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Abstract − This paper presents an autotuning process 
controller aimed at providing efficient rejection of load 
disturbances, in a class of situations that are typical in process 
cotnrol, and not easy to treat with most standard autotuning 
controllers. The regulator structure is not completely fixed a 
priori, though it can be reduced to a PID in simple cases. This 
is a significant peculiarity with respect to the main research 
stream on autotuning regulators, that refers essentially to 
fixed-structure (PID) regulators. Both a simulation and a 
laboratory example are reported. 

I. INTRODUCTION 
In the industry, the term ‘process controller’ refers 

typically to a simple device, handling one or a few loops. 
Such devices are the most widely used in process 
applications (64% of the overall marketplace according to 
[5]), as they “provide a more manageable process in case of 
failure” (ibidem). In the selection of a process controller, 
autotuning is nowadays among the most desired features 
[6], as the users are becoming more and more confident in 
that technology [3, 2, 13]. Most process controllers are 
based on the PID regulator structure, and the diffusion of 
those controllers is surely among the reasons of the great 
research effort that in the last decades has been spent on the 
PID (auto)tuning [2, 13]. Methods were conceived to 
synthesize a PID for almost any control problem, or class of 
control problems, that a process controller may come 
across. This work addresses a control problem that is quite 
particular, but of significant interest in process applications, 
and for which it is difficult, and potentially very critical, to 
devise a tuning method for the PID. For this control 
problem, an alternative regulator structure is proposed, and 
a tuning procedure for that structure is devised, focusing 
attention on implementation-related issues. A simulation 
test and an experimental laboratory example are reported to 
illustrate the effectiveness of the proposed autotuning 
regulator, also by comparing it to a PID tuned with a 
method conceived for load disturbance rejection. 

II. PROBLEM STATEMENT 
Consider a single-loop control problem with the 

following characteristics. The process is described by a 
transfer function that is stable, of type 0, essentially delay 
free and minimum-phase, but possibly of high order. The 
process may have poles and zeros that are near in 
frequency, and within the desired control band. The process 
poles are overdamped, but its step response may be 
overshooting. The major control goal is to counteract 
phenomena that are naturally modeled as unmeasured load 

disturbances. Not only the duration of the load disturbance 
response, but also the peak deviation of the controlled 
variable is subject to specifications. 

Notice that such a problem is frequent in process control; 
a quite typical, but not the only example is a temperature 
loop with tight tolerances. In cases like this, most PID 
autotuning methods experience some difficulties. There is 
not the space here for a full discussion, but a brief sketch of 
the reasons of those difficulties can be given. The great 
majority (not to say the totality) of autotuners in process 
controllers use either model-based tuning methods [2, 9, 13] 
or relay-based identification and tuning rules that assign one 
point of the open-loop Nyquist curve [13, 16]. In the former 
case, the main problem is that simple models like those 
adopted in most PID tuning rules are too simple, and the 
role of the identification method is too critical and difficult 
to characterize, to acheve the bandwidths required for 
efficient disturbance rejection [9]. There are some 
remarkable exceptions, such as the “kappa-tau” (or KT) PID 
tuning method [2], but it is easy to verify that the regulators 
obtained are (necessarily) quite conservative. Things are 
different for relay-based autotuners, see e.g. [1, 7, 10, 12, 
15, 16] and numerous other works. Most frequently, they 
force the open-loop Nyquist diagram to cross the unit circle 
with a given phase margin, that is the most natural 
specification in that context. The information conveyed by 
one point of a Nyquist diagram is local but exact, and free 
from hypotheses on the structure of the process dynamics. 
Therefore, with relay-based autotuning it is easier and safer 
to obtain wide control bands. However, a specification on 
the phase margin per se is not the most natural and intuitive 
way to express a request on load disturbance rejection, since 
it may have different meanings and effects in various 
situations. 

III. THE REGULATOR 
Consider the block diagram of figure 1, where y° is the 

set point, y the controlled variable, u the control signal, d 
the load disturbance, P(s) and R(s) the transfer function of 
the process and the regulator, respectively. 

y° yu
d

R(s) P(s)+- +
+

 
Fig. 1 The main block diagram. 



