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Abstract— Repetitive processes are a distinct class of two- differential and discrete linear repetitive processes is the

dimensional systems (i.e. information propagation in two inde-  essential basis for a rigorous stability/convergence theory
pendent directions) of both systems theoretic and applications for a powerful class of such algorithms.

interest. They cannot be controlled by direct extension of Att ts t trol th . tandard
existing techniques from either standard (termed 1D here) or empts to control these processes using standard (or

two-dimensional (2D) systems theory. Here we give new results 1D) systems theory/algorithms fail (except in a few very

on the relatively open problem of the design of physically based restrictive special cases) precisely because such an approach

control laws using an Ho. setting. These results are for the jgnores their inherent 2D systems structure, i.e. information

sup-class_ of_so-call_ed _dlfferentlal linear repetitive processes propagation occurs from pass-to-pass and along a given

which arise in applications areas such as iterative learning . - ; .

control pass. In seeking a rigorous foundation on which to develop a

control theory for these processes, it is natural to attempt to

. INTRODUCTION exploit structural links which exist between these processes

Linear repetitive processes are a distinct class of Zﬁnd other classes of 2D linear systems.

. - : The fact that the pass length is finite (and hence informa-
systems of both system theoretic and applications |ntere§t. o - . .
: ; L 110N in this direction only occurs over a finite duration) is
The essential unique characteristic of such a process ISthae key difference with other classes of 2D linear systems
series of sweeps, termed passes, through a set of dynanEFs i

defined over a fixed finite duration known as the pass lengt ence there is a need to develop a systems theory for these

On each pass an output, termed the pass profile, is produtf)egces’.Ses for _onward translanon (where appropriate) into
numerically reliable design algorithms.

which acts as a forcing function on, and hence contributes”, " - . .
. ! o A rigorous stability theory for linear repetitive processes
to, the dynamics of the next pass profile. This, in turn, leads . :
. ' s been developed. This theory [8] is based on an abstract
to the unique control problem for these processes in tha

. model in a Banach space setting which includes all such
the output sequence of pass profiles generated can contain

N i : . : rocesses as special cases. Also the results of applying this
oscillations that increase in amplitude in the pass—to—pa% ; .
direction. eory to a wide range of cases have been reported, inc-

To introduce a formal definition, let < +oo denote the Iudlng the so—called.dlﬁerennal Ilngar rep.eltmve processes

) o considered here. This has resulted in stability tests that can,
pass length (assumed constant). Then in a repetitive Process cired be imolemented by direct application of well
the pass profiley(t), 0 < ¢t < «, generated on pask y P y PP

. X : known 1D linear systems tests.
acts as a forcing function on, and hence contributes to, the . o . .
One unique feature of repetitive processes is that it is po-

i i <t< > 0. . . . :
dynamlfzs of the next pass profgyg+1(t), Osts % k20 ssible to define physically meaningful control laws for them.
Physical examples of repetitive processes include long- : Y :
. ; : or example, in the ILC application, one such family of
wall coal cutting and metal rolling operations (see, for . .

. S . _control laws is composed of state feedback control action on
example, [8]).' Also in re_qent years apph(_:atlons have ansehe current pass combined with information ‘feedforward’
where adopting a repetitive process setting for analysis hﬁ%m the previous pass (or trial in the ILC context) which
distinct advantages over alternatives. Examples of these sg- i '

L o . . - ot course, has already been generated and is therefore

called algorithmic applications include classes of iterative _: .
. . : . available for use. In the general case of repetitive processes
learning control (ILC) schemes [1] and iterative algorithms

for solving nonlinear dynamic optimal control roblemsIt 's clearly highly desirable to have an analysis setting
9 y P P where such control laws can be designed for stability and/or

based on the maximum principle [7]. In the case of ILC for .
. . - uaranteed performance. Also previous work has shown
the linear dynamics case, the stability theory for so-calle : i i
at an LMI re-formulation of the stability conditions for
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analysis has been reported — see, for example, [3]. In thwehere then x 1 vectord,; has known constant entries and
case of differential linear repetitive processes, little or ngf(¢) is anm x 1 vector whose entries are known functions
work has yet been reported. The fact that it is possiblef ¢ over [0, «]. (For ease of presentation, we will make no
to define physically meaningful control laws for theseurther explicit reference to the boundary conditions in this
processes strongly suggests thatran based methodology paper.)
should be very profitable with onward translation to, for The stability theory [8] for linear repetitive processes
example, the ILC area where the problem of what is meabnsists of two distinct concepts but here it is the stronger
by robustness of such schemes is still a largely open geneddlthese which is required. This is termed stability along the
guestion. Note also that since the dynamics along the pasass and several equivalent sets of necessary and sufficient
is governed by a linear matrix differential equation, none ofonditions for processes described by (2) to have this
the results developed for the control of 2D discrete linegoroperty are known but here it is following which will be
systems are applicable to the repetitive processes considetsed.
in this work. Theorem 1:[8] A differential linear repetitive process

