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A New Solution Approach to Polynomial
LPV System Analysis and Synthesis

Fen Wu and Stephen Prajna

Abstract—Based on Sum-of-Squares (SOS) decomposition, the infinite-dimensional optimization problem finite, the
we propose a new solution approach for polynomial LPV number of resulting LMI constraints grows rapidly as the
system analysis and control synthesis problems. Instead of number of parameters increases. Moreover, this method

solving matrix variables over a positive definite cone, the | id imated soluti hich satisfies th
SOS approach tries to find a suitable decomposition to verify only provides an approximated solution which satisties the

the positiveness of given polynomials. The complexity of the LMI constraints at gridding points in the parameter space.
SOS-based numerical method is polynomial of the problem The result from finite gridding points is, thus, unreliable. On

size. This approach also leads to more accurate solutions to the other hand, alternative approaches have been actively
LPV systems than most existing relaxation methods. Several sought to turn PLMIs into a standard LMI problem by
examples have been used to demonstrate benefits of the SOS- . . .
based solution approach. constructing thelr relax.atlon forms. In the case of LPV
systems depending affinely on the scheduling parameter,
. INTRODUCTION vertex method was considered in [3] to determine constant
The study of linear parameter-varying (LPV) systems i$yapunov functions satisfying affine parameter-dependent
motivated by the gain scheduling control design metho _MI. _The solution is exact but it prevents thg possibility
ology [20], [19]. This class of systems is different from©f using parameter-dependent Lyapunov functions. In [26],
its standard linear time-varying counterpart due to thEl: convex covering techniques were applied to parameter-
causal dependence of its controller gains on the variatidffPendent LMIs to obtain parameter-dependent solutions.
of the plant dynamics. The LPV formulation allows forHowever, these methods often require large division num-
general parameter-dependence other than usual continU§fS t0 achieve accurate results. Multi-convexity properties
requirement. LPV control theory is advantageous becau¥s imposed in [6] to provide a finite set of LMIs in solving
it provides stability and performance guarantee over widBL-M! problems. In the same vein, recent research [22]
range of changing parameters. The use of a single gf(plor_ed different relaxa_mon approaches such as sep_a_lrate
parameter-dependent quadratic Lyapunov functions in ttfhd difference of convexity to render vertex-type solvability
analysis and control design for parameter-dependent plafg@nditions for PLMIs. The relaxation methods involve a
has been studied in a robust control framework [3], [25]finité number of LMIs, which grows exponentially with
[26]. Whereas the analysis test in [3] introduced potentid® number of vertices. Nevertheless, such approaches are

conservatism by measuring performance against arbitrariPtentially conservative as only upper bounds of the original

fast variations in scheduling parameters, known bounds dioblems are obtained. o _
the rate of parameter variation were incorporated into the C10S€ly related to LPV system descriptions, the switched

analysis conditions in [25], [26]. In general, the solution tdP" NYPrid systems have their dynamics described by a set of
the LPV control analysis and synthesis problems is formigontinuous time differential equations in conjunction with
lated as a parameter-dependent linear matrix inequaliti@sd'screte event process. Due to their wide applications in

(LMIs), which is a special type of convex optimization adaptive control, air-traffic management, and reconfigurable
proble;n. control, the study of switched and hybrid systems have

Parameterized linear matrix inequalities (PLMIs), that i?ecom(_a an important r(_asearch area in recent years. ,AS
LMIs depending on a parameter confined to a compact sefoWn in [10], the dynamic behavior of switched and hybrid
frequently arise in both analysis and synthesis problems §¥St€ms is much more complicated than either continu-
LPV control theory. PLMIs are equivalent to an infinite@US Or discrete dynamics. One way of proving stability
family of LMI constraints and consequently are very hard®’ these complex systems is using piecewise continuous
to solve numerically. Except for some special cases (affif¢’@Punov functions [16], [9], [17]. Other approaches con-
parameter dependency), infinite number of computation fidéred discontinuous Lyapunov functions to verify the
typically required to solve the parameter-dependent L vptability property of switched and hybrid systems, and can
directly. Although a brutal force gridding method [25]P€ found in [15], [S]. However, most of the work are

