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Abstract— This paper presents a methodology to calibrate
kinematic parameters on a Hexapod-type parallel kinematic
machine tool of the Stewart platform. Unlike in the case of
conventional serial kinematic feed drives, on parallel kinematic
feed drives the tool position and orientation can be only
indirectly estimated from angular position of servo motors.
Therefore, for high-accuracy motion control of parallel kine-
matic feed drives, it is the most critical issue to calibrate
kinematic parameters such as the reference length of struts
and the location of base joints. This paper demonstrates a
calibration method based on circular tests to measure the
machine’s contouring accuracy in a circular operation. To
optimize the positioning accuracy of a parallel kinematic feed
drive over the entire workspace, it is important to evaluate the
machine’s global positioning error in circular tests by using
the specialized jig plate. The effectiveness of the calibration is
experimentally validated on a commercial parallel kinematic
machining center.

I. INTRODUCTION

Most of machine tools in today’s market are driven by
feed drives that are aligned serially. For example, a 5-axis
machining center typically has three linear axes aligned
orthogonal to each other, and two rotary axes aligned par-
allel to linear axes. As a counterpart to such a mechanism,
which is referred to as a serial kinematic machine in this
paper, parallel kinematic feed drives have recently attracted
increasing attention for application in a machine tool due
to their potentials in high-speed and high-accuracy 6-DOF
(degrees of freedom) positioning. The moving mass in
parallel kinematic feed drives can be smaller since they
do not need guideways, which is a clear advantage for
high-speed and high-acceleration positioning. Unlike in the
case of serial kinematic mechanism, a kinematic error
in each axis does not impose an accumulating effect on
the machine’s positioning accuracy, which is a potential
advantage for high-accuracy motion control [1].

In the 60’s, Gough [2] and Stewart [3] first presented the
application of a parallel mechanism to tire testing and to
actuated flight simulation. The first prototype of commercial
parallel kinematic machine tools, called “Hexapod,” has
been introduced to public in 1994 by Ingersoll and Giddings
& Lewis. A comprehensive review on the development of
parallel kinematics for machine tools can be found in [1].

Although more than ten years have been passed since the
first parallel kinematic machine tool was introduced, they
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are not widely accepted in today’s industry. Despite many
conceptual advantages of parallel kinematic feed drives,
there are critical and inherent issues with their application
in a machine tool [4]. One such issue is the stiffness; in a
parallel kinematic machine tool, a spindle unit is supported
and driven by struts only. It typically exhibits lower stiffness
against an external force, compared to conventional feed
drives with a guideway that introduces higher friction.

Another critical issue is the difficulty to optimize its po-
sitioning accuracy. Unlike in the case of conventional serial
kinematic feed drives, on parallel kinematic feed drives
the tool position and orientation can be only indirectly
estimated from angular position of servo motors. Therefore,
for their high-accuracy motion control, it is in practice the
most critical issue to calibrate various kinematic parameters
such as the reference length of struts and the location of
base joints. The calibration strategies found in the literature
can be roughly categorized into two [5]: 1) by somehow
directly measuring the motion of machine components (e.g.
Zhuang and Liu [6]), and 2) by measuring the motion of
spindle tip, from which kinematic parameters are indirectly
identified. As the latter approach, for example, Weck and
Staimer [4] used a redundant leg, and Soons [5] used a laser
interferometer to measure the position of the tool tip.

On conventional serial kinematic machine tools, due to
the simplicity of setup and the easiness of measurement, the
circular test by using the DBB (Double Ball Bar) device [7]
has been widely accepted by machine tool manufacturers as
a standard tool to measure the machine’s contouring accu-
racy. The circular test is accepted as an ISO standard [8].
It can be extended for the calibration of parallel kinematic
machine tools [9]. In our previous works, we presented a
calibration methodology based on circular tests performed
under the condition where the elastic deformation of struts
due to the platform weight is minimized [10]. We verified on
a commercial parallel kinematic machine that the circularity
error was reduced to as small as 7 µm by the calibration,
when the spindle is near the center of the workspace [11].

