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Abstract—The paper studies the two-stage no-wait 

hybrid flowshop scheduling problem where one of the 
two stages consists of several identical parallel 
machines and the setup and removal times of each job 
at each stage are separated from the processing time. 
In view of the NP-complete of this problem, heuristic 
algorithms regarding sequencing and assigning of 
jobs to each stage as independent procedure are 
proposed. Two theorems are also proposed for 
sequencing job procedure. Computational experience 
demonstrates the effectiveness of the heuristic 
algorithm including the proposed theorems in finding 
a near optimal schedule. 

I. INTRODUCTION 
E consider the two-stage no-wait hybrid flowshop 
scheduling problem which occurs when the 

operations of a job has to be processed from start to end 
without interruptions on or between machines. A two-stage 
no-wait hybrid flowshop consists of two stages and stage  
has  identical parallel machines ( ). n  Given jobs 

 are to be processed on the two stages in the 
same technological order, first on stage1 and second on 
stage 2. An operation of any job consists of three phases: 
setup, processing, and removal. As described in [6], the 
setup phase immediately precedes the processing phase, and 
the removal phase immediately follows the processing phase. 
The setup phase of an operation on any machine can only 
start after the removal phase of its predecessor on that 
machine has been completed. However, a job can be moved 
to its next operation without waiting for its removal 
operation to be completed at the current stage. The 

processing phases of a job in the two stages are not allowed 
to overlap; the other phases may overlap. Since setup times 
are considered separate from processing times, the setup 
work of a job on a subsequent machine can be performed 
while it is idle before the job arrives on the machine. The 
setup, processing, and removal times of the operation of job 

 on stage  are denoted by , , and  
respectively.  
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Unlike the classical flowshop where unlimited 
intermediate storage space is available to hold partially 
completed jobs between the two stages, in no-wait flowshop 
the processing phase of any job in the second stage must 
start exactly at the time the processing phase of that job in 
the first stage is completed. These conditions are quite 
common in several industries such as metallurgical, plastic, 
and chemical production process. For instance, in the case of 
steel production, the heated metal must continuously go 
through a sequence of operations before it is cooled down so 
as to prevent defects in the composition of the material [15]. 
Other applications can also be found in just-in-time and 
flexible manufacturing systems. The no-wait scheduling 
problems have attracted the attention of many researchers 
both in practical application area and in theoretical area. 

The no-wait hybrid flowshop is a generalization of the 
no-wait pure flowshop and the identical parallel machine 
shop. The no-wait pure flowshop has been studied 
extensively by many researchers; see Aldowaisan [1], 
Aldowaisan and Allahverdi [2], [16], [17], Allahverdi, [3], 
Gupta [6]. The no-wait hybrid flowshop ignored the setup 
and removal times have been studied by Salvador [10], 
Sriskandarajah [13] and Liu [15].  Salvador has developed a 
branch and bound algorithm to find minimum finish time for 
a no-wait flowshop with parallel machines model that arise 
in an actual application in the synthetic fiber industry. The 
worst case and average case analysis of some heuristic 
algorithms of this problem has been carried out in 
Sriskandarajah [13], Liu [15]. 

This paper considers the two-stage no-wait hybrid 
flowshop scheduling problems where the first stage contains 
only one machine and the second stage contains more than 
one identical parallel machine. The objective is to minimize 
the makespan of all jobs, i.e. the total throughput time in 
which all jobs complete processing on both stages. For 
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general case, the no-wait hybrid flowshop is NP-complete 
even ignored the setup and removal times (Sriskandarajah 
and Ladet [11]), efficient optimal algorithms for minimizing 
makespan are not likely to exist. Although it is possible to 
develop an algorithm using branch-and-bound techniques, it 
is time consuming even for a moderate scale problem. Thus, 
heuristic algorithms are inevitably required to obtain good 
solutions in reasonable computing time instead of looking 
for exact optimization algorithms. Encouraged by earlier 
work of two-stage no-wait flow shop study and the 
two-stage hybrid flowshop without no-wait restriction 
research, we propose two heuristic algorithms to solve the 
two-stage no-wait hybrid flowshop problems. 