can be used to divide the parameter space and rend&gused on switched/hybrid systems with each subsystems
described by LTI dynamics with the exception of [17], in
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later generalized in [12] by introducing average dwell-timeharacter of the solution procedure [14]. This could help
switching logic [8]. to provide coherent methodology of synthesizing Lyapunov
In this research, we will study efficient numerical methodunctions for nonlinear systems. In addition, the importance
to solve parameter-dependent LMIs associated with LP¥f SOS technique also lies in its ability to provide tractable
analysis and synthesis problems. The state-space matricesadfixations for many difficult optimization problems. As
LPV systems under consideration are polynomial functions known, many standard optimization problems (such as
of the scheduling parameters, which can not be solved adissipativity and passivity) in system and control theory are
curately using available techniques. Our proposed solutian the form of indefinite quadratic problems [24]. The max-
approach is based on SOS decomposition and semidefinitgization of these functionals subject to indefinite quadratic
programming, which have its computational complexityconstraints is often computationally complicated, sometimes
in polynomial time of the problem size. Different from even NP-hard (i.e. non-existence of a polynomial-time al-
previous convexification methods, the SOS-based approagbrithm to solve the problem).
generalizes the well-knows-procedure by searching for The SOS technigue is a major breakthrough in system
parameter-dependent multipliers. Generally speaking, ttad control theory, as it handles polynomial nonlinearities
SOS-based approach will provide less conservative resultgactly and solves the problem algorithmically. However,
than most available methods. The SOS solution approachiis applications to system and control field have not been
also beneficial to handle equality-type constraints, as will biilly explored.
shown in a hybrid LPV control design problem. The efficacy Following the convention of [18], a multiplier is called
of the SOS based solution approach will be demonstrate8DS multiplier if itself is in SOS form. A general multiplier

by several examples. is usually referred as polynomial multiplier.

The notation is standard® stands for the set of real
numbers and®., for the non-negative real numbeR!*" lll. POLYNOMIAL LPV SYSTEM ANALYSIS AND
is the set of realn x n matrices. The transpose of a real CONTROL SYNTHESIS

matrix M is denoted byM™. We useS"*" to denote  Consider an LPV system with polynomial parameter
real, symmetricn x n matrices, andS’}*" for positive dependency

definite matrices. IfM € S™*", thenM > 0 (M > )

0) indicates thatM is a positive definite (positive semi- [x} — {A(P) B(P)} {”] 1)
definite) matrix andM < 0 (M < 0) denotes a negative € Clp) D(p)] |d

definite (negative semi-definite) matrix. For any matflx  \here z,# € R", d € R, ¢ € R". All the state-
Ker(P) stands for the orthogonal complement of mafix  space matrices are polynomial functions of the scheduling

A block diagonal matrix with matrices(s, --- , X, 0n its  parameters and have compatible dimensions. The polyno-
main diagonal is denotediag {Xla"T' , Xp}. Forz € R",  mial LPV systems are not very restrictive because any
its norm is defined ag|z|| := (2"z)2. The space of continuous functions can be approximated adequately by

