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ABSTRACT 
 
Circulating Fluidized beds (CFB) are a relatively 
new method of forcing chemical reactions to 
occur in chemical and petroleum industries. 
Compared with conventional fluidized beds, 
CFB have many advantages including better 
interfacial contacting and reduced back mixing.  
The recycle nature of CFB allows for a better 
process, but also makes modeling and 
understanding it many more times difficult. The 
plant under consideration is a cold-flow 
circulating fluidized bed (CF-CFB), meaning 
there is no combustion component in it. In the 
absence of conventional means to derive a 
reliable model, we have devised a model of the 
CFB using Neural Networks (NN), which have 
the ability to characterize such complex systems.  
This stems from their ability to approximate 
arbitrary nonlinear mappings.  The main 
objective is to train a NN model and controller to 
simulate and control the CFB operation. It has 
been shown that a NN can be used effectively for 
the identification and control of nonlinear 
dynamical processes.  Results are presented.   
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1. INTRODUCTION 
 
Fluidized bed technology brings solid particles 
into contact with gas phase in very controlled 
conditions.  CFB is a relatively new method of 
forcing chemical reactions to occur in the 
chemical and petroleum industries. It has also 
gained acceptance in a wide variety of fields 
including catalytic cracking, power generation, 
mineral processing and many other processes.  
This is because fluidized bed offers many 
advantages over conventional reactors and unit 

processes. Compared to conventional fluidized 
beds, CFB have many advantages including 
better interfacial contacting and reduced back 
mixing.  Understanding the fluidized bed 
technology is not a quick process.  The recycle 
nature of CFB allows for a better process, but 
also making the tasks of modeling and controller 
design many time more difficult.  The CFB 
under investigation is a Cold-flow circulating 
fluidized bed (CF-CFB), meaning there is no 
combustion component in the process.  A 
schematic of the CF-CFB is shown in Fig. 1.  
The reason for eliminating the combustion from 
this unit is to isolate and study the effects of the 
internal pressure of system, independent of 
temperature effects.  The CFB can be considered 
as a nonlinear closed loop system having two 
major components: Standpipe and Riser, as 
shown in Fig. 1.  The standpipe is a 50-ft vertical 
pipe where the solid is initially loaded and 
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Fig 1. Schematic Diagram of CF-CFB 



stored.  Once the CFB begins operating, gas 
pressures forces the solids into the riser, which is 
also a 50-ft vertical pipe where the solids mix 
with the gas.  Gas pressures then forces the 
mixture back into the standpipe.  One of the 
major problems in the study and design of 
controller of this large, complex system is the 
prediction of its characteristic behavior.  Sharp 
flow angles and inconsistent pressures make the 
system too complex to easily predict and 
characterize.  Currently, there is no way to 
construct a reliable model and controller of a 
system this complex using traditional methods.  
NN provide a way to construct both of these 
tools, which stems from their ability to 
approximate arbitrary nonlinear mappings [5, 6].  
Since their rebirth in 1980’s, NN applications to 
various problems have been ever increasing.  
The effectiveness of NN is due to its learning 
ability and versatile mapping capabilities from 
input to output.  Control of nonlinear systems is 
a major application area for NN.  Some 
interesting progress has been made in this field 
using NN.  It has been shown that a NN can be 
effectively for the identification and control of 
nonlinear dynamical processes.  The versatile 
mapping capability provides a means of 
modeling and controlling nonlinear plants which 
may not be possible by conventional methods.  
And the learning ability reduces the human effort 
in designing controllers and also suggests a 
potential for discovering better control schemes 
than presently known.   
 
