings are introduced. There are two major features in
the proposed method. Firstly, the method provides the optimal
deadlock free operation that allows all live states for a large class
of systems. The large class of systems is called regular systems
which do not contain key resources, as discussed by Xing [12].

Secondly, it runs in polynomial time, which means faster online
computation, once the set of deadlock strings are computed
offline. Examples are provided to show the effectiveness of the
method.

2. The System Model and Deadlock Concept
A semiconductor manufacturing system consists of a finite
number of equipments or resources, denoted as a set R, that
include chambers, robots, buffers, etc.. There is a finite number of
process types, denoted as a set P, to which jobs should follow.
Each type p ∈ P is described as a finite number of steps of
operations that need to be performed on jobs of the type. We
assume that each step be performed on exactly one resource. Thus
a process p can be represented as a sequence of resources
p=r1r2…rm. Each resource r∈ R has a capacity, denoted as Cr (>1
for regular systems), which can be considered as buffers at the
resource or a multiple of identical units.

For the purpose of deadlock avoidance, these systems are modeled
by a directed graph, denoted as G, which is constructed from all
process types. The graph G = (R, A) consists of a set R of vertices
and a set A of directed arcs. Each vertex represents a resource. A
directed arc a is drawn from vertex r1 to vertex r2, if r2

immediately follows r1 in at least one process plan, denoted as a=
r1r2. A subgraph G1 = (R1, A1) of G consists of a subset of the
vertices and a subset of arcs of G such that all the arcs in A1

connect vertices in R1. From graph theory, we know that a path is
defined as a sequence of vertices r0r1r2…rk, and a circuit is a path
with r0 = rk. A circuit is called simple if it does not contain any
other circuit. Vertex r1 is reachable from r2 if there is a path from
r2 to r1. A subgraph G1 is a strongly connected component (SCC)
if all vertices of R1 are reachable from each other. When the
system graph consists of more than one SCC, we can trim off all
arcs that are not part of any SCC. So, G’=trim(G) consists of all
isolated SCCs. In the following, we will work on G’.

2.1. Conceptual System Deadlock
Conceptual system deadlocks are formulated based on a cluster
tool configuration with a double blades (DEER) center robot as
shown in figure 1. Let us consider simplified process flows with
three assumed types:

Type A wafer: Tool1 – Robot – Tool2
Type B wafer: Tool2 – Robot – Tool3
Type C wafer: Tool3 – Robot – Tool1

Assume the system is fully automated and Tool1, Tool2 and Tool3
have capacity 3, Robot has capacity 2. And a finished product
leaves the system automatically. The system graph is constructed
in figure 2. The graph itself is a SCC.

Then, we can observe 6 deadlocks:

i) when r1 has 3 type A wafers and r4 has 2 type C
ii) when r2 has 3 type B wafers and r4 has 2 type A
iii) when r3 has 3 type C wafers and r4 has 2 type B
iv) when r1 has 3 type A wafers, r2 has 3 type B wafers and r4

has 1 type A and 1 type C
v) when r2 has 3 type B wafers, r3 has 3 type C wafers and r4

has 1 type B and 1 type A
vi) when r3 has 3 type C wafers, r1 has 3 type A wafers and r4

has 1 type C and 1 type B
Also, if the Robot has capacity 3, then an extra deadlock is as r1

with 3 type A wafers, r2 with 3 type B wafers, r3 with 3 type C
wafers, all at their first process step and Robot has 1 type A, 1
type B and 1 type C. Observe that each deadlock is related to a
circuit that is the root cause of a circular wait situation. E.g., the
first deadlock corresponds to c1 = r1-r4-r1, the forth deadlock
relates to c1∪c2 = r1-r4-r2-r4-r1.

Formally, deadlock is defined as a circular wait situation [1] in
which there exists a group of jobs and every job requests a
resource that is held by another job in the group.

2.2. System Events
Once the system is in operation, the system will evolve with the
occurrences of system events, such as loading a job into the
system, transporting a job from one step to next step, or unloading
a finished job from the system. In this paper, we consider only
these high level events since they are most related to deadlock
occurrences. So, each process type is associated with a sequence
of events, EP = e1e2…eLp, corresponding to each process step
including the loading/unloading steps, where LP is the length of
the type.