A requirement on the rejection of d is expressed very 
naturally as a magnitude overbound for the frequecy 
response of the transfer function Gd(s)=Y(s)/D(s). Since 
|Gd(jω)| can be approximated with |R(jω)|-1 and |P(jω)| for 
frequencies ω smaller and larger than the cutoff frequency  
ωc, respectively, a way to achieve good rejection of d is to 
design R(s) so that its magnitude be as high as possible in 
the vicinity of ωc. A compromise with the degree of 
stability is apparently in order. That compromise depends 
on the regulator structure, which – as a consequence – in the 
presented autotuner is not fixed a priori in its entirety. The 
structure is chosen so as to be able of providing a large 
phase lead, as its magnitude at the cutoff frequency has to 
be kept high [4]. Moreover, which is even more important, 
the structure is chosen so as to allow determining the 
maximum regulator lead, and the magnitude at the 
corresponding frequency easily. The structure is 
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Note that with m=1 and n=2, (1) is a real PID. This 
structure is not standard, but can be easily implemented 
with the elements of any control design environment. The 
regulator is tuned by assigning one point of the open-loop 
Nyquist diagram on the basis of one point of the process 
frequency response, identified (with a relay and/or a sine 
input test) at a frequency as close as possible to the desired 
cutoff: in [10] there is an example of such a relay-based 
identification method. Note, incidentally, that such a tuning 
policy allows to guarantee a phase margin anyway, though 
this is not the crucial point. Since the tuning policy is meant 
to use a single point of the process Nyquist curve, the 
number of regulator parameters is kept to the minimum 
necessary. The regulator (1) gives the maximum phase lead 
at the frequency 
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under the condition 0 < α < (n-m)/n, and that maximum 
phase lead is given by 
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The regulator magnitude at the frequency of the 
maximum phase lead is  
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while the asymptotic regulator magnitude for ω → ∞  is 
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The typical aspect of the magnitude and phase of R(jω) is 
shown in figure 2 (obtained with m=1 and n=3). For better 
clarity, since the figure is essentially qualitative, the 
frequency axis is normalized - i.e., graduated in ωT - and 
the magnitude plot is scaled as if KTm=1. 

 
Fig. 2 Regulator's magnitude and phase. 

IV. A TUNING PROCEDURE 
The idea behind the tuning is very simple. Suppose that 

one point P(jωo)=APejϕP of the process Nyquist curve has 
been identified with a relay experiment, ωo being the limit 
cycle frequency, that a phase margin ϕm is required, and 
that the regulator magnitude at the cutoff frequency must be 
at least Rmin. A regulator R(s) in the form (1) solves the 
problem, making ωo also the cutoff frequency, if 
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On the basis of the definitions above, this is possible if 
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In other words, (8) define the locus Π of the points of the 
process Nyquist curve that the regulator (1) is capable of 
moving to ej(ϕm-180°) (obtaining ϕm) but, and this is the key 
point of the proposed method, with a sufficiently large 
magnitude of R(jω) at ωo; this is illustrated in figure 3, 
where Π is evidenced by the darker hatch. 

The goal of any tuning procedure based on the proposed 
approach is quite articulated. In fact, it is necessary to find a 
point of the process Nyquist curve such thatits frequency is 
as close as possible to the desired ωo,its magnitude is less 
than 1/ Rmin, given a value of m (based on a priori static 
specifications) there exist α and n such that the point is 
contained in Π, and if the regulator is synthesised by 



moving that point to ej(ϕm-180°), i.e., determining K and T 
with the first (complex) equation of (7), the resulting 
regulator’s high frequency gain R∞ is not too high. Notice 
that an upper bound on R∞ reflects in one on n. 
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Fig. 3 Region of ‘suitable’ points of P(jω). 

Apparently, this is a multi-objective problem, and in real-
life cases it may be impossible to solve, either because 
specifications are too strict or because the synthesis 
approach is not suited to the problem. Therefore, the tuning 
procedure must be capable of relaxing specifications if 
required, and provide an alternative tuning if its approach is 
inherently unfit for the problem at hand. In both these cases, 
a warning to the user is necessary. Such a procedure can be 
designed in many different ways, and in any case it turns 
out to be complex. For this reason, instead of giving a 
lengthy description of the procedure adopted to generate the 
presented results, in the following some guidelines are 
given to design a possible tuning procedure. 