The DBB test has, however, an inherent problem in
its nature to perform the kinematic calibration based on
it. In a DBB test, one can only measure the distance
between two balls. In other words, it only measures a
relative position error on a local coordinate system defined
with respect to the fixed ball location. To improve the
machine’s positioning accuracy over the entire workspace,
the calibration must evaluate the machine’s positioning error
on the global coordinates defined with respect to the table.
This paper demonstrates a calibration method by performing
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Fig. 1. Stewart platform

TABLE I

MAJOR SPECIFICATIONS OF PM-600

Workspace, mm φ600 (XY) ×400 (Z)
(420 × 420 × 400)

Tilting angle, deg ±25
Maximum rapid traverse speed, m/min 100

Maximum acceleration, m/s2 14.7
Spindle speed, min−1 12,000/30,000

Spindle power, kW 6

circular tests on a specialized jig plate to evaluate the
machine’s global positioning error. The effectiveness of the
proposed calibration method is experimentally validated on
a commercial parallel kinematic machining center.

The remainder of this paper is organized as follows.
The following chapter briefly reviews a mechanism of a
“Hexapod” type parallel kinematic machine tool of the
Stewart platform, and then outlines the calibration strategy.
In Chapter III, the issues in the conventional calibration
strategy based on circular tests are discussed, and then
a jig plate to evaluate the machine’s global positioning
error in circular tests is presented. Chapter IV presents the
experimental validation of the proposed calibration method.

II. A PARALLEL KINEMATIC MACHINE TOOL AND ITS

KINEMATIC CALIBRATION

A. A Parallel Kinematic Machine Tool of the Stewart Plat-
form

This paper considers the kinematic calibration on a par-
allel kinematic feed drive of the Stewart platform depicted
in Figure 1. It has six telescoping struts, each of which is
connected to a base plate by a 2-DOF joint. The other end
of a strut is connected by a 3-DOF joint to a platform plate,
where a spindle is installed.

Figure 2 shows a schematic view of COSMO CEN-
TER PM-600 developed by Okuma Corp., a commercial
Hexapod-type parallel kinematic machining center of the
Stewart platform, which is used as an experimental machine
throughout our study. Table I shows its major specifications.
Each strut is driven by a built-in servo motor via a ball
screw. The “length” of each strut is indirectly measured by
a rotary encoder installed in a motor. In this paper, six joints
on the platform plate are referred to as platform joints, while
those on the base plate are referred to as base joints.

Fig. 2. A Hexapod-type parallel mechanism machine tool, COSMO
CENTER PM-600 by Okuma Corp.

B. Inverse and Forward Kinematics of the Stewart Platform

In Fig. 1, T = [X, Y, Z,A, B, C] represents the position
and the orientation of the spindle tip (tool tip). When T
is given, the problem to calculate the length of each strut,
L = [L1, · · · , L6], is called the inverse kinematic problem.
It is denoted as:

L = F(T ) (1)

where F represents the inverse kinematic function of the
Stewart platform. Note that F is a function of the location
of platform joints, P j ∈ R3 (j = 1 ∼ 6), and the
location of base joints, Qj ∈ R3 (j = 1 ∼ 6). The
inverse kinematic problem for the Stewart platform can be
algebraically solved [11]. When the command position and
orientation of the spindle tip is given, the command “length”
of each strut, i.e. the command to each servo motor, is given
by solving the inverse kinematic problem.

The problem to calculate T for the given L is referred
to as the forward kinematic problem:

T = F−1(L) (2)

The forward kinematic problem of the Stewart platform
cannot be algebraically solved. In this paper, we employ
the Newton-Raphson method to numerically solve it.

C. Kinematic Parameters to Be Calibrated

There are more than 200 potential error sources in the
parallel mechanism shown in Figure 1 [1]. Since it is not
possible to identify all of them, this paper only considers
the calibration of the following kinematic parameters:

1) An error in the reference length of each strut: ∆Li ∈
R (i = 1 ∼ 6)

2) An error in the location of each base joint: ∆Qi ∈ R3

(i = 1 ∼ 6)
These total 24 parameters are contained in the inverse
kinematic function of the Stewart platform, and thus directly
affect the machine’s positioning accuracies. It should be
noted that an error in the location of each platform joint,
∆Pi ∈ R3 (i = 1 ∼ 6), is also contained in the inverse
kinematic function. In our previous study [11], it was



experimentally shown that the sensitivity of the parameters,
∆Pi ∈ R3 (i = 1 ∼ 6), on the machine’s positioning
error in a circular test was not as large as that of the
parameters shown above. In this paper, we do not consider
the calibration of ∆Pi; the location of platform joints are
actually measured by using a coordinate measuring machine
(CMM).

D. Kinematic Calibration Based on Circular Tests

A circular test is conducted by using a DBB device shown
in Figure 3. One ball (B), referred to as the fixed ball in this
paper, is fixed on the table, while the other ball (A), called
the moving ball, is attached to the spindle. The distance
between the two balls is measured by an optical encoder
installed in the bar as the machine moves along a circular
path [7].

