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Abstract—For the nonlinear output regulation, or ser- and the linearization-related issues raised above under th
vomechanism, problem a nonlinear compensator synthesis general heading of gain scheduling.
framework is presented that merges techniques for linear In this paper, we demonstrate the applicability of LPV

parameter-varying (LPV) systems with ideas derived from : . .
linearization-based gain scheduling. Plant linearizations about methods in the context of the nonlinear output regulation,

zero-error trajectories have an LPV structure upon which ~ OF servomechanism, problem. Namely, LPV plant models
the synthesis of an LPV compensator is based. A key issue naturally arise from the linearization of a nonlinear plant
is whether, loosely speaking, the linearization process can apout a parameterized collection zero-error trajectories
be reversed wherein a nonlinear compensator is sought that specified by a certaireero-error submanifold. An LPV

linearizes to the LPV compensator about every zero-error ¢ then b tructed t t additi |
trajectory. Necessary and sufficient existence conditions are COMpensator can then be constructed 1o meet additional per-

derived for the existence of compensators satisfying this formance objectives beyond error regulation, directlyrtgk
linearization requirement. Based on this, it is shown that into account the time-varying nature of the parameters as
error feedback compensators that contain an internal model of - generated by an associated exosystem. As in [10], we derive
the exosystem are guaranteed to exist under mild hypotheses. qitions for the existence of nonlinear compensators tha
A nonlinear compensator is designed for the ball and beam . . o .
apparatus to illustrate the technique. meet an appropriate linearization requirement. Moreover,
we show that a general class of error feedback compensators
|. INTRODUCTION containing an internal model of the exosystem is guaranteed
Linear parameter-varying (LPV) control has, over the pagb satisfy this requirement. This approach on the one hand
decade, emerged as an effective methodology to accomnr@orously ties LPV methods to nonlinear systems and on
date plants exhibiting parameter-dependent dynamics thhe other hand extends prior work on linearization-based
preclude the application of linear time-invariant teclugéig gain scheduling to the case of time-varying trajectories
[1], [2], [3], [5], [11], [14]. LPV plant models are often rather than just equilibria. It is reasonable to expect that
derived from a nonlinear plant whose dynamics over this marriage of LPV-based techniques and linearization-
specified operating regime vary significantly but admit dased gain scheduling will allow for the design of nonlinear
parameterization by a subset of the system variables. Foopmpensators that yield improved performance over those
example, in flight control applications a vehicle'’s lingad designed on the basis of a single plant linearization about a
aerodynamics are commonly parameterized by variable@minal equilibrium [8] or on the basis of plant lineariza-
such as angle-of-attack, dynamics pressure, altitude, atidns about zero-error trajectories but for which LTI desig
mach number that specify the required flight envelope. methods are applied point-wise along the trajectory [7].
In the case where LPV plant models arise from the
linearization of a nonlinear plant about nominal trajeietsy Il. PROBLEM FORMULATION
the feedback interconnection of the nonlinear plant and an We consider a nonlinear continuous-time plant of the
LPV controller is not guaranteed to linearize to the feedform
back interconnection of the LPV plant and LPV controller

precisely due to the parameter-dependence in the comtrolle & = flz,w,du)
This can produce unexpected and undesirable consequences. z = h.(z,w,d,u)
It is appropriate instead to consider more a general naaline y = hy(r,w,d) (1)

compensator structure and impose the requirement that

the nonlinear compensator should linearize to the LPWherez(t) € R" is the state vector and(t) € R™> is
compensator about the designated nominal trajectorias. Tigenerated by a known exosystem,

linearization requirement leads to the controller exiséen W = s(w). )
conditions derived in [10] for the case of plant lineariaat

about a family of equilibria and a novel compensatoin addition, d(t) € R™< is an unmeasured disturbance,
architecture that satisfies these conditions is prese®ed [«(t) € R™« is the control inputz(¢) € R? is the regulated
The paper [12] surveys the interplay between LPV methodsutput, andy(t) € RP is the measured output available
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for control purposes. For convenience, we assume that ttieat meets the following important linearization requiesrh
plant functions, along with all other functions to appearwith respect to the LPV compensator (5).
are smooth. Next, we assume that output regulation is Requirement 2.2: For the nonlinear compensator (6)

achievable for the undisturbed plant € 0). there must exist a smooth functiafy(-) satisfying
Assumption 2.1: For the nonlinear plant (1) and exosys- D2 (w) . .
tem (2) we assume that there exists an operosetV c 5y S = alze(w),y" (w), w)
R and functions ww) = c@@w),y’w),w). (1)
W —R" u W —R"™ y°:W-—RP In addition, the following partial derivative identitiesust
hold
all zero at the origin, such that © 9a
02° (w) Pag e(w)y"(w)w) = Ac(w),
5y W) = fa*(w),w,0,u"(w)) P
v g (w),y° = Be(w)
0 = h(®(w)w0uw) @ gyt whw) = Belw).
da , . o
and ] ] G (@@ (). y°(w)w) = 0, (®)
Yw) =y (w),w,0) %
for w e W. 0 %Q’EC(U)), Yy (’IU),’LU) = CC (w)a
The regulator equations (3) definezero-error subman- dc, o
fold via - ; o gy rewh v whw) = Delw),
0
M={z eR" |z =2°(w), w e W} a—;(xg(w),yo(w),w) = 0. O