Each event e has a source-step and a destination-step , denoted as
e.ss and e.ds, respectively, which are the step numbers in the
process type except that the 0 source-step and destination-step are
for the load lock or warehouse for both raw and finished jobs.
For example, in figure 2, if we name events corresponding to the
three types of jobs with A, B and C, then type 1 job has event
sequence A0A1A2A3, A0.ss = 0, A0.ds=1, A2.ss = 2, etc.

An event is said to be active if an associated job exists in the
system. An active event is enabled if the resource pointed by the
event’s destination-step is free. An event with a source-step equal

r1/Tool1 r3/Tool3

r2/Tool2

r4/Robot

Figure 2. Simplified directed graph

c1

c2

c3

Figure 1. Cluster tool configuration

to 0 is always active and an active event with a destination-step
equal to 0 is always enabled.

Obviously, events with the same type have to occur in the order
described by the process type. For example, A0 has to occur first
in order to have an active A1 event. We say that A0 is the causing
event of A1 and A1 is the resulting event of A0. Note, an event
with source-step being 0 has no causing event and an event with
destination-step being 0 has no resulting event.

3. Deadlock Avoidance Supervisor and Properties
From section 2.1, we observed each deadlock corresponds to a
circuit in a SCC. To synthesize our deadlock avoidance
supervisor, we need to find all circuits in every isolated SCC of
the system graph. Given a system graph, there are existing
methods that find all circuits [11][6]. In the following, we assume
all circuits are given.

A sequence of events is called a string, such as string s = A0-B1-
B2-A1. Notice that many resources in the system are shared
among multiple types of jobs. So, each resource is associated with
a set of shared events whose destination-step matches the resource
or the source-step matches the resource. E.g., r1’s shared events
set: {A0 C2} and {A1 C3}, called enter event set , denoted as
Een(r1) and exit event set, denoted as Eex(r1) of the resource,
respectively. All such sets can be obtained by analyzing process
types. After event A0 of Een(r1) occurs, the underlying job will be
in the resource r1 and after event A1 of Eex(r1) occurs, the same job
is out of r1.

A compound event is defined on a resource as a number (less than
the capacity of the resource) followed by a subset of a shared
event set of the resource. E.g., for r1, we have 2(A0) or 2(A1,C3),
where an active compound event 2(A1,C3) means 2 active A1

events, 1 active A1 event and 1 active C3 event, or 2 active C3

events. A normal event e can then be considered as a compound
event in the form of 1(e). From now on, both normal events and
compound events are simply referred to as events.

A generalized string is defined to be a sequence of compound
events.

As mentioned earlier, deadlock is related to circuits. Enter/exit
event sets can be extended to a circuit, e.g., c1 has Een(c1) = {A0,
C1} and Eex(c1) = {A2, C3}. Also, each circuit is assigned an
operating string and a deadlock string.

Definition 1: An operating string of a circuit is the sequence of
events that have occurred so far on the circuit. E.g., the operating
string for c1 after some time is so = 2(A0)-A1-A2. What so says is
that so far A0 has occurred twice, A1 and A2 have occurred once.
The result is that one type A job at r4 and one type A job at r3.

Definition 2: A deadlock string of a circuit c is defined as a string
of events that have occurred on the circuit, which generates no
active event in Eex(c) and no enabled event exists on the circuit.

For a circuit to be in deadlock, it has to be filled with jobs up to
capacity and generates a set of active events that are not enabled,
which means that no jobs can leave the circuit and both source
resource and destination resource of all active events are on the
circuit. For example in figure 2, when circuit c1 is in deadlock
(the first deadlock), then it has active event 3(A1) and active event
2(C2). Then the set that needs to be found is {3(A1), 2(C2)}. The
set can then be translated into a deadlock string by finding the
corresponding causing events and formulating into a string, for the
example, the deadlock string in this case is sd = 3(A0)-2(C1).

Algorithm 1: DS ---- Finding the deadlock string for a circuit c =
(R1, A1)

Input:P – set of process types, EP – event set for each process type,

Output: sd – deadlock string of c

First find Eex(c)
For each r in R1

Er = {} – set of event sharing resource r
For each process type p in P

For each event e in EP
Let re = p(e.ss) be the resource at

step e.ss
If r == re and e not in Eex(c)

Add e to Er
End for

End for
Append compound event Cr(Er) to sd

End for
Sd = translate each event of sd into causing event

To avoid deadlock, we need to analyze events related to each
circuit and simplify the operating string so that it can be used to
check against the deadlock string of the circuit. The type of
simplification we are interested in is to remove any causing events
of the recently occurred event from the operating string. That is,
the operating string is updated by filtering each new event
according to the projection operation defined below.