2. CFB DYNAMIC ANALYSIS 
 
The CF-CFB consists of two primary parts with 
numerous secondary parts.  The riser and 
standpipe have the primary functions in the unit.  
Solids entering the bottom of the riser are carried 
to the top of the riser by high velocity air.  The 
riser section of the unit is a 50-feet tall, 1-foot 
diameter pipe with two inlets near the bottom 
and one outlet near the top which goes to 
primary and secondary cyclones for particle 
separation. Pressure drop in the riser is assumed 
to be proportional to the mass of the solids in the 
riser.  Solids separated in the primary cyclone 
fall into the standpipe.  The standpipe has two 
distinct regions of solid flow: the freeboard and 
the moving packed bed region.  The region in 
standpipe where the particles fall freely is called 
the freeboard.  The loop seal is used to regulate 
solids flux out of the standpipe.  The exit of the 
loop seal is connected to the bottom of the riser.  
The standpipe is a reservoir for solids waiting to 

pass back into the riser.  The bulk air-flow 
through the standpipe is understood to be a 
function of the pressure gradient and the void 
fraction of the bed.  Since measuring the pressure 
drop is an important factor, the standpipe was 
divided into sections with pressure transducers at 
each of these sections.  The ports at the lowest 
two heights are the most significant and are 
referred to as the Base aeration and Move 
aeration, respectively.  The air injected into the 
process at these points is most commonly used to 
adjust the rate that the solids circulate.  The 
facility at NETL, Morgantown, WV has a supply 
of 250,000-scfh air with the ability to obtain 
superficial velocities of 10 to 30 ft/sec in the 
riser, 0.02 to 0.07 ft/sec in the CFB.  The 
operating pressures range from 0 to 15 psig at 
the riser outlet and up to 30 psig in the CFB.   
 
The mechanisms of CFB provide the advantage 
of exposing solids and fluids in close contact 
during transport.  Recirculation of solids 
provides repeated exposure to fluid reactants.  
Recirculation also assures that thermal and 
reactant mass of solids is retained in close and 
controlled contact with the reaction zone.  A 
standpipe leg of a CFB can provide an effective 
means of reintroducing solids inventory to the 
reaction zone.  A pressure balance dominated 
operation of the standpipe provides a means of 
recovery of a portion of solid transport energy.  
Tightly coupled interactions between 
components of CFB make it difficult in 
modeling and controller design.  Predictive 
analysis of prospective designs requires 
knowledge that models are representative of 
dynamic mechanisms that may be exhibited by 
an operational process.  The three major 
obstacles in characterizing such large and 
complex systems are: 
1. Chaotic nature of system, 
2. Non-linearity of the system, and 
3. Number of immeasurable unknowns internal 
to the system and their interdependence.  
Even in such situations, NN have been able to 
provide a suitable solution for modeling and 
control problems. 
 
3. NEURAL NETWORKS 
 
NN generally consist of a number of 
interconnected processing elements or neurons.  
How the inter-neuron connections are arranged 
and the nature of the connections determines the 
structure of a network.   Its learning algorithm 
governs how the strengths of the connections are 



adjusted or trained to achieve a desired overall 
behavior of the network.  In feed forward NN, 
the neurons are generally grouped in to layers.  
NN are inherently nonlinear and multivariable 
and are suitable for use in conventional modeling 
and control structures.  A learning process driven 
by minimization of the mean square error 
between required and actual outputs achieves the 
nonlinear modeling.  Thus, the NN is capable of 
learning input-output maps from the system 
being studied through the adaptations of the 
connection weights between neurons, using 
specific training algorithms.  
 
Prior to learning a NN can be considered as an 
empty (of knowledge) black box.  After training 
the network becomes a full black box.  The 
problem thought remains is that it is still seen as 
a black box that for some unknown reasons 
classifies or predicts correctly given an input 
pattern.  The knowledge of a NN is stored in the 
weights of the connection but because of their 
numerical nature it is difficult to interpret them.   
The typical procedure of application of NN to 
the problem would consist of first analyzing the 
problem and collection of all available data, and 
to choose a NN type which is most suitable to 
the problem.  We select the most important 
features of the data available and select an 
appropriate NN topology, number of neurons, etc 
by trial and error.  With data divided into two 
sets, a training and test set, the trained NN is 
tested for performance on test data set, and is 
compared with different trained NN’s and the 
best results accepted.  More detailed analysis has 
been outlined in [3].   
 
