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Abstract— Based on Sum-of-Squares (SOS) decomposition,
we propose a new solution approach for polynomial LPV
system analysis and control synthesis problems. Instead of
solving matrix variables over a positive definite cone, the
SOS approach tries to find a suitable decomposition to verify
the positiveness of given polynomials. The complexity of the
SOS-based numerical method is polynomial of the problem
size. This approach also leads to more accurate solutions to
LPV systems than most existing relaxation methods. Several
examples have been used to demonstrate benefits of the SOS-
based solution approach.

I. I NTRODUCTION

The study of linear parameter-varying (LPV) systems is
motivated by the gain scheduling control design method-
ology [20], [19]. This class of systems is different from
its standard linear time-varying counterpart due to the
causal dependence of its controller gains on the variation
of the plant dynamics. The LPV formulation allows for
general parameter-dependence other than usual continuity
requirement. LPV control theory is advantageous because
it provides stability and performance guarantee over wide
range of changing parameters. The use of a single or
parameter-dependent quadratic Lyapunov functions in the
analysis and control design for parameter-dependent plants
has been studied in a robust control framework [3], [25],
[26]. Whereas the analysis test in [3] introduced potential
conservatism by measuring performance against arbitrarily
fast variations in scheduling parameters, known bounds on
the rate of parameter variation were incorporated into the
analysis conditions in [25], [26]. In general, the solution to
the LPV control analysis and synthesis problems is formu-
lated as a parameter-dependent linear matrix inequalities
(LMIs), which is a special type of convex optimization
problem.

Parameterized linear matrix inequalities (PLMIs), that is
LMIs depending on a parameter confined to a compact set
frequently arise in both analysis and synthesis problems of
LPV control theory. PLMIs are equivalent to an infinite
family of LMI constraints and consequently are very hard
to solve numerically. Except for some special cases (affine
parameter dependency), infinite number of computation is
typically required to solve the parameter-dependent LMI
directly. Although a brutal force gridding method [25]
can be used to divide the parameter space and renders
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the infinite-dimensional optimization problem finite, the
number of resulting LMI constraints grows rapidly as the
number of parameters increases. Moreover, this method
only provides an approximated solution which satisfies the
LMI constraints at gridding points in the parameter space.
The result from finite gridding points is, thus, unreliable. On
the other hand, alternative approaches have been actively
sought to turn PLMIs into a standard LMI problem by
constructing their relaxation forms. In the case of LPV
systems depending affinely on the scheduling parameter,
vertex method was considered in [3] to determine constant
Lyapunov functions satisfying affine parameter-dependent
LMI. The solution is exact but it prevents the possibility
of using parameter-dependent Lyapunov functions. In [26],
[2], convex covering techniques were applied to parameter-
dependent LMIs to obtain parameter-dependent solutions.
However, these methods often require large division num-
bers to achieve accurate results. Multi-convexity properties
was imposed in [6] to provide a finite set of LMIs in solving
PLMI problems. In the same vein, recent research [22]
explored different relaxation approaches such as separate
and difference of convexity to render vertex-type solvability
conditions for PLMIs. The relaxation methods involve a
finite number of LMIs, which grows exponentially with
the number of vertices. Nevertheless, such approaches are
potentially conservative as only upper bounds of the original
problems are obtained.

Closely related to LPV system descriptions, the switched
or hybrid systems have their dynamics described by a set of
continuous time differential equations in conjunction with
a discrete event process. Due to their wide applications in
adaptive control, air-traffic management, and reconfigurable
control, the study of switched and hybrid systems have
become an important research area in recent years. As
shown in [10], the dynamic behavior of switched and hybrid
systems is much more complicated than either continu-
ous or discrete dynamics. One way of proving stability
of these complex systems is using piecewise continuous
Lyapunov functions [16], [9], [17]. Other approaches con-
sidered discontinuous Lyapunov functions to verify the
stability property of switched and hybrid systems, and can
be found in [15], [5]. However, most of the work are
focused on switched/hybrid systems with each subsystems
described by LTI dynamics with the exception of [17], in
which nonlinear subsystems are considered. Moreover, the
performance issue of switched/hybrid systems has not been
adequately addressed. Recently, the analysis and control
of switched LPV systems have been studied in [11], and



later generalized in [12] by introducing average dwell-time
switching logic [8].