Define an ss (ds) operation on a string s as a mapping: ss(s) → N|s|,
that is, to give the set of source (destination)-step of all events in
the string. E.g., if so = 2(A0)-A1-A2, then ss(so) = {0, 0, 1, 2}.

Projection Operation: Given a circuit c, the deadlock string sd of
c and an event e, define a projection operation on the operating
string so of c such that,

i) If e.ss ∈ ds(so) and e1 is the first event in so such that e.ss
= e1.ds, then remove e1 from so, that is, so = so – e1;

ii) If e ∉ Eex(c), then so = so + e.

This operation is denoted as, so= P(so, e).

Here, property i) means to remove the first causing event of e from
so and property ii) means if event e exits the circuit, then it should
not stay in the operating string.

Deadlock Avoidance Supervisor: Apply algorithm 1 to find
deadlock string for every circuit (offline). Upon an event e firing
request, for each circuit in the order from small to large circuits,
apply projection so1= P(so, e) and then check if the event is an
entering circuit event and |so1| < |sd| or so1 does not match the
deadlock string sd of the circuit, then accept the event firing
request and set so to so1, otherwise reject the event firing request
and keep so.

The system under the control of the supervisor is called the closed-
loop system of the original system. The general closed-loop
system architecture is shown in figure 3.

Theorem 1: The operating string of a circuit c matching the
deadlock string is a necessary and sufficient condition for a system
deadlock.

Proof: According to the definition of deadlock string, once it is
reached, none of the underlying jobs on the circuit can exit the
circuit and form a circular wait situation in which there exists a
group of jobs and every job requests a resource that is held by
another job in the group. On the other hand, if the operating string

does not match the deadlock string, then either there exists empty
resource on the circuit or there exists events in Eex(c) that means
jobs can exit the circuit. In the former case, jobs can move into
empty resource in turn until they reach at an exiting point to exit
the circuit. Therefore, there will be no deadlock. ■

Theorem 2: The closed-loop system under the deadlock avoidance
supervisor is live.

Proof: The essential reason is the class of regular systems that the
supervisor applies does not have second level deadlock or any
other impending deadlock. The deadlocks corresponding to all
deadlock strings are the only deadlocks possible in the system.
Then if the supervisor exhaustively checks deadlock string of each
circuit, it will avoid all deadlocks and allow all live states. ■

Theorem 3: The deadlock avoidance supervisor is maximally
permissive.

Proof: The proof can be similarly drafted as that of theorem 2.

Another good property of the supervisor is the computational
efficiency once all circuits are given or calculated offline.

Theorem 4. The deadlock avoidance supervisor runs in
polynomial time.

Proof: Checking for a match of an operating string and a deadlock
string is in the order of |sd|

2, where |sd| is the length of the deadlock
string that is limited by the system size (the total resource
capacity). And such checking needs to be done for NC, number of
all circuits, times. Also compared to the above checking, the trivial
efforts of the projection operation on the operating string can be
omitted. Therefore, the supervisor runs in polynomial time in the
order of NC[max(|sd|)]

2. ■

Note that NC should not be too large, since for a normal flexible
manufacturing system, the system graph is usually sparsely
connected. The efficiency of the supervisor comes from the
compound event representation of deadlock strings. Especially
for those large circuits, number of total deadlocks on a circuit
grows very fast depending on the capacity of the resources and the
number of job types sharing the resources of the circuit. Normal
event representation would require checking operating string and
every deadlock string combination that could exponentially
increase. This state space explosion problem is smartly avoided
by our deadlock avoidance supervisor. The following example
demonstrates the above idea.

Example 1. A simplified track system is shown in figure 4. Four
types of jobs are defined as p1-p4. The respective event
sequences are: A0A1A2A3A4, B0B1B2B3B4B5, C0C1C2C3C4C5, and

D0D1D2D3. The system graph consists of total of 6 circuits, c1 =
r1-r2-r3-r1, c2 = r3-r5-r4-r3, c3 = r5-r6-r5, c4 = c1∪c2, c5 = c2∪c3, c6 =
c1∪c2∪c3. It is straight forward to find Een(c) and Eex(c) for all
circuits c. Such as, Een(c1) = {A0, B0, C3}, Eex(c1) = {A3, B3, C5}.