Linearizing the nonlinear plant (1) about any zero-error The first part of Requirement 2.2 ensures that the the
trajectory lying inM leads to the family of linearizations undisturbed ¢ = 0) closed-loop system possesses a zero-

having the linear parameter-varying (LPV) form error submanifold. The second part guarantees that lin-
. earizations of the nonlinear compensator about closegl-loo
i5 = A(w)zs + Ba(w)ds + Bu(w)us zero-error trajectories agree with the LPV compensator.
zs = Cy(w)xs+ D.q(w)ds + D.yu(w)us Consequently, linearizations of the nonlinear closegrloo
ys = Cy(w)xs+ Dya(w)ds (4) system about zero-error trajectories exactly match the-fee

back interconnection of (4) and (5). Note that terms in (8)
whered—subscripts indicate deviations from nominal valuesnyolving partial derivatives with respect to are required
along a zero-error trajectory, to vanish since they have no counterpart in the LPV com-
pensator (5). The following theorem gives a necessary and
sufficient existence condition for nonlinear compensators

zs =2 ys=1y—y (w) satisfying this linearization requirement.
Theorem 2.3: Given LPV compensator (5), there exists
and the coefficient matrices are given by, for example, 3 nonlinear compensator (6) satisfying Requirement 2.2 if

xs=x—2°(w), ds=d, us=u—u’(w),

of . . and only if there exists a smooth functiafi(-) satisfying
Aw) = 5 (2°(w), w, 0, u"(w)) the partial differential equation
with the others defined analogously. K {3952(11))8(@} _ Ac(w)axg 4 Be(w) dy°
Suppose an LPV compensator of the form ow | Ow ow ow
ou® (w oxg ay°
ics = Ac(w)zcs + Be(w)ys 8( ) C’c(w)a—c + De(w) 2 (9)
us = Ce(w)wes + De(w)ys (5) Proof: For necessqllfy, if a nonlinear compensator satisfying

Requirement 2.2 exists, then differentiating the ideaditi
has been constructed such that performance objectives @ie(7) with respect tow and substituting the identities
met by the feedback interconnection of (4) and (5) in afh (8) yields the identities in (9). Conversely, if there
LPV sense for all exosystem trajectories generated by (2xists a smooth function:%(-) satisfying (9), then it is

It is important to note that the LPV compensator is als@traightforward to verify that the nonlinear compensator
described in terms of deviation variables but in this casepecified by

the compensator state functiag (w) associated withees

has yet to be specified. a(ze,y,w) = Ac(w) [ze — we(w)] + Be(w) [y — y°(w)]

O3 (w)

Of interest is the existence of a nonlinear compensator + Ts(w)
w
te = a(re,y,w) c(ze,y,w) = Ce(w) [xe — ¢ (w)] + De(w) [y — y°(w))]
u = c(ze,y,w) (6) + u°(w)
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satisfies Requirement 2.2 O Loosely speaking, Lemma 3.1 establishes that a nonlinear
At first glance, the existence condition of Theorem 2.2rror feedback compensator satisfying Requirement 2.2 has
appears to be restrictive as it involves a type of partidinearizations about zero-error trajectories that speaif
differential equation that may not have a solution. On th&PV compensator containing an internal model of the
other hand, if the condition above is not satisfied thefinearized exosystem. Moreover, since a coordinate tosnsf
linearizations of any compensator of the form (6) aboumation on the compensator state does not affect closed-loop
a zero-error trajectory will not completely agree with thdinearizations, we can assume without loss of generalay th
LPV compensator (5). Resulting mismatches constitute sthe LPV compensator has the structure presented in the
called hidden coupling terms that can potentially impademma. This allows us to establish the following converse
system performance. Compensators arising from a direasult which guarantees the existence of a nonlinear error
LPV implementation of (5) are likely to introduce hiddenfeedback compensator satisfying Requirement 2.2 that, as
coupling terms corresponding to the exogenous variabke result of our choice of coordinates, clearly exhibits the
w because partial derivative terms with respectutdhat internal model of the exosystem.
arise in the linearization process are typically nonzeré | Lemma 3.2: For the LPV compensator characterized in
therefore of interest to identify compensator architeztur Lemma 3.1, there exists a nonlinear error feedback com-
that automatically satisfy the existence condition thgrebpensator satisfying Requirement 2.2. Moreover, one such
decoupling the LPV design process from the existence issusompensator is specified by

The next section presents such a situation.
P A1 (w)ve + By (w)z

I1l. ERRORFEEDBACK COMPENSATORS Ag1(w)ve + Ba(w)z + s(we)
For the case of error feedback & z = h.(z,w,d)), c(ve, we, z,w) = Cr(w)ve + De(w)z +u’(we) (11)
a nonlinear compensator satisfying Requirement 2.2 neceg; \which Requirement 2.2 is satisfied witfi (w) = 0 and
sarily incorporates an internal model of the exosystem [Sluo(w) —w.