In this research, we will study efficient numerical method
to solve parameter-dependent LMIs associated with LPV
analysis and synthesis problems. The state-space matrices of
LPV systems under consideration are polynomial functions
of the scheduling parameters, which can not be solved ac-
curately using available techniques. Our proposed solution
approach is based on SOS decomposition and semidefinite
programming, which have its computational complexity
in polynomial time of the problem size. Different from
previous convexification methods, the SOS-based approach
generalizes the well-knownS-procedure by searching for
parameter-dependent multipliers. Generally speaking, the
SOS-based approach will provide less conservative results
than most available methods. The SOS solution approach is
also beneficial to handle equality-type constraints, as will be
shown in a hybrid LPV control design problem. The efficacy
of the SOS based solution approach will be demonstrated
by several examples.

The notation is standard.R stands for the set of real
numbers andR+ for the non-negative real numbers.Rm×n

is the set of realm × n matrices. The transpose of a real
matrix M is denoted byMT . We useSn×n to denote
real, symmetricn × n matrices, andSn×n

+ for positive
definite matrices. IfM ∈ Sn×n, then M > 0 (M ≥
0) indicates thatM is a positive definite (positive semi-
definite) matrix andM < 0 (M ≤ 0) denotes a negative
definite (negative semi-definite) matrix. For any matrixP ,
Ker(P ) stands for the orthogonal complement of matrixP .
A block diagonal matrix with matricesX1, · · · , Xp on its
main diagonal is denoteddiag {X1, · · · , Xp}. For x ∈ Rn,
its norm is defined as‖x‖ := (xT x)

1
2 . The space of

square integrable functions is denoted byL2, that is, for any

u ∈ L2, ‖u‖2 :=
[∫∞

0
uT (t)u(t)dt

] 1
2 is finite. The spaces

of continuously differentiable functions will be denoted by
C1 and the corresponding norm is‖φ‖ = sup

t
‖φ(t)‖.

II. SOS DECOMPOSITIONTECHNIQUE

A multivariate polynomialf(x1, · · · , xn) is an SOS, if
there exist polynomialsf1(x), · · · , fm(x) such thatf(x) =∑m

i=1 f2
i (x). This clearly impliesf(x) ≥ 0 for anyx ∈ Rn.

SOS decomposition provides a sufficient condition for non-
negativity of a multivariate polynomial, and is equivalent
to the existence of a positive-semidefinite matrixQ and
a properly chosen vector of monomialsZ(x) such that
f(x) = ZT (x)QZ(x). While being stricter, the condition
that f(x) is SOS is computationally much more tractable
than positivity. At the same time, practical experience
indicates that replacing non-negativity by the SOS char-
acterization often leads to the exact solution. For example,
whenf(x1, · · · , xn) is a quadratic function of its variables,
its non-negativity is equivalent to the existence of an SOS
decomposition [14].

The main advantages of SOS decomposition are the
resulting computational tractability and the algorithmic

character of the solution procedure [14]. This could help
to provide coherent methodology of synthesizing Lyapunov
functions for nonlinear systems. In addition, the importance
of SOS technique also lies in its ability to provide tractable
relaxations for many difficult optimization problems. As
is known, many standard optimization problems (such as
dissipativity and passivity) in system and control theory are
in the form of indefinite quadratic problems [24]. The max-
imization of these functionals subject to indefinite quadratic
constraints is often computationally complicated, sometimes
even NP-hard (i.e. non-existence of a polynomial-time al-
gorithm to solve the problem).