In this paper, we first give new results on the controtlescribed by (2) is stable along the pass if, and only fif,
of differential linear repetitive processes which formulate
and solve the fundamental problem of finding an admissible pls,2) #0, ¥ (s,2) : Re(s) 2 0, ]z <1
controller such that a transfer function (matrix) whichwhere
defines closed-loop performance satisfies a scalar magnitude sl — A ~By ]
constraint. By optimizing the controller over the scalar p(s, z) = det fzc I, — 2Dy
magnitude constrain, we get as close as required to theNow, define the following matrices from the state space
minimal H,, norm. Also it is shown that thé/,, control model (2)
problem here can, in computational terms, be solved using

linear matrix inequalities (LMIs) [2]. Finally, significant A= { 6‘ %0 } Ay = [ g [?
new results on the robust control of these processes are 0
developed from this standpoint. Then we have the following sufficient condition for stability

Throughout this paper, the null matrix and the identityglong the pass in terms of an LMI [6].
matrix with the required dimensions are denotedObgnd Theorem 2:A differential repetitive process described by
I, respectively. Moreover) > 0 (< 0) denotes a real (2) is stable along the pass if there exist matri¢gs> 0,
symmetric positive (negative) definite matrix. The norm P > 0, and P; > 0 such that the following LMl is feasible

of the g x 1 vectorw,(t) defined over0, oo}, [0, o] is given -~
by T <0 (4)
o AFs ATP+PA -R
lwll2 = ZA wi(t)Twi(t) dt (1) where P = diag{P,,0}, R = diag{0,P}, S =
=0 diag{Ps, P»}.
anduw, is said to be a member df;{[0, oc], [0, 5]}, or L3 Proof: Consider the state space model (2) with no control

for short, if ||w;||2 < co. We use(x) to denote the transpose and disturbance inputs, then by introducing the change of
of matrix blocks in some of the LMIs employed (which arevariables

required to be symmetric). l=k+1 5

Il. BACKGROUND v (t) =yr41(t) ®)
The differential linear repetitive processes consideregl can be rewritten in the form

here are described by a state space model of the following (1) R R

form over0 <t <a, k>0 { Upil(t) } = A& (1) + A& (t) (6)

Tt (t) :Axqul (t)+BU}€+1 (t)+Boyk (t)+B1wk+1(t) (2) where

Y1 (1) =Cxpep1 (t) + Dugga (t) + Doy (t) + D1wig1 (1) alt) = { x1(t) } )

Here on pas#, xx(t) is then x 1 state vectory(t) is the ui(t)

mx 1 pass profile vector(t) is thel x 1 vector of control Now define the candidate Lyapunov function for this pro-
inputs andwy(t) is anr x 1 disturbance input vector which cess as
belongs toL.;. T V(L) = Vi(l,t) + Va(l, 1)

To complete the process description, it is necessary to - -
specify the boundary conditions i.e. the state initial vector = 2p () Praa(t) + oy (H) Pau(t)
on each pass and the initial pass profile (i.e. on passhe where P, > 0 and P, > 0. (This function is combination

(8)

simplest possible choice for these is of two independent indeterminates due to the 2D nature of
2541(0) = djpy1, k>0 the repetitive processes considered here.) Since
T 3 : . :
wolt) = /() © V30,6) = & (6 Pualt) + 2 Praa (1
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and P, >0, P, >0, and P; > 0, such that the following LMI