First, suppose that no cutoff frequency is specified. In 
this case, find the process ultimate point, which means 
setting ωo to the ultimate frequency. If |P(jωo)|<1/Rmin, 
choose n so that there surely exists a value of α for which 
P(jωo) is contained in region Π (see figure 3). In other 
words, since the required regulator magnitude at the cutoff 
can be obtained, choose the regulator structure so as to be 
able of providing the necessary phase lead. To choose n, 
recall that a higher value will result in a larger α, hence in 
less distance between the poles and zeros of R(s). In 
addition, n influences R∞ through (6), but in this 
relationship also T is present. Therefore, a reasonable 
choice is to first determine the required phase lead at ωo (in 
any reasonable application, a lead is necessary) based on 
P(jωo) and the required phase margin ϕm, and then introduce 
one zero for every 40° of required lead. Notice that, if the 
ultimate point magnitude is acceptable, the regulator will be 
a real PID with coincident zeros if the required lead (i.e., 
ϕm) is less than 40°, and for ϕm<80° n will not exceed 3. 
Introducing one regulator zero for every 40° of phase lead is 
a good policy to avoid high values of α. Once n is 
computed, set α so that the maximum regulator lead equals 

the required lead (plus a few degrees for numerical 
reasons), i.e., so that P(jωo) be inside Π but near its 
boundary; then, set T so that this lead occur at ωo. This is 
accomplished based on (2) and (3). In so doing, sensitivity 
will be kept low in the vicinity of the cutoff frequency, 
which is a highly desirable characteristic of any control 
loop, and this will be achieved without an excessive high 
frequency regulator gain (see figure 2). It must be observed 
that this way of determining the maximum regulator lead 
and α makes the proposed method not very suited for 
systems with dominant delay, however. Once α and T are 
available, Compute K so that |R(jωo)P(jωo)|=1. If the 
resulting R∞ is not too large (a bound is determined easily 
based on the measurement noise),  the tuning is achieved. In 
any other case, the ultimate point is not ‘suitable’. This may 
mean that its magnitude is not small enough and/or that R∞ 
is too large. 

If, the process ultimate magnitude is not small enough, 
try increasing ωo, identify the corresponding point, and 
recompute in sequence n, α, T, K, and R∞. If R∞ is not too 
high, verify that the process magnitude is less than 1/Rmin: if 
this is true the tuning is achieved. In the opposite case, 
record the quantities computed, and particularly the 
achievable value of Rmin (which is 1/|P(jωo)|, and was not 
acceptable), then increase the cutoff again, and repeat the 
identification, the computations and the checks until a value 
of 3 times the ultimate frequency is reached. At this step, if 
a suitable point has not been found yet, there are the 
following possibilities. 

a) The ultimate magnitude was too high and no point 
yielded a sufficiently small R∞ (i.e., n) This is likely to 
indicate a dominant delay, as the process phase appears 
to diminish rapidly and steadily above the ultimate 
frequency. In this case, the proposed approach is not 
suited to the process: however, one could tune with the 
ultimate point, and alert the user that the required Rmin
was not attained. Results will be similar to standard one-
point relay based tuning. 

b) The ultimate magnitude was too high, some points gave a 
sufficiently small R∞, but the process magnitudes were 
too high. This indicates that the proposed approach is 
suited for the process, but the specification on Rmin was 
too demanding. In this case, one could tune with the 
point yielding the largest Rmin (values were recorded for 
this purpose) and, again, warn the user. 

If the problem with the ultimate point was not the 
magnitude, but the excessive lead required, it is possible to 
reduce ωo. The regulator parameters are computed in the 
same way, and the procedure is equivalent to standard one-
point PID tuning, as witnessed by example 3. If a desired 
cutoff frequency is specified, the procedure is the same, but 
the first point is identified at the desired cutoff frequency, 
e.g. with the method of [10] and not at the ultimate 



frequency. Notice that most frequency search techniques 
also provide at least a guess of the ultimate point.  

It is worth stressing that the procedure sketched above 
does not exhaust the possibilities of the approach; one could 
devise more complex procedures, for example observing 
how the process magnitude and phase vary when points at 
increasing frequencies are identified and drawing some 
conclusions on the presence and entity of a possible delay, 
or allowing the procedure to modify also the phase margin, 
and so on. Discussing all these possibilities would be 
lengthy and inessential, however. The sketch above was 
presented to show that the proposed approach is applicable, 
and heuristics (i.e., default values and thresholds) can be 
given a sense. The interested reader is encouraged to 
experiment with the approach, and devise different 
procedures. 