The SOS technique is a major breakthrough in system
and control theory, as it handles polynomial nonlinearities
exactly and solves the problem algorithmically. However,
its applications to system and control field have not been
fully explored.

Following the convention of [18], a multiplier is called
SOS multiplier if itself is in SOS form. A general multiplier
is usually referred as polynomial multiplier.

III. POLYNOMIAL LPV SYSTEM ANALYSIS AND

CONTROL SYNTHESIS

Consider an LPV system with polynomial parameter
dependency

[
ẋ
e

]
=

[
A(ρ) B(ρ)
C(ρ) D(ρ)

] [
x
d

]
(1)

where x, ẋ ∈ Rn, d ∈ Rnd , e ∈ Rne . All the state-
space matrices are polynomial functions of the scheduling
parameters and have compatible dimensions. The polyno-
mial LPV systems are not very restrictive because any
continuous functions can be approximated adequately by
sufficient large order of polynomials. Moreover, some types
of rational and nonlinear functions can also be described by
polynomial functions with the introduction of auxiliary vari-
ables [13]. It is assumed that the vector-valued parameterρ
evolves continuously over time and its range is limited to
a setP ⊂ Rs. In addition, its time derivative is bounded
and satisfies the constraintνi ≤ ρ̇i ≤ ν̄i, i = 1, 2, · · · , s.
For notational purposes, denote

P = {ρ ∈ Rs : fi(ρ) ≥ 0, i = 1, 2, · · · , rf}
V = {ν ∈ Rs : νi ≤ νi ≤ ν̄i, i = 1, 2, · · · , s}

where fi are polynomial functions ofρ which define the
boundary of parameter setP. At each time instantt,
the parameter and its derivative(ρ(t), ρ̇(t)) are assumed
measurable in real-time. Given the setsP andV, one can
define the parameterν-variation set as

Fν
P =

{
ρ ∈ C1(R+,Rs) : ρ(t) ∈ P, ρ̇(t) ∈ V, ∀t ≥ 0

}

The setFν
P specifies the set of all allowable parameter

trajectories.
The stability and achievable inducedL2 performance

of the LPV systems can be established by solving the



following LMI

M(ρ, ν) =




AT (ρ)X(ρ) + X(ρ)A(ρ) +
∑s

i=1 νi
∂X
∂ρi

BT (ρ)X(ρ)
C(ρ)

X(ρ)B(ρ) CT (ρ)
−γI DT (ρ)
D(ρ) −γI


 < 0 (2)

for all (ρ, ν) ∈ P × V. The solvability condition (2) is
clearly infinite-dimensional, as is the solution space. The
major difficulty in solving LPV analysis problem lies in
how the condition (2) will be verified over the entire
parameter space. To approximate the infinite-dimensional
functional space, we often restrict the search of parameter-
dependent Lyapunov function to be polynomial functions of
scheduling parameters. For example, when two parameters
are involved, one may choose

X(ρ) =
N∑

i=0

i∑

j=0

ρi
1ρ

j
2Xij

whereXij are new optimization variables to be determined.
This corresponds to a parameter-dependent Lyapunov func-
tion in quadratic form withN th-order parameter depen-
dency. After such a parameterization, the LPV analysis
condition can be solved using an ad-hoc gridding method
over parameter space. However, the resultingγ from grid-
ding method only provides a lower bound of the actual
performance in general. On the other hand, either multi-
convexity/difference of convexification or convex covering
methods [6], [22], [26], [2] can also be employed to
solve the above parameter-dependent LMI. After all, the
bounds derived from the above approaches are either too-
conservative or overly optimistic in the solutions.

As argued above, it is a challenging problem to compute
parameter-dependent Lyapunov functions constrained by
LMIs, since such functions are non-quadratic polynomials
of the parameter variables. In this paper, we will take advan-
tage of the computational tractability of the sum of squares
(SOS) decomposition to derive solvability conditions for
LPV systems. For this purpose, note that both conditions
of V (x, ρ) positive definite and∂V

∂x ẋ negative definite
can be formulated as SOS problems and solved using
semidefinite programming. The following result determines
the stability and performance of polynomial LPV systems
using a parameter-dependent Lyapunov function, which also
has polynomial parameter dependency onρ.