holds
AVa(1,t) = vy 1 (8) Prviga () — v () Pauu(t) . JURR
h iated | ¢ . ATP+PA+ATRA, + HTH — R
the associate |r?crement or (8) is BLP + DT,RA, (18
AV(l,t) :Vl (l7t) + ‘/2(1 + 17t) - ‘/2(1715) (*)
=i (t)Pray(t) + xf Prig(t) 9) D{,RDy; — 7?1 <0
+ 041 (8) Poviga (8) — 7 () Paui(t) where S, P, R are defined in (11) and (13).
Substitution of (6) and (7) into this last expression now Proof: In order to ensure thél., noise attenuationy
yields holds, it is required that the associated Hamiltonian defined
T by
_ T T LT A
AV =60 (P PR ATRA-R) GO 0O 1 AV il ) ol Gu) (19)
where P, 0 0 0 satisfies
Pz{ 0 o]’ R:{o Pz} (11) H(l,t) <0 (20)
Hence stability along the pass holdsAf/(I,t) < 0 for The remainder of the proof now involves extensive but
&(t) # 0, and a sufficient condition for this 7is routine manipulations. In summary, these involve the con-
. S struction of the incremenn\V (,¢) and then appropriate
ATP+PA+ATRA—R <0 (12)  substitutions to yield
or, equivalently, H(l,t)=AV (I, t)+ 2] (t)HTHz (t) —v*wi (t)w;(t)
~ ~ ~ _ T T
ATP 4+ PA, + ATSA, — R <0 (13) =[ 2t wi(t) ]
AT T L ATPA T
where S = diag{ Ps, P>}, and P; > 0 is arbitrary. Finally, A P+PAT1+A2 R;l?tH H-R (21)
an obvious application of the Schur complement yields the Bi1 P + Di; RA

equivalent condition of (4) and the proof is complete. (%) } { 21(t) }

T 2
[1l. THE H., NORM BOUND DDy =71 wi(t)

Consider now the case of a differential linear repetitivd Nally (18) guarantees that (20) holds for anf), wi(t) #
process (2) with no control inputs but with external disturd @nd the proof is complete.

bance inpUtS and written in the form IV. H.. CONTROL VIA STATE FEEDBACK
#t) | | A By x1(t) n B wi(t) The design of control laws for 2D discrete linear systems
v+1(t) | | C Dy v () D, ! described by the Roesser and Fornasini Marchesini state

14)  space models (see, for example, the references cited in [8])
and define the so-called measured output veg(@y, which  has received considerable attention in the literature over the
in this case is equal the pass profile vector, as years. A valid criticism of such work, however, is that the

structure of the control algorithms are not well founded
_ zi(t) )
2(t)=[0 I ] { (t) } (15)  physically due to the fact that, for example, the concept
] of a state for these systems is not uniquely defined. For
Also introduce example, it is possible to define a state feedback law based
B 0 on the local or global state vectors. Also in the absence of
Bu = [ 0 } » D= { D; ] JH=[0 1] (1) generalizations of well defined and understood 1D concepts,

then the major result in this section is Theorem 3 belo e. g. the pole assignment problem and error actuated output

which gives anH, condition for stability along the pass%edbaCk control aCtlon’ it has not been really possblg to
: . - formulate a control design problem beyond that of obtaining
and requires the following definition.

L ) . . . o conditions for stabilization under the control action. Similar
Definition 1: A differential linear repetitive process . .
. . . : . comments also hold for 2D continuous-discrete systems but
which can be written in the form (14) is said to hakfe, .
. ) e with the extra remark that much less work has been reported
noise attenuation (or norm bound)if it is stable along the
ass and its induced norm is bounded+ye for thes_e sys_tgms. . - .
P ' The first difficulty above does not arise with differential
[l2|l2 17) linear repetitive processes. For example, it is physically
o£wery w2 meaningful to define the current pass error as the difference,
Theorem 3:A differential linear repetitive process which at each point along the pass, between a specified reference
can be written in the form (14) and (15) is stable along th&ajectory for that pass, which in most cases will be the
pass and ha# ., norm boundy > 0 if there exists matrices same on each pass, and the actual pass profile produced.