square integrable functions is denotediy that is, for any  sufficient large order of polynomials. Moreover, some types
u € Ly, |Jullz :== [ [y~ uT (t)u(t)dt]* is finite. The spaces of rational and nonlinear functions can also be described by
of continuously differentiable functions will be denoted bypolynomial functions with the introduction of auxiliary vari-
C' and the corresponding norm fig|| = sup||¢(t)]- ables [13]. It is assumed that the vector-valued parameter
¢ evolves continuously over time and its range is limited to
Il. SOS DECOMPOSITIONTECHNIQUE a setP c R*. In addition, its time derivative is bounded
A multivariate polynomialf(z1,---,z,) is an SOS, if and satisfies the constraint < p; < 7,7 = 1,2, , .
there exist polynomialg (z), - - , fin(x) such thatf(z) =  For notational purposes, denote
St f2(x). This clearly impliesf (z) > 0 for anyz € R™.
SOS decomposition provides a sufficient condition for non- P ={p€R’: fi(p) 20, i=1,2,--- ,ry}
negativity of a multivariate polynomial, and is equivalent V={reR’: v, <vy; <, i=1,2,---,s}
to the existence of a positive-semidefinite matéx and ) ) ) )
a properly chosen vector of monomiak(z) such that where f; are polynomial functions op wh!ch dgflne the
f(z) = ZT(x)QZ(x). While being stricter, the condition boundary of parameter SQP. _At eagh time instantt,
that f(z) is SOS is computationally much more tractabldn® parameter and its derivative(t), 5(t)) are assumed
than positivity. At the same time, practical experiencén€asurable in real-time. Given the sétsandV, one can
indicates that replacing non-negativity by the SOS chafi€fine the parameter-variation set as
acterization often Iqads to the exact sc_)lution.. For gxamplej;% = {peC (R, RY): p(t) P, p(t) €V, ¥t >0}
when f(z1,--- ,x,) is @ quadratic function of its variables,
its non-negativity is equivalent to the existence of an SOThe setF} specifies the set of all allowable parameter
decomposition [14]. trajectories.
The main advantages of SOS decomposition are the The stability and achievable inducefl, performance
resulting computational tractability and the algorithmicof the LPV systems can be established by solving the
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following LMI for any vectorz and a small number > 0, then the LPV
system (1) is exponentially stable. In addition,dife £,

T s X
S 7 e L
’ To ensure positive definiteness instead of just positive
Clp) semi-definiteness, we often need to adet” = to the SOS
X(p)B(p) C*(p) condition (3), wheree is a small positive number. Also
—I  DT(p)| <0 (2) note that the parameter derivatijehas been treated as
D(p) -1 an independent SOS variable in condition (3). This will

for all (p,v) € P x V. The solvability condition (2) is avoid checking vertex points of the polytope Unlike ex-
clearly infinite-dimensional, as is the solution space. ThEtNg numerlc_al algorithms for parameter-dependenF LMIS’
major difficulty in solving LPV analysis problem lies in the computaﬂonal cost of SOS”based gpproach s Tixed
how the condition (2) will be verified over the entire " @ given LPV system. Specifically, this approach has
parameter space. To approximate the infinite-dimensionBPh/ nomial-time gocl)mputatlonall comI;_)IIDe\>/<|ty. ith vol
functional space, we often restrict the search of parameter- ‘?X;[’ we consi gr an gpen- oop system with poly-
dependent Lyapunov function to be polynomial functions offomial parameter dependency

scheduling parameters. For example, when two parameters T A(p) Bilp) B2 |z
are involved, one may choose el = |Ci(p) Di(p) Di2| |d 4)
N Yy 02 Dgl 0 u
X(p) = pirXi wherep € F%, u € R™ andy € R™. Again, we assume
i=0 j=0 that all matrix valued state-space data are polynomial func-

whereX;; are new optimization variables to be determinedfions With appropriate dimensions. For simplicity, we also
This corresponds to a parameter-dependent Lyapunov furfSsume that _ N
tion in quadratic form withNt"-order parameter depen- (A1) (A(p), B2,C2) is parameter-dependent stabiliz-

dency. After such a parameterization, the LPV analysis able and dete%tabIeTfor al
condition can be solved using an ad-hoc gridding method (A2) the matrice§ B Df,] and[C>  Da:] have full
over parameter space. However, the resultinijom grid- row ranks.

ding method only provides a lower bound of the actual We would like to design a LPV controllek» in the
performance in general. On the other hand, either multform of

convexity/difference of convexification or convex covering {xk} B {Ak(p, p)  Bui(p, p)} {xk} 5)
methods [6], [22], [26], [2] can also be employed to ul|  |Ck(p,p) Dr(p,p)| |y

solve the a_bove parameter-dependent LMI. After_all, the,) stabilize the open-loop LPV system (4) with inducgg
bounds derived from the above approaches are either G5y of the closed-loop system minimized. Note that the

conservative or overly optimistic in the solutions. controller is scheduled by the parameteand its derivative
As argued above, it is a challenging problem to comput

parameter-dependent Lyapunov functions constrained byFor constant matrice@B{ DT, ] and [02 D21] the