For the given reference radius of the circular path, R̂i ∈ R
(i = 1 ∼ N ), the actual length of the bar, Ri ∈ R, is given
as a function of the kinematic parameters, i.e.:

Ri = f(R̂i, K) (3)

where K ∈ RM is a vector containing all the kinematic
parameters to be tuned (M represents the number of kine-
matic parameters to be calibrated). f is a function that
describes the forward kinematics of the Stewart platform.
The objective of the kinematic calibration is to solve Eq. (3)
for K from Ri (i = 1 ∼ N ). Since kinematic errors can
be assumed sufficiently small with respect to their nominal
values in practice, we can linearize Eq. (3) for K and
stack N data measured at different spindle locations and
orientations to have:

∆R = A · ∆K (4)

where ∆R = {Ri}i=1,···,N ∈ RN×1 represents the
measured positioning error in the radial direction at the
i-th position. ∆K = {∆kj}j=1,···,M ∈ RM×1 repre-
sents the kinematic error vector to be calibrated. A =
{ ∂fi

∂kj
}i=1,···,N, j=1,···,M ∈ RN×M represents the sensitivity

matrix. Since the forward kinematics denoted by function f
is implicit, the matrix A can be computed only numerically.
By simply using the least square fitting (LSF), the optimal
∆K∗ that minimizes the calibration error ‖∆R − A∆K‖2

is given by:

∆K∗ = (AT A)−1AT ∆R (5)

The practical validity of such a simple LSF-based cal-
ibration was experimentally verified by many previous
works [4][9][11].

III. KINEMATIC CALIBRATION TO EVALUATE GLOBAL

POSITIONING ERROR

A. Issues in the Conventional Circular Test Procedure

On conventional serial mechanism machine tools, a cir-
cular test is typically conducted by the following proce-
dure [7]:

Fig. 3. A DBB device.

Standard Circular Test Procedure:

1) Locate the spindle at the given center position and orien-
tation. Set the fixed ball on the table under the spindle.

2) Move the spindle by the given measurement radius, and
then attach the moving ball to the spindle. Set the bar
between the fixed ball and the moving ball.

3) Start the measurement; move the spindle along a circular
path.

4) Calculate the center of the measured trajectory and then
re-compute the contouring error (the deviation from the
reference circle) by using this “optimal” center.

In 4), the center of the measured trajectory can be computed
by solving the following problem by using e.g. the Newton
method:

min
x0,y0,r0

N∑
i=1

(√
(xi − x0)2 + (yi − y0)2 − r0

)2

(6)

where (xi, yi) (i = 1 ∼ N ) is the measured trajectory
of the spindle position on X-Y plane. The re-computation
of the error profile by using the optimized center (this re-
computation is hereafter referred to as the center compen-
sation) is commonly done when a circular test is performed
on a conventional serial mechanism machine tool [7]. This
compensation is needed to cancel setup errors such as a)
position shift of the fixed ball from the reference circle
center, and b) position shift of the moving ball from the
spindle center (see Figure 4).

Such setup errors appear as the center deviation on an
error trajectory. By applying the center compensation, such
setup errors can be ignored. For the kinematic calibration
on a parallel kinematic machine tool, however, it is crucial
to evaluate the center deviation for the following reason:

1. The center deviation shows the machine’s global posi-
tioning error. In a circular test, one can only measure a
relative positioning error with respect to the location of
the fixed ball. In order to evaluate the machine’s global
positioning error, the location of the fixed ball must be
defined on the global coordinates. Notice that it is not
the case in the procedure above, since the fixed ball is
located based on the spindle location.

2. The conventional procedure limits the number of param-
eters to be calibrated. For example, suppose that all the
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base joints are shifted to the same direction by the same
distance. In the conventional procedure, such an error
does not appear at all on an error trajectory. It is easy to
see that at least six parameters must be prescribed in order
to make the matrix A in Eq. (4) nonsingular (See [10]).

3. The conventional calibration cannot define the machine’s
coordinates with respect to the table. In the conventional
calibration, the coordinates are defined with respect to the
parameters fixed in 2.

B. Jig Plate for Circular Tests

To address issues discussed in the previous section, we
propose to perform a circular test on a specialized jig plate
to locate the fixed ball. Figure 5 shows an outlook of the
jig plate. It has nine taper bores on its top surface. Two ball
holders of different height are available such that a circular
test can be performed at different Z height levels (Figure 5
shows the longer ball holder). The ball holders have a 7/24
taper at its bottom, and can be inserted to the bore by the
face and taper contact (i.e. the dual contact like the “Big
Plus” spindle system) by tightening screws. This jig plate
allows us to locate the fixed ball in the global coordinates
defined with respect to the table.