4. MODELING AND CONTROL 
USING NEURAL NETWORKS 
 
Modeling and Control of nonlinear systems is a 
major application area for NN.  Some interesting 
progress has been made in this field using NN.  
It has been shown that a NN can be effectively 
for the identification and control of nonlinear 
dynamical processes [5].  The versatile mapping 
capability provides a means of modeling and 
controlling nonlinear plants which may not be 
possible by conventional methods.   The trained 
network often produces surprising results and 
generalizations in applications where explicit 
derivations of mappings and discovery of 
relationships is almost impossible.  But there is 
one major flaw that has to be considered in these 
mappings.  Sufficient information is to be 

provided in the training data so that the NN can 
converge and find the exact relationship.  There 
are no preset rules in this regard to attain the 
target, but the generalized procedures provide a 
probable solution.  In recent years a number of 
reports have been published which using 
mathematical theorems establish that a two or 
three layer multi-layer perceptron with sigmoid 
units can approximate any given real-valued, 
continuous multivariate function to a desired 
degree of accuracy, if a sufficiently large number 
of nodes are used in the hidden layer [6].  
 
Although backpropagation has become popular 
on grounds of simplicity and capability to learn 
sequentially from training instances, we have 
used one of its variants, Levenberg-Marquardt 
algorithm (LM) [7, 8] for training the NN by 
minimizing the sum of square errors.  LM 
algorithm is a second order optimization method.   
Most algorithms for least-square optimization 
use either steepest descent or Taylor series 
models.  The LM algorithm uses an interpolation 
between the approaches based on the maximum 
neighborhood in which the truncated Taylor 
series gives an adequate representation of the 
nonlinear model.  The method has been found 
advantageous compared to other methods that 
use only one of the two approaches.  The method 
has been found advantageous compared to other 
methods that use only one of the two approaches.  
This method is a nice compromise between the 
speed of Newton’s method and the guaranteed 
convergence of steepest descent.  
 
In first stage of modeling, experiments or test 
runs are done on the plant.  The purpose of this 
stage is to collect a set of data points that 
describe how the system behaves over its 
complete range of operation.  The idea is to vary 
the input(s) and observe the response of the 
output(s).  As the CFB we are considering is an 
unstable system by itself, we conducted the 
experiment in a closed loop, using a stabilizing 
feedback controller and/or human operator for 
controlling the system.  The plant was subjected 
to a sinusoidal change in its aeration rate, and 
during the whole operation, the plant was 
subjected to different conditions of operation by 
manipulating other variables.  For NN used for 
modeling the input is a moving window of time 
series of data. The next time step value for the 
system is predicted.  After the NN was trained, 
the performance was evaluated by using unseen 
test data set by NN.  In real process, the 
input/output signals include noise and 



disturbance.  This may impose unknown 
parameters such as time constants, delay times 
and so on.  In addition, the sampling rate and 
time may be less than ideal.  In such situations, 
when a NN is used for modeling, that input layer 
needs a large number of input nodes to enable it 
to gain sufficient information about the target 
plant.  With more number of input nodes the 
training time increases but not necessarily its 
prediction capability.  Therefore, the number of 
delayed inputs that should be given to the NN 
was selected appropriately, as outlined in [3].  
Initial attempts of modeling [1, 2, and 3], were 
using a MISO approach, and there were different 
models for predicting pressure differentials, 
aeration rate and mass circulating rate, but in [4] 
it has been clearly shown that a single MIMO 
NN can successfully model all the pressure 
differentials and the mass circulation rate 
simultaneously.  Fig 2 shows a prediction sample 
window of MIMO model predicting the Mass 
circulating rate.  The data range from 0-1800 sec 
was given for the training of the NN, and after 
that the NN predicts without any additional 
training.  It can be clearly noted that the NN 
model has been not only effective in predicting 
in the training set but also extrapolates 
effectively into unseen future.  It should be 
however noted that even though the circulation 
rate in the plot seems to be sinusoidal, various 
other parameters in the CFB have been 
constantly been changed and hence the plant 
state is not the same all time.  
 