II. NOTATION AND FORMULATION  
Assume the number of jobs to be scheduled is n  and the 

number of machines in the second stage is m . To compute 
the makespan of a schedule, following Gupta [6], consider a 
permutation S of n jobs. Let be the time job 

completes processing at stage 1 and be the time job 

 completes its processing at stage 2, if  is processed on 
machine  at stage 2. Let the immediately preceding job on 
the machine  at stage 2 be , preceding job at stage 1 be 

. Let  and  be the specific machine 

availability times after processing job  at stages 1 and 2, 
respectively. We introduce a dummy job  
with . Then the problem 
can be formulated as, 
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For a schedule S , assume that the last job assigned on 
machine  in stage 2 is job . The machine-based 

makespan  is defined as  

k kl

)(SM

)}({max)( 2,1 kkmk
lBSM

≤≤
=                                                          (2) 

The solution of the two-stage no-wait hybrid flowshop 
scheduling problem requires two aspects: sequencing jobs 
on both stages and assignment of jobs to various machines at 
each stage. One of approximate approaches is to assume the 
sequencing and assignment of jobs to machines at each stage 
can be done independently.  This kind of heuristic is 
two-phase algorithm. First, they order the job using a 
sequencing no-wait pure flowshop algorithm with two 
machines.  In order to take into account the machines in 
second stage, , , and  should be divided by the 

machines number m .  Second, assigned the jobs to the 
machines: a job is assigned to first stage and the last free 
machine in second stage in the sorted order to minimize its 
final completion time satisfying the no-wait restriction.  
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III. SEQUENCING THE TWO-STAGE NO-WAIT PURE 
FLOWSHOP  

We assume that every job requires processing on both 
machines, so it is necessarily that such a two-stage no-wait 
flowshop is a permutation flowshop. Let  , , and 

 be the setup, processing and removal times of the job in 

position  of the sorted order on machine k (
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Defining  to be the completion time of the job in position 

, thus the makespan . 
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Theorem 1. In a sequence where jobs  and  are 

adjacent, job  should precede job i  for minimizing 

makespan, assuming  should be processed at position 

iJ jJ
j

jJ τ , 

then  be processed at position iJ 1+τ , if the following 
conditions hold 
(1) 2,1, ii pp ≤ , (2) 2,1, jj pp ≤ , (3) , (4) 1,1, ji pp ≤

2],1[1, −≤ τpp j , (5) 2,2, ij pp ≤ . 



 
 

 

Proof. Consider two sequences  and ,  has job 

 in position 
1S 2S 1S

iJ τ  and job  in position jJ 1+τ  while  

has job  in position 

2S

jJ τ  and job  in position iJ 1+τ . 

The two sequences  and  have the same job in other 
positions. 
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Let . We have the following 
equations for the two sequences.   
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Following conditions (1)-(3), we obtain 
                                                              (3) 2],1[2,1, −≤≤ τppp ji

From conditions (4) and equation (3), it is obvious that 
0},0max{},0max{ 2],1[1,2],1[1, =−=− −− ττ pppp ij                  (4) 

Following equation (3), we know .  02,1, ≤− ji pp
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Also if condition (5) hold, then 
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From equations (4)-(6), it’s obvious that 
)()( 12 SMSM ≤ . 

Hence, sequence  is better than sequence , namely 
 should precede  in any schedule. 
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Theorem 2. In a sequence where jobs  and  are 
adjacent, job  should precede job i  for minimizing 
makespan, assuming  should be processed at position 

iJ jJ
j

jJ τ , 

then  be processed at position iJ 1+τ , if the following 
conditions hold 
(1) , (2) , (3) , (4) 

, (5)  (6) 
2,1, ii pp ≥ 2,1, jj pp ≥ 2,2, ji pp ≥

2],1[1, −≤ τpp j 2],1[1, −≤ τppi 2,1,2,1, ijji pppp −≤− . 
Proof. The proof of this theorem is similar to that of 
Theorem 1. 