V. A SIMULATION EXAMPLE 
The process considered in this example is described by 

the transfer function 
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Employing the proposed method with the ultimate 
frequency (the point found has ωo=1.733, AP =0.125, ϕP =-
180.5°), with ϕm=45° and setting m=1, gives n=2, α=0.082, 
T=3.047, K=0.524; the actual phase margin obtained with 
this regulator is 45.008°. With ϕm=30° the result is n=2, 
α=0.155, T=2.394, K=0.907; the actual phase margin is 
30.023°. Notice that these two regulators are real PIDs. 

Then, the method was applied identifying the point at 3 
times the ultimate frequency. It would be extremely difficult 
to do this with a relay, therefore a sinusoidal input was 
used. The point found in this way has ωo=1.733, AP=0.007, 
ϕP=-237.4°. With ϕm=60° and m=1 the result is n=3, 
α=0.051, T=1.064, K=4.717. With ϕm=45°, the method 
yields n=3, α=0.080, T=0.862, K=9.050; the actual phase 
margin in the two cases is 60.112° and 45.184°. 

To compare the proposed method with a well established 
and effective one, widely employed in the application 
domain and particularly suited for load disturbance rejection 
problems, the KT tuning rules [2], that refer to the 1-d.o.f. 
ISA PID control law 
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were applied to a model of First-Order Plus Dead Time 
(FOPDT), i.e., in the form M(s)=µMe-sLM/(1+sTM), 
identified with the well known method of areas, that gave 
µM=1.0, TM=1.85, and LM=1.15. Setting the design 
parameter Ms of the KT method (that is related to the 
maximum sensitivity, see [2] for a complete explanation of 
the method) to 1.4, the KT method gives KP=0.707, 
Ti=2.093, and Td=0.486 (ωc=0.327, ϕm=73.34°), while 

setting Ms=2.0 gives KP=1.426, Ti=2.028, 
Td=0.448 (ωc=0.619 and ϕm=57.591°). Parameter N was set 
to 5 in both regulators (the value of N is of neglectable 
importance for the problem addressed). The closed-loop 
load disturbance responses of the various control systems 
are shown in figure 4 (notice the different amplitude and 
time scales of the various plots). Strictly speaking, only the 
comparison between the first two couples of plots is 
meaningful, since the KT rules tune a PID. Even in this 
case, however, the results obtained with the proposed 
technique are better, especially considering the peak 
deviation of the controlled variable, and not only the 
transient’s duration. Things are very different when the PID 
structure is abandoned (third couple of plots). In that case, 
the advantages of adopting the proposed regulator structure 
and the corresponding tuning technique are apparent. 

 
Fig. 4. Responses in the simulation example. 

VI. A LABORATORY APPLICATION 
In this section, the proposed autotuner is applied to a 

laboratory apparatus. The apparatus, described in [11], is 
composed of a small metal plate, heated by two transistors 
and cooled by a fan. The inputs are the two transistor 
commands (in percent of the maximum thermal power) and 
the on-off fan command, that in the presented experiment is 
not used. The outputs are the temperatures of the two 
transistors and the metal plate, in °C. In the experiment 
presented, the controlled variable is the plate temperature, 
one transistor is used as the control actuator, and the other 
transistor provides a load disturbance. The experiment 



begins with a relay test, that determines the ultimate point 
(ωo=0.36, AP=0.0021). Then, a sine input test at 1.5 times 
the ultimate frequency gives ωo=0.54, AP=0.001, ϕP=-
195.13°. Selecting 1.5 times the ultimate frequency is a 
reasonable choice when the signals are noisy, as in this 
case. 

The identification experiment is shown in figure 5. The 
relay amplitude was set a priori (as is common practice in 
relay-based autotuning process controllers), while the 
amplitude of the subsequent sine wave was chosen so as to 
yield an output oscillation of sufficient amplitude, assuming 
that the process has essentially a low-pass behaviour in the 
band of interest (which is reasonable). 

 
Fig. 5. Identification experiment. 