Theorem 1:Given the compact setsP and V, if there
exist polynomial matrix functionX : Rs → Sn×n

+ and
SOS multipliersmi(z, ρ, ν), ni(z, ρ), such that

− zT M(ρ, ν)z − εzT z −
rf∑

i=1

mi(z, ρ, ν)fi(ρ)

−
s∑

i=1

ni(z, ρ)(νi − νi)(ν̄i − νi) is SOS (3)

for any vectorz and a small numberε > 0, then the LPV
system (1) is exponentially stable. In addition, ifd ∈ L2

andx(0) = 0, then‖e‖2 ≤ γ‖d‖2.
To ensure positive definiteness instead of just positive

semi-definiteness, we often need to add−εzT z to the SOS
condition (3), whereε is a small positive number. Also
note that the parameter derivativėρ has been treated as
an independent SOS variable in condition (3). This will
avoid checking vertex points of the polytopeV. Unlike ex-
isting numerical algorithms for parameter-dependent LMIs,
the computational cost of SOS based approach is fixed
for a given LPV system. Specifically, this approach has
polynomial-time computational complexity.

Next, we consider an open-loop LPV system with poly-
nomial parameter dependency


ẋ
e
y


 =




A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12

C2 D21 0







x
d
u


 (4)

whereρ ∈ Fν
P , u ∈ Rnu andy ∈ Rny . Again, we assume

that all matrix valued state-space data are polynomial func-
tions with appropriate dimensions. For simplicity, we also
assume that

(A1) (A(ρ), B2, C2) is parameter-dependent stabiliz-
able and detectable for allρ,

(A2) the matrices
[
BT

2 DT
12

]
and

[
C2 D21

]
have full

row ranks.
We would like to design a LPV controllerKP in the

form of [
ẋk

u

]
=

[
Ak(ρ, ρ̇) Bk(ρ, ρ̇)
Ck(ρ, ρ̇) Dk(ρ, ρ̇)

] [
xk

y

]
(5)

to stabilize the open-loop LPV system (4) with inducedL2

norm of the closed-loop system minimized. Note that the
controller is scheduled by the parameterρ and its derivative
ρ̇.

For constant matrices
[
BT

2 DT
12

]
and

[
C2 D21

]
, the

well-known LPV synthesis condition is given by [25]

QR(ρ, ν) =
[
?
]T




{
A(ρ)R(ρ) + R(ρ)AT (ρ)

−∑s
i=1 νi

∂R
∂ρi

}

C1(ρ)R(ρ)
BT

1 (ρ)
RCT

1 (ρ) B1(ρ)
−γI D11(ρ)

DT
11(ρ) −γI




[NR 0
0 I

]
< 0 (6)

QS(ρ, ν) =
[
?
]T




{
AT (ρ)S(ρ) + S(ρ)A(ρ)

+
∑s

i=1 νi
∂S
∂ρi

}

BT
1 (ρ)S(ρ)
C1(ρ)

SB1(ρ) CT
1 (ρ)

−γI DT
11(ρ)

D11(ρ) −γI




[NS 0
0 I

]
< 0 (7)

[
R(ρ) I

I S(ρ)

]
≥ 0 (8)



where

NR = Ker
[
BT

2 DT
12

]
, NS = Ker

[
C2 D21

]

The above LPV output-feedback synthesis condition can
also be solved using SOS decomposition and semidefinite
programming. Its SOS-based solution is provided in the
following theorem.