LMis, since such functions are non-quadratic polynomial§,e|i-known LPV synthesis condition is given by [25]
of the parameter variables. In this paper, we will take advan-

tage of the computational tractability of the sum of squares { A(p)R(p)S+ R(%)RAT(p) }
(SOS) decomposition to derive solvability conditions for r(p,v) = [*] =i Vigp,
LPV systems. For this purpose, note that both conditions Ci(p)R(p)
of V(z,p) positive definite and2’i negative definite Bl (p)
can be formulated as SOS problems and solved using RCT (p) | Bi(p) e 0
semidefinite programming. The following result determines —I | D11(p) ] { OR I} <0 (6)
the stability and performance of polynomial LPV systems DY, (p) ‘ —~I
using a parameter-dependent Lyapunov function, which also
has polynomial parameter dependencygmon AT (p)S(p) + S(p)A(p)
Theorem 1:Given the compact set® and V, if there B { +Y Vb }
exist polynomial matrix functionX : R® — S*" and @s(p,v) = [4] BlT(p)S(p)L
SOS multipliersm;(z, p,v), n;(z, p), such that Ci(p)
" SBi(p) | C(p
—Z"M(p,v)z — 2"z =Y mi(z,p,v) filp) —W(I) DiTl(( )) [NS O] <0 (7)
i=1 0 I
. Du(p) | —1
— n;(z, v, — Vi )(V; —v; is SOS 3 R(p) I
g (z.9)(vi — 1) (7 — 12) 3 { ( S(p)] >0 ®



where Let {Pi}ili , be a partition of the parameter $etas finite
number of closed subsets. Each sulf3eis a partial region
Nr=Ker[By Dh],  Ns=Ker[C; Dy of the parameter space described by
The above LPV output-feedback synthesis condition can
also be solved using SOS decomposition and semidefinite
programming. lts SOS-based solution is provided in the Pi={p€R":gix(p) >0, k=1,2,---7,,} CP
following theorem.
Theorem 2:Given a performance levely > 0, the
compact setsP,V, and the open-loop polynomial LPV ThusP = Ufil P;. We also assume that the intersection
system in (4), if there exist polynomial matrix func-of any two adjacent subsets is non empty. The switching

tions R,S : R® — S and SOS multipli- surfaces for two adjacent parameter subggtaind P; are

ers mi;(2, p,v), mai(2, p,v), msi(2, p), n1i(2, p), n2i(z,p) ~ defined as

such that
Tf

— 2 Qr(p,v)zr — 1zl 21 = Y mui(z1,p,v) fip) Sij=1{p€R* hiji(p) =0, k=1,2,--- ,ry, }
i=1
—> mi(21,p) (v — ;) (7 — i) is SOS (9 Note that the surfacs;; specifies the one-directional move
i=1

from subsetP; to P;. Therefore the setsS;; and Sj;
T Qs(pv)zs — T Zm (2 D 1i(0) will specify tvv_o dlffe_rent swnch_lng surfaces. The functions
2 s\ V)52 =GR 22 2il%2, P, V) JilP gir, hiji. are in their polynomial forms. Due to general
s =1 form of functionsh;, it can be used to describe nonlinear
= > e, p)(vs — )~ vi) s SOS  (10) SWitehing surfaces.
i=1 The switching events occur when the trajectory hits one

Tf

S _ of the switching surfaces;;. Let o(0) = i if p(0) € P;.
z [Rg-p) S(Ip)} 23— Y mai(z3,p)fi(p) is SOS (11) For eacht > 0, if o(t~) = i and p(t) € P, we keep

=1 o(t) = i. On the other hand, it(t~) = ¢ but p(t) € P;,
for any vectorsz;, z; and z3 with suitable dimensions and let o(t) = j. Repeating this process, we will generate a
some positive numbers,, es, then there exists an LPV piecewise constant signal which is continuous from the
controller K» that renders the closed-loop LPV systenright everywhere. Since can change its value only after
exponentially stable anflie||2 < v||d||2. the parameter trajectory has passed through the intersection

As mentioned before, the computational complexity obf adjacent subset®; and P;, chattering will be avoided.