NN control designs are divided into two 
main categories: the Direct Design where the 
controller is a NN and the Indirect Design where 
the controller is not itself a NN, but uses NN in 
its design and adaptation [9].  Many learning 
algorithms have been proposed for NN.  
However, there is one main obstacle in the way 
to adapt NN controller.  Backpropagation cannot 
be applied directly to NN controller training.  
The basic objective of a controller is to provide 
the appropriate input parameters to plant to 
obtain the desired output.  In our case by varying 
the move aeration we control the mass 
circulation rate. The NN uses the difference 
between the actual outputs of the plant Yα and 
the desired output Ydα to change the weight of 
connections.  Specialized learning avoids several 
drawbacks of general training: there is no longer 
a specific training stage, and the network learns 
directly on the domain of relevant Yα.  
Moreover, the network learns continually and is 
therefore adaptive.  Yet, the evaluation of the 

error from the output requires prior knowledge of 
the plant.  They propose to consider that plant 
can be thought of as an additional, though 
unmodifiable, layer of the neural controller.  The 
weights of the connections leading to this layer 

are fixed to the values
β

α
U

Y
∂

∂ .  A modification 

of the back-propagation algorithm is done to take 
this layer into account and compute the errors δα 
at the output layer as: 
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this is similar to what we use in general back-
propagation.  However, the Jacobian of the plant 
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differ in the method how the Jacobian of the 
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estimated which is unknown.  A simple way to 
do this is to approximate the partial derivative by 
their sign, which can be known a priori when we 
have some information about the orientation in 
which the control parameters influence the 
outputs of the plant: 
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where )(kU
ES

γ∂
∂  is the gradient 

approximation by sign.  If the network 
converges, it will drive the error to zero, 
providing the plant to follow a reference signal.  
Finally the weights wαβ(n) of the connection 
between unit Uα(n) at layer n and unit Uβ(n-1) at 
layer (n-1) is modified by: 
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where η is the learning rate.  This error can then 
be back propagated to the hidden layers using the 
general rules of backpropagation.  The signs are 
chosen on the basis of prior qualitative 
knowledge of the plant: they represent the 
direction in which the control parameters Uα(k) 
must be modified to produce an increase of the 
outputs Yβ(k+1) of the plant.  In contrast to the 
indirect adaptive control, there are direct 
adaptive controller techniques that are quite 
easier to train and implement.  The direct 



training method used here is trained by using the 
systems output errors directly with little a priori 
knowledge of the controlled plant.  This direct 
method of training the NN controller has been 
outlined in [10].  If the system is positive-
responded (or negative-responded), then the 
system direction is written as D(G)=1 (or D(G)= 

-1).  Now this replaces 




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and the weights are updated via backpropagation.  
In the case of CFB, the aeration rate is always 
aiding the increased mass circulation rate, hence 
we use D(G)=1 for the training.  The NN 
controller is trained and is used to provide 
control action to make the mass flow rate follow 
a randomly given reference input signal, as 
shown in Fig 3.  It is clearly observed that the 
direct adaptive NN controller has been able to 
achieve the set points.  The controller is 
calculating the control action every instant, and 
is updating itself with respect to response from 
the plant.  The controller was perturbed by 
varying the other variables to check the stability 
of the controller and the results were satisfactory.  
 
5. CONCLUSIONS 
 
The main objective of this work has been to 
provide a NN model capable of approximating 
with sufficient accuracy the highly nonlinear 
process of the CFB that can be later used to 
device a control strategy.  Fig 2 shows that the 
trained NN model was able to predict not only 
on the training data set but also was able to 
extrapolate the results into unseen data set.  This 
model can be used to understand the behavior of 
the CFB off-line and do certain analysis which 
may not be possible on the real plant.  A suitable 
controller was designed which was stable and 
providing good tracking control as shown in Fig 
3. Future work is directed in trying to improve 
the efficiency of the model and controller and 
also compare the performance with different 
methods. 
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Fig 2. Prediction of Mass Flow Rate over the range of 1700-2300 Sec, NN was 
trained on 0-1800 Sec data set 

Fig 3. Response of NN Controlled CFB 
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