Theorem 2:Given a performance levelγ > 0, the
compact setsP,V, and the open-loop polynomial LPV
system in (4), if there exist polynomial matrix func-
tions R,S : Rs → Sn×n

+ and SOS multipli-
ers m1i(z, ρ, ν),m2i(z, ρ, ν),m3i(z, ρ), n1i(z, ρ), n2i(z, ρ)
such that

− zT
1 QR(ρ, ν)z1 − ε1z

T
1 z1 −

rf∑

i=1

m1i(z1, ρ, ν)fi(ρ)

−
s∑

i=1

n1i(z1, ρ)(νi − νi)(ν̄i − νi) is SOS (9)

− zT
2 QS(ρ, ν)z2 − ε2z

T
2 z2 −

rf∑

i=1

m2i(z2, ρ, ν)fi(ρ)

−
s∑

i=1

n2i(z2, ρ)(νi − νi)(ν̄i − νi) is SOS (10)

zT
3

[
R(ρ) I

I S(ρ)

]
z3 −

rf∑

i=1

m3i(z3, ρ)fi(ρ) is SOS (11)

for any vectorsz1, z2 andz3 with suitable dimensions and
some positive numbersε1, ε2, then there exists an LPV
controller KP that renders the closed-loop LPV system
exponentially stable and‖e‖2 < γ‖d‖2.

As mentioned before, the computational complexity of
LPV analysis and synthesis conditions based on SOS de-
composition is polynomial in time. The derived solvability
conditions are generally stricter than the original LMI
conditions. However, our experience has shown that the
SOS approach often provides less conservative results than
other relaxation methods for polynomial LPV systems.

IV. H YBRID LPV STATE-FEEDBACK CONTROL

Hybrid LPV control strategy permits using different
controllers over different operating ranges. This will lead
to relaxed stability condition and provide enhanced design
flexibility. In this section, we will consider switching control
of LPV systems using multiple state-feedback control laws
ui = Fi(ρ)x.

Consider an open-loop LPV system

[
ẋ
e

]
=

[
A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12

]


x
d
u




where the parameter-dependent matrices functions are poly-
nomials of the scheduling parameterρ. For simplicity, the
matricesB2, D12 are assumed to be parameter independent.
It is also assumed that all the states are available for
feedback control use.

Let {Pi}N
i=1 be a partition of the parameter setP as finite

number of closed subsets. Each subsetPi is a partial region
of the parameter space described by

Pi = {ρ ∈ Rs : gik(ρ) ≥ 0, k = 1, 2, · · · rgi} ⊂ P

ThusP =
⋃N

i=1 Pi. We also assume that the intersection
of any two adjacent subsets is non empty. The switching
surfaces for two adjacent parameter subsetsPi andPj are
defined as

Sij =
{
ρ ∈ Rs : hijk(ρ) = 0, k = 1, 2, · · · , rhij

}

Note that the surfaceSij specifies the one-directional move
from subsetPi to Pj . Therefore the setsSij and Sji

will specify two different switching surfaces. The functions
gik, hijk are in their polynomial forms. Due to general
form of functionshijk, it can be used to describe nonlinear
switching surfaces.

The switching events occur when the trajectory hits one
of the switching surfacesSij . Let σ(0) = i if ρ(0) ∈ Pi.
For eacht > 0, if σ(t−) = i and ρ(t) ∈ Pi, we keep
σ(t) = i. On the other hand, ifσ(t−) = i but ρ(t) ∈ Pj ,
let σ(t) = j. Repeating this process, we will generate a
piecewise constant signalσ which is continuous from the
right everywhere. Sinceσ can change its value only after
the parameter trajectory has passed through the intersection
of adjacent subsetsPi andPj , chattering will be avoided.
Moreover, only finite number of switches will happen in any
finite time interval due to bounded parameter variation rates.
This switching logic is known as “hysteresis switching” [7]
and will be used in hybrid LPV control design here. The
resulting closed-loop system is a hybrid LPV system, with
σ being its discrete state. Specifically, the value ofσ is not
only determined by the current value ofρ alone, but also
depends on the previous values ofσ.