1388




Then it is possible to define a so-called current pass error W 02 1
actuated controller which uses the generated error vector Waz = 0 -0
to construct the current pass control input vector. In which 1 0 -1
context, preliminary work, see, for'e>.(ample, [.8]’ has showpn this condition holds, the controller matricé§, and K>
that, except in a few very restrictive spemal_ cases, thg{e given byN, ;" and NoW; ! respectively.
controller used must be actuated by a combination of curre ] o .

ass information and ‘feedforward’ information from the foof. Application Theorem 3 gives that the closed loop
pass " process in this case is stable along the pass with prescribed
previous pass to guarantee even stability along the pad norm boundy > 0 if
closed-loop. Note also here that in the ILC application area

the previous trial output vector is an obvious signal to use _S SA, SDy;
as feedforward action. —T . —T — 7
. . . — <0
One control law with this structure is Ay S A P+ PA1T+ A H - R P3211
( ) Dlls Bllp - I
Xy t (24)
t)y=| K1 K 22
w(t)=[ K1 Ky | { vy (t) } (22) where

where K, and K, are appropriately dimensioned matrices A, = { A+ BKy By+ BK> }
to be designed. In effect, this control law uses feedback of 0 0

the current state vector (which is assumed to be available for

use) and ‘feedforward’ of the previous pass profile vector. 1, — { 0 0 ]

Note that in repetitive processes the term ‘feedforward’ 27 | C+ DK, Dy+ DK,

is used to describe the case where state or pass profile . o . .

information from the previous pass (or passes) is used A@te that this last condition is not linear i, P, R, K,

(part of) the input to a control law applied on the curren@nd K1. To proceed, first apply the Schur complement to

pass, i.e. to information which is propagated in the pass-t¥i€!d

pass k) direction. —
In the case of the second difficulty, the following result :TS o S SDu 0

shows that the LMI setting extends to allow the design of Ay, S A P+PA—-R PBy H <0 (25)

a control law of the form (22) for stability along the pass | P11 Bi\P -0
closed loop with a prescribeH ., bound. 0 H 0 —I

Theorem 4:Suppose that a differential linear repetitive o _ — )
process described by (2) is subject to a control law definel’€n substituting forl, and A, in this last expression, pre

by (22). Then the resulting closed loop process is stabff'd Post-multiplying the result by
along the pass and has prescribiéd, norm boundy > 0 . 1 el el 1
if there exist matrice$¥; > 0, W5 > 0, W3 > 0 and Ny, diag{F;y ", P, P Py LT

N5 such that the following LMI holds and finally settingiy = Py, W = Py 1, Wy = P; Y,

Wi Wia Wis Ny = K, P[ !, No = K9Py ! results in (23) and the proof
Wa1 Waa Was is complete.
where Remark 1:In many cases of practical interest it is de-
sirable to compute the minimufl,, norm boundy. This

<0 (23)

—Ws 0 minimum can be obtained by solving a linear objective mi-
Wi = 0 T_W2 T T nimization problem [2] (the EVP problem) of the following
0 W1C* + Niy D form
W oW —?—DN minimize e subject to
12 = 1 1
WlAT+NlBT+AW1+BN1 Wi >0,Wy >0 W3 >0,N;,Ny,e >0 (26)
and (23)
0 0 0
Wiz = | DoWa+DN2 D; 0 wherey = /e
BoWs+ BNy, By 0
0 WoDI + NIDT V. ROBUST H,, CONTROL
Woar=10 DT

0 0 Here we extend the analysis of the previous section to the
case when there is uncertainty in the process state space

WoBL + NI BT model. Space limitations preclude detailed analysis of all

Wao = BT possible uncertainty models and here we only consider the
0 case when the uncertainty is norm bounded in both the state
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and pass profile updating equations. In such a case we carLemma 1:Let ¥, ¥, be real matrices of compatible
write the process state space model in the form dimensions then for any matri satisfying (29) and a

#1(t) A B AA AB, 21(t) scalare > 0 the following inequality holds
= +

n|=\{c b AC AD t
v+ (t) 0 o)/ Lul®) S1FS + STFYT < 1oy 97 4+ 57y, (31)

+ q g } + { ﬁg D u () Next, incorporate the norm-bounded uncertainties into (23)
to obtain sum of a matrix which has uncertainty terms and
4 q By ] I { AB, D w(t) one whose entries are completely known. The former of
1 . . : : )
Dy AD, these is the one of interest here and it can be written in the
(27)  form
~ ———  —T—=T—T
where [AA AB, AB AB, } B H=HFE+E F H (32)
AC ADy AD AD; |
where
H
| FLE B R B e A
H,, Hs, E1, E5, E3, E, are known matrices with constant H = 0 0 Hy Hi Hi 0
entries, and? is an unknown matrix with constant entries 00 0 0 0 0
which satisfies 0.0 0 0 0 0
FrF<I (29) 00 0 0 00

In this case, we have the following result.