LPV analysis and synthesis conditions based on SOS detoreover, only finite number of switches will happen in any
composition is polynomial in time. The derived solvabilityfinite time interval due to bounded parameter variation rates.
conditions are generally stricter than the original LMIThis switching logic is known as “hysteresis switching” [7]
conditions. However, our experience has shown that thend will be used in hybrid LPV control design here. The
SOS approach often provides less conservative results thasulting closed-loop system is a hybrid LPV system, with
other relaxation methods for polynomial LPV systems. ¢ being its discrete state. Specifically, the valueraé not
only determined by the current value pfalone, but also

IV. HYBRID LPV STATE-FEEDBACK CONTROL depends on the previous valuesaof

Hybrid LPV control strategy permits using different : . . .
. . L Generally speaking, there is no need to associate with
controllers over different operating ranges. This will lead . Lo
. o . . each subsystem a global Lyapunov function. In fact, it is
to relaxed stability condition and provide enhanced design .
- : . X . oo often enough to require that each Lyapunov functign
flexibility. In this section, we will consider switching control

. . decrease along solutions of titl subsystem in the region
of LPV systems using multiple state-feedback control Iaw% . . X .
wi = Fi(p)e. ; where this system is active. The proposed hysteresis

: switching control scheme can be thought as a generalization
Consider an open-loop LPV system ) . L
of previous continuous switching approach [11]. However,

i Alp) Bi(p) B x we do not require continuity of Lyapunov functions across
= P 1P > |d switching surfaces.
e|] [Cilp) Dulp) D |, _
Theorem 3:Given a set of scalarg, the parameter s@®
where the parameter-dependent matrices functions are podnd its overlapped partitioR;, i = 1,2,--- , N. There exist

nomials of the scheduling parameterFor simplicity, the switching state-feedback LPV control laws with associated
matricesBs,, D12 are assumed to be parameter independerttysteresis switching logic to render closed-loop exponential
It is also assumed that all the states are available fstability and achieve performancge|. < ~||d|» with
feedback control use. ~ = max {%}f\;l, if there exist parameter-dependent matrix
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functions R;(p) > 0 such that for any(p,v) € P; x V is compressor rotating speed and belongs ][0, 1]. Also

{ A(P)Rz‘(PHRi(g}%AT(P) } [—4.365 —0.6723 —0.3363
T — D he1 kg, Ay = | 7.088  —6.557 —4.601
Qrilp,v) = [* L o 0 : ; '
' [+ Cilp) B () |—2.410  7.584  —14.310
) By (p) (056081 0.85534  0.58923 ]
Ri(p)CT | Bilp) | rar Ay = | 25333 10398 —7.7373
R
il Dii(p) [ 0 I] <0 | 31917 1.7971  —2.5887
Dii(p) | —wl 12 [0.66981 —1.375 —0.99093]
12) Ay = |—2.8963 —1.5292  10.516
and for anyp € S, | —3.5777  2.8389  1.9087 |
[2.374  0.7485
Ri(p) — Rj(p) <0 13) By = | 1.366 3.444
where Ny = Ker [B,  Ds3]. Furthermore, the switching :0'9416 —9.619
state-feedback gains are given by —0.16023  —0.35209
) By = | 011622  —2.4839
Fi(p) = — (D1yD12)  [viB3 R (p) + D1,C1(p)] | —0.11058  —4.6057
, [ 0.15623  0.13063
fori=1,2,.-- . N. By = | —0.49582  4.0379

After deriving hybrid LPV state-feedback synthesis con-
dition in LMI form, the SOS decomposition approach can
be used to formulate a computable synthesis result. This is C = 010 .
given bellow: 0 01

Corollary 1: If there exist polynomial matrix func- . . s
tions R, : R® — S™" i — 1,2....N, SOS multi- We would like to evaluate this system’s inducégd perfor-

pliers map(z, p, 1), np (2 p’) and polynomial multipliers mance under different varying parameter assumptions.
Ciin(z, p) such that Similar to the original paper, we consider three cases:
1] )

| —0.030616  0.89473

1) Quadratic Lyapunov function, the optimal induced
L>-gain bound isy = 0.9603.
2) Affine parameter-dependent Lyapunov function with

Tg,;