Notice that choosing the switching time between the 
relay and the sine wave in a convenient way (i.e., at a phase 
lag of 45° with respect to the last peak of the oscillation 
induced by the relay, according to the period estimated with 
the previous oscillation) results in an acceptable experiment 
length. The case presented is particularly good, but no 
experiment ever required more than 8 periods of the sine 
input to allow the identification of the second point. Further 
details on the realization of the experiment are omitted for 
brevity. With ϕm=45° and m=1 the proposed method yields 
n=2, α=0.035, T=14.4, K=10.26; with ϕm=30° the result is 
n=2, α=0.082, T= 9.81, K=22.8. These two regulators are 
compared in figure 6 with two PIDs tuned with the KT 
method and a FOPDT model M1(s), having µP=0.18 
TP=102.8, LP=7.5. The transient considered is the response 
to a 50° load disturbance step. 

To appreciate the criticality of identification in model-
based methods, the KT rules were applied to two other 
models, termed M2(s) and M3(s), one with µP=0.18, 
TP=98.6, LP=12.5, and the other with µP=0.18, TP=125.6, 
LP=8.8. These models are within the variability of realistic 
experiments, and they all fit the measured data. 

Using the KT method with M2(s) and M3(s) produces the 
experimental transients shown in figure 7. Numbers are 
omitted for brevity, but it is immediate to see that in a case 
like this the influence of the identification can be very 
critical. The proposed method, that guarantees a phase 
margin anyway, is less sensitive to identification errors. 

 
Fig. 6. Experimental tuning results. 

 
Fig. 7. Results of the KT method with different models. 

It would be interesting to discuss also the comparison 
between the presented autotuner and standard relay-based 
PID autotuners. This would exceed space limitations, 
however, as there are many different methods that should be 
addressed. Therefore, only some remarks will be given here, 
to sketch out the reason why, for the load disturbance 
rejection problem addressed, the presented autotuner is 
preferable to standard relay-based PID ones. Basically, the 
reason is that the typical relay-based PID autotuners 
normally operate at frequencies lower than the ultimate one, 
having as principal objective the phase margin. In some 



cases, the point of the process Nyquist curve with phase –
90° is used, for example: this may provide a better stability 
and robustness degree than the presented method, but at the 
cost of a correspondingly increased conservatism, and of 
less performance. From the standpoint of disturbance 
rejection, the presented autotuner provides an improvement 
in practically the totality of the cases addressed. 

VII   SOME  WORDS ON IMPLEMENTATION 
The proposed method is quite simple and light from the 

computational point of view. In the implementation it is 
necessary to take the usual precautions when doing relay or 
sine input experiments, but nothing is required in this 
respect that is not explained in the vast literature on those 
subjects. 

However, any autotuner has to provide a reasonable 
default for its design parameters. Here, apart from m that is 
the unity in any realistic case, the only design parameters 
are the phase margin (a good default being 45°, as already 
shown, and a sensible ‘aggressive’ value being 30°) and the 
desired cutoff frequency. The bound on R∞ can be selected 
automatically, based on possible limitations on the variation 
of the control signal and on the measured noise amplitude: 
also this matter is extensively discussed in the PID 
autotuning literature, and from this point of view the 
proposed structure is analogous to a rela PID. 

Quite intuitively, it is advisable (and easy to understand 
for the operators) to relate the desired ωc to the ultimate 
frequency: 1.5 times the ultimate frequency can be taken as 
a reasonable default, and three times that frequency can be 
considered the maximum allowed with very small 
measurement noises. Notice also that the ultimate frequency 
is easy and quick to determine with a single relay test, so 
that finding a second point (typically with a sine test) 
preserves a short duration of the overall experiment. 

VIII. CONCLUSIONS 
An autotuning process controller specifically aimed at 

rejecting load disturbances was presented. The class of 
control problems considered is relevant in process control 
and, as shown by the comparative examples reported, it can 
be critical for the majority of industrial autotuners, that refer 
to the PID controller structure. 

The structure adopted in this work is slightly different 
from the PID, although in simple cases it can be reduced to 
a PID (the tuning method does this automatically, as 
shown). It is a simple structure, however, with a very small 
number of parameters, and easy to implement in any 
industrial control environment with standard elements. 

The regulator synthesis is done by assigning one point of 
the open-loop Nyquist diagram on the basis of one point of 
the process frequency response (identified by means of a 
conveniently driven relay experiment and/or a sine input 
test), keeping the regulator magnitude at the cutoff 
frequency as large as possible. 

In the control problems it was devised for, the autotuner 
can yield significant improvements, both in terms of 
performance and criticality of the identification phase, with 
respect to the available alternatives, as demonstrated by the 
tests reported. 
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