Applying algorithm 1 will find 6 deadlock strings:

sd1 = 2(A0,B0)-4(A1,B1)-2(C3),

sd2 = 2(A2,B2)-3(C2,D1)-2(C1,D0),

sd3 = 2(B3)-4(C0),

sd4 = 2(A0,B0)-4(A1,B1)-2(A2,B2,C3)-3(C2,D1)-2(C1,D0)

sd5 = 2(A2,B2)- 2(C2,D1)-2(B3,C1,D0)-4(C0)

sd6 = 2(A0,B0)-4(A1,B1)-2(A2,B2,C3)-3(C2,D1)-2(B3,C1,D0)-4(C0)

Deadlock string sd1 represents 15 actual deadlocks as given below,

To avoid these 15 deadlocks, the supervisor checks the operating
string of the circuit to see if it matches any 2 of (A0, B0) and any 4
of (A1, B1) and 2 of (C3) to declare a deadlock. In addition, a huge
number of deadlocks corresponding to operating strings containing
any 2 of (A0, B0) and any 4 of (A1, B1) and 2 of (C3) are also
avoided by the same check. These deadlocks correspond to all the
reachable states that have possible combinations of parts across r4,
r5 and r6, in addition to the parts in r1, r2 and r3, which actually
formed the deadlock string sd1.

For the large circuit c6, the deadlock string sd6 represent a much
bigger number of deadlocks,

To avoid these 2160 deadlocks, the supervisor checks the
operating string of the circuit to see if it matches any 2 of (A0, B0),
any 4 of (A1, B1), any 2 of (A2, B2, C3), any 3 of (C2, D1), any 2 of

System

Deadlock
strings sd’s

Supervisor
so = P(so, e)

check so vs sd to decide
action

Event e

Action on e

Figure 3. Closed-loop system diagram

3 x 5 x 1 = 15

2A0

A0-B0

2B0

4A1

3A1-B1

2A1-2B1

A1-3B1

4B1

2C3

4A1

3A1-B1

2A1-2B1

A1-3B1

4B1

2A0

A0-B0

2B0

2A2

2B2

2C3

A2-B2

A2-C3

B2-C3

3C2

3D1

2C2-D1

C2-2D1

2B2

2C1

2D0

B3-C1

B3-D0

C1-D0

4C0

3 x 5 x 6 x 4 x 6 x 1 = 2160

Figure 4. System graph for example 1

(B3, C1, D0) and 4 C0’s to declare a deadlock. This best shows that
the supervisor avoids thousands of deadlocks by checking a single
deadlock string.

In this example, the system’s state space has a total of 4,918,040
states, among which there are 136,720 deadlock states.
Simulation results show that indeed the supervisor avoids all
136,720 deadlocks by checking the only 6 deadlock strings and
allows all 4,781,320 live states. Simulation on the conceptual
example in figure 2 shows that the 300 deadlock states out of the
total 9670 states are all avoided by checking 7 deadlock strings.
Simulations were also run on other random selected regular
systems and the results are satisfactory.

4. Conclusions
In order to reduce the throughput time and increase the equipment
utilization, modern semiconductor manufacturing system is
becoming highly complex with massive automated and flexible
equipment. The deadlock issue emerges as a serious obstacle to
reliability and productivity. In this paper, a highly efficient and
event-based deadlock avoidance supervisor is presented. The
supervisor smartly avoids the deadlock state space explosion
problem based on the compound events concept. The method is
built upon a directed graph model of process flows. The
supervisor provides the optimal deadlock free operation for a large
class of systems. The online computation of the supervisor can be
done in polynomial time once the set of deadlock strings are
computed offline. In the future research, we will extend our
results to irregular systems, such as the cluster tool where the
center robot has a single blade (SEER) as opposed to figure 1
double blades (DEER), where second level deadlock [5] or more
general impending deadlock [8,14] exists. And we will extend the
result to systems allowing choices in process flows which are not
uncommon in semiconductor fabrication.