— 2 Qrilp,v)zr — ezl 21 = > min(21, p, ) gin(p)

s = parameter variation rate € [—1,1], the optimal
- Z nik (21, p) (v — vp) (7 — vi) is SOS  (14) bound isy = 0.9520.
k=1 3) Quadratic parameter-dependent Lyapunov function
— 23 [Ri(p) — Rj(p)] 22 with v € [~10, 10], the optimal bound is = 0.9462.
Thij The bound we have in Case 1 is similar to what the original
+ Z&jk(@,p)hmk(p) is SOS (15) paper obtained for division number 25. In cases 2 and 3
k=1 our bounds are better than theirs (even when their division

for any vectorsz; and z, and a small positive, then the number equals to 25). It is interesting to see that higher
hybrid LPV system is exponentially stabilizable and thrder parameter-dependent Lyapunov function is very useful
induced£, norm is bounded by = max {%}]-\il. to improve the system performance even the parameter
It is usually difficult to enforce equality constraint like Variation rates increase from0 to 10. .
(13) in LMI optimization problem. On the other hand, this The second example is taken from [20] and slightly
type of constraints can be easily handled in SOS tool [18]10dified by adding disturbance effect. This plant has poorly
by introducing polynomial multipliers. amped zeros which vary along the imaginary axis. Its state-
space equation is given by
V. EXAMPLE

. . _ _ _ 21 0 (2—-6)2 14050+ (2-0)?] [21
We first consider a gas-turbine engine model described |, | _ [; 0 0.9 7
0

as a linear system with a scalar scheduling parameter [2] &3 0 0 3
i = (Ag+ A10 + A20%)x + (Bo + B16 + B26?)w (16) 0 0

wherex, zo andzs are the compressor speed, the fan speed .
and the outlet press, respectively. The scheduling parameteinere —1 < § < 1 and |0] < 2. Also the output equation
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is chosen as
[1]

Z1

¢ [8 (1) (ﬂ s (19)

I3 [2]

All the states are assumed to be available for feedback

control use. 13]
To solve the hybrid state-feedback control problem, we

partition the parameter set into either two or four overlappedy,

subsets. That is

o 2 subset®); = [—1,0.05] and O, = [—0.05, 1]. 5]
o 4 subsets®; = [-1,-0.45], Oy = [-0.55,0.05],
O3 = [-0.05,0.55] and O, = [0.45, 1]. ]
Then we will solve hybrid LPV control problem by
synthesizing multiple Lyapunov function$;(z,0) = 7]

2T R;(0)~ 'z, where different parameter dependency is con-
sidered for matrix functiom?(6). For comparison, we also
synthesize a state-feedback control law over the entir&!
parameter set. The performance achieved by non-switching
and hybrid LPV state-feedback control is summarized inl9]
the following table.

[10]
TABLE |
PERFORMANCE USING NONSWITCHING AND SWITCHED CONTROL [11]
STRATEGIES
[12]
V(x) 1 subset| 2 subsets| 4 subsets

TRy 'z 1.3598 [13]

T (Ro +0R1) 1z 1.2537 | 1.2168 1.1828

2T (Ro+6R1 +62Ry) 12 || 11299 | 1.1235 1.1186
[14]

When higher order parameter-dependent Lyapunov fungs)
tions are chosen for control synthesis purpose, it is possible
to tighten performance of the closed-loop system. SimilarI){16
further partition of the parameter set into smaller regions
also helps to improve the performance. [17]

VI. CONCLUDING REMARKS [18]

In this paper, we have proposed a new solution approa@r‘?]
to LPV analysis and synthesis problems for a special clagm)
of LPV systems, namely, the LPV systems have polynomial
parameter dependency. The proposed solution approach.
based on SOS decomposition and is applicable to a large
class of LPV systems. This method also provides reliable
and less conservative results than most existing relaxati
methods. It generalizes the well-known S-procedure to
improve LPV analysis and synthesis conditions. Moreovel23l
the SOS-based method is very efficient and has the compu-
tational complexity in polynomial time. [24]

If the assumption of constaiy, Do andCsy, Dy matri-

. . . 5]
ces is relaxed to polynomial functions, then the correspon&z—
ing polynomial LPV analysis and synthesis and hybrid LPV
synthesis conditions can be derived using Finsler’s lemmE®!
However, the details will not be reported here.
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