 We will use the two theorems in the subsequent section 
as part of a heuristic algorithm. The first three conditions in 
the two theorems satisfy the classification and sorting of 
jobs in Johnson rule [9]. We first use Johnson’s algorithm to 
sort jobs with  and  as the processing time in two 
stages separately. Then use the two theorems to adjust jobs 
order in the sorted sequence. 
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IV. PROPOSED HEURISTIC ALGORITHMS 
In this section, we provide two heuristics to find the near 

optimal solutions of the considered problem. Sule has 
reduced the two-machine flowshop with setup, processing 
and removal times separated to the classical two-machine 
flowshop by regarding ,  as the processing time of 

job  in the reduced problem. Then the problem can be 
resolved by Johnson’s algorithm. The heuristic 1 ( ) use 

the same method to sort the jobs to be processed in the first 
phase, and the second phase of the heuristic is to assign the 
jobs in the obtained sequence one by one using assignment 
rule described in section 2. The heuristic 2 ( ) improves 

the  by using the Theory 1 and Theorem 2. 
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A. Heuristic 1  
Phase 1: Sequencing the jobs 

Step 1. Let ,  and  ( ) be divided by the 

machine number  in the second stage. Then  and  

can be computed as following  
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Step 2. Find the jobs with  and forms the set of 

jobs U, 

2,1, ii pp <

}|{ 2,1, ii ppiU <=  

Step 3. Sort the jobs in U in non-descending order of . 1,ip

Step 4: Find the jobs with  and forms the set of jobs 

V, 

2,1 ii pp ≥

}|{ 2,1, ii ppiV ≥=  

Step 5: Sort the jobs in V in non-ascending order of .  2,ip

Step 6: A schedule is obtained by combined the two sorted 
set into one sequence, the jobs of the set U is put precede the 
jobs of the set V.   

Phase 2. Assignment of jobs 
Step 7: Let S=([1], [2],…, [n]) be the schedule obtained after 
step 6, for assigning the job on position i , compute the set  

},..,1|]2)([]])1([{[ ],[2,1],[1],[2 mkslBtsiA ikii =+−++−  

according to equation (1). If more than one unit in the set are 



 
 

 

not greater than zero, choose one of the according machines 
arbitrary as the machine the selected job to be processed on 
in stage 2. If there is no any unit in the set less than or equal 
to zero, choose the machine which according unit is the 
minimal in the set.  
Step 8: Accept the final assignment and compute the 
makespan using equation (2). The obtained schedule is an 
approximate solution to the problem. 

B. Heuristic 2 
Phase 1: Sequencing the jobs 

Step 1. Let ,  and  ( ) be divided by the 

machine number  in the second stage. Then  and 

 can be computed as following 
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m 1,ip
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Step 2. Find the jobs with  and forms the set of 

jobs U,  

2,1, ii pp <

}|{ 2,1, ii ppiU <=

Step 3. Sort the jobs in U in non-descending order of . 

Update the sorted sequence U using Theorem 1, 

1,ip

02],0[ =p .  

Step 4: Find the jobs with  and forms the set of jobs 

V,  

2,1 ii pp ≥

}|{ 2,1, ii ppiV ≥=

Step 5: Sort the jobs in V in non-ascending order of , and 

let the job in the position 0 of the sorted sequence is the last 
job in the set U. Update the sorted sequence V using 
Theorem 2. 

2,ip

Step 6: A schedule is obtained by combined the two sorted 
set into one sequence, the jobs of the set U is put precede the 
jobs of the set V. 

The second phase of  is the same as the second phase 
of . 

2H
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V.  COMPUTATIONAL EXPERIENCE 
To evaluate the performance of the proposed heuristic, we 
randomly generated a large number of instances to compute. 
It has been proved that the uniform distribution with large 
data spread provides more different problems to solve (refer 
to [4] and [5]). We designed the following instance sets for 
uniform distribution:  

1I : ,  20,1 2,1, ≤≤ ii tt krsrs iiii 20,,,1 2,2,1,1, ≤≤

2I : ,1 ;

 

20,1 1, ≤≤ it krs ii 20, 1,1, ≤≤

mkrsmt iii 20,1,201 2,2,2, ≤≤≤≤

3I : 50,1 1, ≤≤ it ,1 krs ii 50, 1,1, ≤≤ ;

mkrsmt iii 50,1,501 2,2,2, ≤≤≤≤  

where  is the number of the machines in stage 2,  is the 
ratio of setup and removal times to processing time (  

. 

m k
jiji ts ,, / ,

jiji tr ., / )
For in each instance, we select 100 problems randomly to 

calculate the percentage deviation of the makespan of the 
schedule generated by the proposed heuristics from its lower 
bound. The lower bound of each problem is estimated as 

 
TABLE I.  