When the insertion and the separation of ball holders
were repeated for ten times at each location, the repeata-
bility error in the ball location was 1.0 µm at average
for the shorter holder, and was 3.2 µm at average for the
longer holder (measured by using a CMM). The errors are
sufficiently small for a circular test.

C. Calibration Procedure using the Jig Plate

First, set up the jig plate on the table. Note that the
calibration will ideally define the machine’s origin at the
location of the center hole. We chose 15 center locations
for the circular test as shown in Table II. Similarly as in
our previous work [10], these locations are chosen such

Fig. 5. The jig plate and the ball holder for circular tests

TABLE II

CENTER LOCATIONS AND ORIENTATION IN CIRCULAR TESTS

Name Center Z A B
∗1 ∗2 (deg) (deg)

a 9 1 0 0
b 4 1 10 -10
c 6 1 10 10
d 8 1 -10 10
e 2 1 -10 -10
f 9 2 0 0
g 3 2 0 -15
h 5 2 15 0
i 7 2 0 15
j 1 2 -15 0
k 9 3 0 0
l 4 3 10 -10
m 6 3 10 10
n 8 3 -10 10
o 2 3 -10 -10

1

28

7

6

5

4

39

∗1: indicates the location of the
fixed ball on the jig (shown in
the figure above) in each DBB
test.
∗2: indicates the location of
the platform in the z-direction.
1(lowest) – 3(highest).

that they cover as much a portion of the machine’s entire
workspace as possible. At each location, either of the ball
holders is installed on the jig plate and conduct the circular
test in the same manner presented in Section III-A. Note
that the center location in each test (the command position
to the machine) is given by the actual location of the fixed
ball measured in priori by a CMM. Alsot note that the center
compensation is not needed. Raw error trajectories must be
used in the calibration (Eq. (5)).

It should be noted that the spindle tip location at the
center of each circular test and the fixed ball location
do not necessarily coincide, unlike in the case of the
conventional procedure presented in Section III-A. This
positioning error appears as the center deviation in an error
trajectory. Furthermore, note that the calibration will define
the machine coordinates with respect to the location of
fixed balls. Therefore, for example, by locating the jig plate
parallel to a T-groove on the machine table, the flatness or
the straightness of the machine’s motion with respect to the
table will be secured by the calibration.



IV. EXPERIMENTAL VALIDATION

The proposed calibration scheme was experimentally
tested on a commercial parallel kinematics machine tool
shown in Section II-A to compare with the conventional
calibration method. The conventional calibration scheme
based on the Standard Circular Test Procedure given in
Section III-A is referred to as Conv-A hereafter, while the
proposed calibration scheme using the jig plate shown in
Section III-C is referred to as Proposed.

In the Standard Circular Test Procedure, it is possible
(although quite time-consuming in practice) to measure a
position shift of the fixed ball and the moving ball by
using a micrometer, and then to compensate it on the
measured error trajectory. Notice that even if setup errors
are completely eliminated, the issues (1)∼(3) presented in
Section III-A are not addressed, since the machine’s global
positioning error at the center is still not evaluated. This
scheme (the calibration without using the jig plate, but with
the compensation of setup errors) is referred to as Conv-B,
and is also compared with the proposed scheme.

The kinematic parameters were calibrated by using three
methods, Conv-A, Conv-B, and Proposed. Then, in each
case, the machine’s contouring accuracy was again mea-
sured by circular tests on the jig plate at total eight different
positions. Table III compares (a) the center deviation, (b)
the mean radial error (i.e. the mean of the deviation from
the reference circle), and (c) the circularity error (i.e. the
difference between the maximum and minimum errors from
the reference circle). “Default” indicates the case where
original values (design values) of kinematic parameters
were used without any calibration. “Position” corresponds
to the center location shown in Table II. As examples, error
trajectories measured in the locations d and k are shown in
Figure 6(a)(b), respectively. In all circular tests, the feedrate
was 1,000 mm/min and the reference radius was 150 mm.