Generally speaking, there is no need to associate with
each subsystem a global Lyapunov function. In fact, it is
often enough to require that each Lyapunov functionVi

decrease along solutions of theith subsystem in the region
Pi where this system is active. The proposed hysteresis
switching control scheme can be thought as a generalization
of previous continuous switching approach [11]. However,
we do not require continuity of Lyapunov functions across
switching surfaces.

Theorem 3:Given a set of scalarsγi, the parameter setP
and its overlapped partitionPi, i = 1, 2, · · · , N . There exist
switching state-feedback LPV control laws with associated
hysteresis switching logic to render closed-loop exponential
stability and achieve performance‖e‖2 < γ‖d‖2 with
γ = max {γi}N

i=1, if there exist parameter-dependent matrix



functionsRi(ρ) > 0 such that for any(ρ, ν) ∈ Pi × V

QRi(ρ, ν) =
[
?
]T




{
A(ρ)Ri(ρ) + Ri(ρ)AT (ρ)

−∑s
k=1 νk

∂Ri

∂ρk

}

C1(ρ)Ri(ρ)
BT

1 (ρ)
Ri(ρ)CT

1 B1(ρ)
−γiI D11(ρ)

DT
11(ρ) −γiI




[NR 0
0 I

]
< 0

(12)

and for anyρ ∈ Sij

Ri(ρ)−Rj(ρ) ≤ 0 (13)

whereNR = Ker
[
B2 D12

]
. Furthermore, the switching

state-feedback gains are given by

Fi(ρ) = − (
DT

12D12

)−1 [
γiB

T
2 R−1

i (ρ) + DT
12C1(ρ)

]

for i = 1, 2, · · · , N .
After deriving hybrid LPV state-feedback synthesis con-

dition in LMI form, the SOS decomposition approach can
be used to formulate a computable synthesis result. This is
given bellow:

Corollary 1: If there exist polynomial matrix func-
tions Ri : Rs → Sn×n

+ , i = 1, 2, · · ·N , SOS multi-
pliers m1k(z, ρ, ν), n1k(z, ρ) and polynomial multipliers
`ijk(z, ρ) such that

− zT
1 QRi(ρ, ν)z1 − εzT

1 z1 −
rgi∑

k=1

mik(z1, ρ, ν)gik(ρ)

−
s∑

k=1

n1k(z1, ρ)(νk − νk)(ν̄k − νk) is SOS (14)

− zT
2 [Ri(ρ)−Rj(ρ)] z2

+

rhij∑

k=1

`ijk(z2, ρ)hijk(ρ) is SOS (15)

for any vectorsz1 and z2 and a small positiveε, then the
hybrid LPV system is exponentially stabilizable and the
inducedL2 norm is bounded byγ = max {γi}N

i=1.
It is usually difficult to enforce equality constraint like

(13) in LMI optimization problem. On the other hand, this
type of constraints can be easily handled in SOS tool [18]
by introducing polynomial multipliers.

V. EXAMPLE

We first consider a gas-turbine engine model described
as a linear system with a scalar scheduling parameter [2]

ẋ = (A0 + A1θ + A2θ
2)x + (B0 + B1θ + B2θ

2)w (16)

z = Cx (17)

wherex1, x2 andx3 are the compressor speed, the fan speed
and the outlet press, respectively. The scheduling parameter

is compressor rotating speed and belongs toθ ∈ [0, 1]. Also

A0 =



−4.365 −0.6723 −0.3363
7.088 −6.557 −4.601
−2.410 7.584 −14.310




A1 =



−0.56081 0.85534 0.58923
2.5333 −1.0398 −7.7373
3.1917 1.7971 −2.5887




A2 =




0.66981 −1.375 −0.99093
−2.8963 −1.5292 10.516
−3.5777 2.8389 1.9087




B0 =




2.374 0.7485
1.366 3.444
0.9416 −9.619




B1 =



−0.16023 −0.35209
0.11622 −2.4839
−0.11058 −4.6057




B2 =




0.15623 0.13063
−0.49582 4.0379
−0.030616 0.89473




C =
[
0 1 0
0 0 1

]
.