PERFORMANCE EVALUATION OF THE PROPOSED HEURISTICS 
H1 H2I n m k Avg. Max. Avg. Max.

Aimp.

I1
20 2 0.1 1.99 7.28 1.29 4.60 35.1 

I2
20 2 0.1 16.25 28.16 13.41 21.09 17.5 

I3
20 2 0.1 18.20 37.10 15.08 31.41 17.1 

I1
20 2 0.5 1.69 4.11 1.52 3.53 10.2 

I2
20 2 0.5 15.92 27.87 14.23 22.35 10.6 

I3
20 2 0.5 18.27 26.82 16.45 24.74 9.9 

I1
20 2 1 2.25 5.13 2.19 4.54 2.8 

I2
20 2 1 18.64 31.33 18.53 29.69 4.8 

I3
20 2 1 19.21 33.01 18.26 29.92 3.9 

I1
40 2 0.5 1.29 4.61 1.01 3.41 21.7 

I2
40 2 0.5 17.58 24.13 15.27 21.49 13.1 

I3
40 2 0.5 19.22 28.56 17.09 25.46 9.5 

I1
80 2 0.5 1.48 4.14 1.08 2.94 27.0 

I2
80 2 0.5 19.04 25.62 16.47 24.10 13. 

I3
80 2 0.5 20.20 25.20 18.19 23.31 9.9 

I1
150 2 0.5 1.54 3.26 1.09 2.65 29.2 

I2
150 2 0.5 18.92 23.84 16.14 21.38 14.6 

I3
150 2 0.5 20.84 24.87 18.61 22.65 10.7 
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The following statistics were collected: 
Avg.: Average percentage deviation of the heuristic 
makespan from its lower bound. 



 
 

 

Max.: Maximum percentage deviation of the heuristic 
makespan from its lower bound. 
Aimp.: The average improvement percentage of  to . 2H 1H

  As shown in Table 1, for each instance the average 
performance is of better than . It is proved that the 
inclusion Theorem 1 and Theorem 2 as part of the heuristic 
can improve the Sule’s algorithm greatly in no-wait 
environment. For the instances of  where the setup, 
processing and removal times in both centers are from the 
same distribution, both of the two heuristics have excellent 
performance. This because in this distribution the 
production ability of stage 2 is greater than stage 1, and the 
jobs can be processed on machine of stage 1 with little or no 
idle times. For the same m  and , the average 
improvement slightly increases as the number of jobs 
increase. Further, we can observe that the ratio of setup and 
removal times to processing time k is smaller, and the 
improvement of  to  is larger. In the real world, 
generally, the setup and removal times are less than 
processing time greatly, so the heuristic 2 has obviously 
advantage.  

2H 1H
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k

2H 1H

VI. CONCLUSIONS  
This paper has discussed the two-stage hybrid no-wait 

flowshop with separated setup and removal times. Since this 
problem is NP-complete, there is no known polynomial time 
algorithm can solve it. We consider one of the approximate 
methods solving the problem in two phases: sequencing jobs 
as in pure no-wait flowshop and assignment jobs to 
machines. We propose two theorems for sequencing 
procedure. The heuristic algorithm including the theorems 
has been shown can solve the problems effectively with low 
computational complexity. 

It is possible to develop the similar algorithm for the 
reverse problem with identical parallel machines in stage 1 
and only one machine in stage 2. Further, the algorithm 
proposed in this paper can be generalized to deal with the 
two-stage no-wait   hybrid flowshop scheduling problem 
with more than one parallel machine in both stages. And the 
theorems proposed in this paper can be used in two-stage 
no-wait pure flowshop scheduling problem.  
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