Table III(c) indicates that the circularity error under the
calibration Proposed was slightly worse than that under the
conventional calibration at many locations. In Table III(a),
however, the center deviation was significantly reduced
by the calibration Proposed at most locations (mean: 8.6
µm, maximum: 17.8 µm), compared with the calibration
Conv-A (mean: 47.9 µm, maximum: 81.9 µm) and Conv-B
(mean: 43.1 µm, maximum: 64.6 µm). These results clearly
validates the discussion in Section III-A. That is, since
the calibrations Conv-A and Conv-B cannot evaluate the
machine’s global positioning error, they cannot guarantee
the global positioning accuracy at each center, although a
relative positioning error can be reduced.

To further investigate the machine’s global positioning
accuracy, the flatness error [7] with respect to the table’s
top surface and the parallelity error [7] with respect to
one of T grooves on the table were measured. The flatness
error was measured as follows: at total eight points in the
range of X = −260 ∼ 260mm, Y = −260 ∼ 260mm,
the spindle is located at the same Z height level and then

TABLE III

COMPARISON OF CALIBRATION RESULTS

(a) Center deviation (unit: µm)
Position Default Conv-A Conv-B Proposed
a 0.0 0.0 0.0 0.0
d 72.1 13.6 25.3 12.9
f 91.9 26.2 26.8 1.9
h 212.0 51.6 20.9 15.0
j 26.5 9.4 54.0 17.8
k 96.7 81.9 52.1 3.1
l 158.7 72.0 64.6 4.9
n 65.1 80.7 58.4 4.7

(b) Mean radial error (unit: µm)
Position Default Conv-A Conv-B Proposed
a +58.4 +9.0 +3.6 +1.3
d +64.6 +13.6 +5.1 +3.2
f +60.1 +9.1 +0.8 -3.4
h +57.8 +9.3 +1.8 -0.4
j +67.8 +10.0 +1.7 -2.0
k +58.1 +5.9 +1.6 +3.9
l +45.1 +6.4 +2.4 +4.0
n +64.9 +6.5 +0.6 5.4

(c) Circularity error (unit: µm)
Position Default Conv-A Conv-B Proposed
a 25.1 4.9 4.5 3.9
d 18.8 4.1 5.6 5.2
f 24.8 5.2 9.5 7.3
h 61.6 7.2 10.6 12.3
j 17.2 7.6 12.9 12.9
k 25.4 4.6 17.6 5.7
l 43.6 6.6 6.5 6.7
n 14.9 5.3 26.8 5.7

∗ Bold numbers indicate the best result at each position.

the actual distance between the spindle tip and the table
surface is measured by using a micrometer at each point.
Figure 7(a) summarizes the flatness error (the Z height
level at the point (X, Y ) = (260, 260)mm is considered at
the reference level) for each calibration method. Similarly,
the parallelity error was measured as follows: the spindle
is moved to the +X direction along one of T grooves
on the table, and the actual distance from the spindle
tip and the groove is continuously measured by using a
micrometer. Figure 7(b) summarizes the parallelity error
for each calibration. The conventional calibration methods,
Conv-A and Conv-B, resulted in a large flatness error, 186
and 194 µm (in the range X380×Y380mm), respectively.
The parallelity error was also large, 78 and 71 µm (in the
range X380mm), respectively. By applying the calibration
Proposed, the flatness error and the parallelity error were
drastically reduced to 20 and 19 µm, respectively. These
results also validate the importance of evaluating the ma-
chine’s global positioning error in the calibration by using
the jig plate.

At last, it should be noted that it is possible to compensate
the machine’s global positioning error after the conventional
calibrations based on post-calibration measurements. For
example, one can simply “rotate” the parameters of base
joint position, Qi (i1, · · · , 6) such that the flatness error and
the parallelity error are minimized. It does not, however,
always guarantee the optimal positioning accuracy over the
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Fig. 6. Comparison of contouring error trajectories

entire workspace, in addition that it requires considerable
amount of additional works.

V. CONCLUSION

For high-accuracy motion control of parallel kinematic
feed drives, the most critical issue in practice is the cal-
ibration of kinematic parameters. This paper presented a
practical calibration methodology of kinematic parameters
on a Hexapod-type parallel kinematic machine tool. The
proposed calibration method identifies total 23 kinematic
parameters based on the machine’s contouring error in
circular tests conducted with total 15 different locations and
orientations. By performing circular tests on the specialized
jig plate, the machine’s global positioning error can be
evaluated to some extent. The effectiveness of evaluating
the center deviation in circular tests for the kinematic
calibration was experimentally validated on a commercial
parallel kinematic machining center. In particular, the flat-
ness error and the parallelity error, which are indices of the
machine’s global positioning error over a large portion of
the workspace, were drastically improved by applying the
proposed calibration method.
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