We would like to evaluate this system’s inducedL2 perfor-
mance under different varying parameter assumptions.

Similar to the original paper, we consider three cases:

1) Quadratic Lyapunov function, the optimal induced
L2-gain bound isγ = 0.9603.

2) Affine parameter-dependent Lyapunov function with
parameter variation rateν ∈ [−1, 1], the optimal
bound isγ = 0.9520.

3) Quadratic parameter-dependent Lyapunov function
with ν ∈ [−10, 10], the optimal bound isγ = 0.9462.

The bound we have in Case 1 is similar to what the original
paper obtained for division number 25. In cases 2 and 3
our bounds are better than theirs (even when their division
number equals to 25). It is interesting to see that higher
order parameter-dependent Lyapunov function is very useful
to improve the system performance even the parameter
variation rates increase from1.0 to 10.

The second example is taken from [20] and slightly
modified by adding disturbance effect. This plant has poorly
damped zeros which vary along the imaginary axis. Its state-
space equation is given by




ẋ1

ẋ2

ẋ3


 =




0 (2− θ)2 1 + 0.5θ + (2− θ)2

1 0 0.2
0 0 0







x1

x2

x3




+




0
1
0


 d +




0
0
1


 u (18)

where−1 ≤ θ ≤ 1 and |θ̇| ≤ 2. Also the output equation



is chosen as

e =
[
0 1 1
0 0 0

] 


x1

x2

x3


 +

[
0
1

]
u (19)

All the states are assumed to be available for feedback
control use.

To solve the hybrid state-feedback control problem, we
partition the parameter set into either two or four overlapped
subsets. That is

• 2 subsetsΘ1 = [−1, 0.05] andΘ2 = [−0.05, 1].
• 4 subsetsΘ1 = [−1,−0.45], Θ2 = [−0.55, 0.05],

Θ3 = [−0.05, 0.55] andΘ4 = [0.45, 1].

Then we will solve hybrid LPV control problem by
synthesizing multiple Lyapunov functionsVi(x, θ) =
xT Ri(θ)−1x, where different parameter dependency is con-
sidered for matrix functionR(θ). For comparison, we also
synthesize a state-feedback control law over the entire
parameter set. The performance achieved by non-switching
and hybrid LPV state-feedback control is summarized in
the following table.

TABLE I

PERFORMANCE USING NON-SWITCHING AND SWITCHED CONTROL

STRATEGIES

V (x) 1 subset 2 subsets 4 subsets
xT R−1

0 x 1.3598
xT (R0 + θR1)−1x 1.2537 1.2168 1.1828

xT (R0 + θR1 + θ2R2)−1x 1.1299 1.1235 1.1186

When higher order parameter-dependent Lyapunov func-
tions are chosen for control synthesis purpose, it is possible
to tighten performance of the closed-loop system. Similarly,
further partition of the parameter set into smaller regions
also helps to improve the performance.

VI. CONCLUDING REMARKS

In this paper, we have proposed a new solution approach
to LPV analysis and synthesis problems for a special class
of LPV systems, namely, the LPV systems have polynomial
parameter dependency. The proposed solution approach is
based on SOS decomposition and is applicable to a large
class of LPV systems. This method also provides reliable
and less conservative results than most existing relaxation
methods. It generalizes the well-known S-procedure to
improve LPV analysis and synthesis conditions. Moreover,
the SOS-based method is very efficient and has the compu-
tational complexity in polynomial time.

If the assumption of constantB2, D12 andC2, D21 matri-
ces is relaxed to polynomial functions, then the correspond-
ing polynomial LPV analysis and synthesis and hybrid LPV
synthesis conditions can be derived using Finsler’s lemma.
However, the details will not be reported here.
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