5. References
[1] Banaszak, Z. and B. Krogh, "Deadlock Avoidance in Flexible
Manufacturing Systems with Concurrently Competing Process
Flows," IEEE Trans. on Robotics and Auto., vol. 6, no. 6, 1990,
pp. 724-733.

[2] Barkaoui, K., and I. B. Abdallah, “Deadlock Avoidance in
FMS Based on Structural Theory of Petri Nets,” IEEE Symposium
On Emerging Technologies and Factory Automation, V. 2, pp.
499-510, 1995.

[3] Cho, H., T.K. Kumaran, and R. Wysk, "Graph-Theoretic
Deadlock Detection and Resolution for Flexible Manufacturing
Systems," IEEE Trans. on Robotics and Auto., vol. 11, no. 3, pp.
550-527.

[4] Ezpeleta, J., J. M. Colom, and J. Martinez, “A Petri Net Based
Deadlock Prevention Policy for Flexible Manufacturing Systems,”
IEEE Transactions on Robotics and Automation, V. 11, N. 2, pp.
173-184, April 1995.

[5] Fanti, M.P., Maione, B., Mascolo S., and Turchiano, B.,
“Event-Based Feedback Control for Deadlock Avoidance in
Flexible Production Systems”, IEEE Trans. on Robotics and
Auto., Vol. 13, no. 6, 1997, pp. 347-363.

[6] Johnson, D. B., “Finding All The Elementary Circuits Of A
Directed Graph”, SIAM J. of Computing, Vol. 4, No. 1, 1975, pp.
77-84.

[7] Judd, R. P. and T. Faiz, "Deadlock Detection and Avoidance
for a Class of Manufacturing Systems," Proceedings of the 1995
American Control Conference, pp. 3637-3641.

[8] Lipset, R., P. Deering, and R. P. Judd, "Necessary and
Sufficient Conditions for Deadlock in Manufacturing Systems,"
Proceedings of the 1997 American Control Conference, vol. 2, pp.
1022-1026, June 1997, Albuquerque.

[9] Srinivasan, R. S., "Modeling and Performance Analysis of
Cluster Tools Using Petri Nets", IEEE Trans. on Semiconductor
Manuf.,, Vol. 11, No. 3, 1998, pp. 394-403.

[10] Viswanadham, N., Y. Narahari, and T. Johnson, "Deadlock
Prevention and Deadlock Avoidance in Flexible Manufacturing
Systems Using Petri Net Models," IEEE Trans. on Robotics and
Auto., vol. 6, no. 6, 1990, pp. 713-723.

[11] Wysk, R., N. Yang and S. Joshi, "Detection of Deadlocks in
Flexible Manufacturing Cells", IEEE Trans. on Robotics and
Automation, Vol.7, No.6, 1991, pp.853-859.

[12] Xing, K., B. Hu and H. Chen, "Deadlock avoidance policy
for Petri-net modeling of flexible manufacturing systems with
shared resources," IEEE Transactions on Automatic Control., vol.
41, no. 2, 1996, pp. 289-295.

[13] Yoon, H. J. and D. Y. Lee, "Deadlock-Free Scheduling
Method for Track Systems in Semiconductor Fabrication,"
Proceedings of the 2000 IEEE International Conference on
Systems, Man, and Cybernetics, Nashville, Tennessee, USA,
October 8-11, 2000.

[14] Zhang, W., R. P. Judd and P. Paul, “Evaluating Order Of
Circuits For Deadlock Avoidance In A Flexible Manufacturing
System”, Proceedings of the 2003 American Control Conference,
pp. 3679-3683, June 2003, Denver.

[15] Zhou, M. and F. DiCesare, "Parallel and Sequential Mutual
Exclusion for Petri Net Modeling of Manufacturing Systems with
Shared Resources," IEEE Trans. on Robotics and Auto., vol. 7, no.
4, 1992, pp. 550-527.

[16] Zhou, M. C. and M. Jeng, "Modeling, Analysis, Simulation,
Scheduling and Control of Semiconductor Manufacturing
Systems: A Petri Net Approach", IEEE Trans. on Semiconductor
Manuf., Vol. 11, No. 3, 1998, pp. 333-357.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeP03.6
	Page0: 1417
	Page1: 1418
	Page2: 1419
	Page3: 1420
	Page4: 1421