Theorem 5:Suppose that a linear differential repetitive
process of the form described by (27), with uncertainty
structure modelled by (28) and (29) is subject to a control E = diag{0,0, EyW; + EsNy, EsWy + E3Ns, E4,0}
law of the form (22). Then the resulting closed-loop process
is stable along the pass for all admissible uncertainties amth obvious application of (31) now yields
has prescribed/ ., norm boundy > 0 if there exist matrices

F = diag{F,F,F,F,F,F}

Wy >0, Wo >0, W3 >0, W3 >0, N;, Ny and a scalar 0 O 0 0 0 0
€ > 0 such that 0 Asy Ass 0 0 0
W 0 0 i< 0 Azz Asz O 0 O (33)
0 W+ 3eH,HY (%) (00 0 Ay 0 0
0 WiCT+NIDT+3eH,HY s 0 0 0 0 As5 O
0 WoDE +N§ DT WoBY + NI BT o0 0 0 0 0
0 DF BT . . . :
0 0 0 where the sub-matrices on the right-hand side of this last
0 0 Ey Wy + EsN, expression are given by
0 0 0
0 0 0 A22 = 3€H2H,ér, A23 = 36H2H,ir, A32 = 36H1H§
- 0 0 0 0 0 0] Asz = 3eH HI +e Y (ByW+E3N) T (E,W +E3N;)
(*) * 0 0 0 0 A = € H(BWHE3N2)T (EsW +E3Na),
(%) (%) 0 (x) 0 0 Ass = € 'ETE,
Wy 0 I 0 () 0
0 -2 0 0 0 (%) |<0
I 0 —-I 0 0 0 Finally, the result follows by an obvious application of the
0 0 0 —el 0 0 Schur complement and the proof is complete.
EQWQB'E?’NQ ]g 8 8 _SI OI Remark 2: The controller which ensures a minimuf,,
4 —€

30 norm boundy can be computed by converting the LMI (30)
(30) into a linear objective minimization problem of the form
where

minimize ¢ subject to

Wy >0,Wy >0,W3>0,Ny,No,e>0,e>0 (34)
If (30) holds then the stabilizing matricés; and K in the and (30)

control law are given byV; W, ! and N, W, ! respectively.

Proof: Firstly, we need the following standard matrix resuliwherey = /=.

sy = Wi AT+ N{ BT+ AW, + BNy +3eH, H]
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A. Numerical example Then for the particular choice of = 1.4, the design proce-
gure of (23) (implemented using LMI Control Toolbox [4])

As an example, the metal rolling process is considere
dives the solution

This process is an extremely common industrial proce

where, in essence, deformation of the workpiece takes place ~116.9993 0.9563 W, — 18.1714
between two rolls with parallel axes revolving in opposite 7109563 12216 (0 2T T (39)
directions. Ny = [—11.0732 — 6.5747] , N5 = —5.7055

Appropriate algebraic manipulations [5] show that the
metal rolling process can modelled by a differential repe
titive process model of the form considered in this paper. f, — [ —0.3647 — 5.0965 |, Ko = —0.3140  (40)

In the design studies considered here the matrices in the
process model (2) which approximate the dynamics are This controller guarantees stability along the pass and
ensures that thé/, norm bound is never greater than

and the corresponding control law matrices are

—Cw,, 2,22 _ cakoke 0
B:[ Cl (Cen o )] By = [d}’ (35) VI. CONCLUSIONS
D=[1 0], Dy=c3 Th_|s paper has developed substantial new res_ults_ on the
relatively open problem of the control of differential linear
where repetitive processes which are a distinct class of 2D linear
systems of both systems theoretic and applications interest.
i = c3(ca — erkake) /(wp M + crkoke — (Pwi M) The result is physically based control laws in &g, setting

where the required computations are LMI based. Also it has
andw,, =
frequency and dampmg rat|o Of the local servomechanis@f uncertainty in the model where here this is assumed to
loop respectively,M is the lumped mass of the roll-gap be norm bounded in both the state and pass profile updating
adjusting mechanismy; is the stiffness of the adjustment equations of the defining state space model. Extensions to
mechanism spring); is the hardness of the metal strip, andother uncertainty representations are also possible and will
A= Alf is the composite stiffness of the metal strip ande reported elsewhere.
the roll mechanism. Furthermore,
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