For such error feedback compensators, we first show thﬁfoof: For the error feedback controller specified by (11)
there exist local coordinates in which the LPV compensato({ndvg(w) =0 andwg(w) = w, we have

has a particular structure. For this, define

a(ve,we, z,w) =

n o o o 0 M
MC = {l’c € R"™e | Tc = {L‘C(U}), w e W} CL(UC(’LU), wC(w)v Oa w) = [s(wg(u}))} = [ Bw%“()w) ] S(UJ)
ow

Assummg/\./cl)c is an embedded submanifold, there eX|stC(vg(w)’w8(w)70,w) = (wd(w)) = u°(w)
about eachrg € Mc local coordinategvc, we) for which
so the first part of Requirement 2.2 is satisfied. Next, the

Me = {zc € R™ [ve(zc) = 0} partial derivative identities with respect t¢ andz clearly
and we (22 (w)) = w. hold. The pa_lr_tial derivative identities vyith respect i@
Lemma 3.1: A nonlinear error feedback compensatohold by definition 0fAs;(w) andCs(w). Finally, the partial
satisfying Requirement 2.2 when expressed in the loc8Erivative terms with respect vanish along zero-error
coordinategve, we) has linearizations about zero-error tra-trajectories since;(w) = 0 and z°(w) = 0. O

jectories characterized by parameterized coefficientioestr |t i interesting to note that, as a consequence of the fact
wg(w) = w, the nonlinear controller specified by

All(UJ) 0 Bl(w)
Ac(w) = {Am(w) Azz(w)] » Be(w) = {Bz(w)] a(ve,we,z) = An(we)ve + Ba(uwe)z
Cew) = [Cr(w) Cow)], De(w) = De(w)  (10) Az (we)ve + Ba(we)z + s(we)

c(ve,we,z) = Cr(we)ve + De(we)z 4+ u®(we) (12)

in which Az (w) = 254 and Cy(w) = 24 (w), - : :
Proof: Given the functionzg (w) associated with a nonlinear also S.at'Sf'eS Requwemen_t 2'2. bu_t does not requi(e
as an input. Although the linearization requirement ersure

controller satisfying Requirement 2.2, we have by definitio - S ;
ve(w) = ve(a2(w)) = 0 and w (w) = we (22 (w)) = w. thqt for sufficiently small dewaﬂon; from zero-error e
S(ince the existence conditions of Theorem 2.3 must aldg"€S the_tV\_/o controllers W'" deliver comparable p?”?’r'
hold in the(ve, we )—coordinates and for the error feedbacKmance, this is not necessarily the case for large deviations
! To summarize, the LPV compensator structure character-

casey’(w) = z°(w) = 0, we have : . . )
v (w) (w) ized in Lemma 3.1 necessarily must result from a nonlinear

0 HO} S(w)] _ {Au(w) A12(w)} {0} error feedback compensator satisfying Requirement 2.2
ow || 1 Agr(w) Aga(w) | [ 1 when expressed in suitable local coordinates. Conversely,
Ou® (w) 0 a nonlinear error feedback compensator satisfying Require
“ow [Cl (w) Ca(w) ] [[] ment 2.2 always exists with respect to an LPV compensator
possessing the structure described in Lemma 3.1. In this
which forcesA;z(w) = 0, Az (w) = 853(;}”), andCa(w) =  sense, the LPV compensator design process is not further
Ma—qi”) as required. 0 constrained by the nonlinear compensator existence issue
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beyond the natural structural requirement that the LPYProof: The first property holds by construction. Properties
compensator contain an internal model of the linearize@i) and (iii) follows by noting that combining the auxil-
exosystem. iary plant and controller equations (15)—(16) leads to the

following closed-loop LPV system:
IV. LPV COMPENSATORSYNTHESIS 9 P y

Having resolved the existence issue for nonlinear error A+ B,DcC. B,Cy B,Cy|Ba+ BuDcDza

feedback compensators, we now turn our attention to the B,C, Asz A ByD:a
synthesis of LPV compensators that possess the struc- BiC; 0 Aun Bi1D:q
ture described in Lemma 3.1 and achieve stability and C. 0 0 ‘ D.a
disturbance attenuation for the closed-loop LPV systemterchanging now the second and third partitions of the
represented by (omitting/—arguments): underlying state vector yields (13), which are precisely th
equations that one obtains closing the loop around the plant
A+ B,DcC, B,C1 B,Cs|Bg+ ByDcD.qg (14) using the controller (17). Finally, internal stalyiliof
B.C, A 0 BiD.4 the auxiliary closed-loop system guarantees that allriafer
Go = ByC, Agy Ao ByD.q4 closed—-loop subsystems are stable. |
C. 0 0 | D.q
(13) V. EXAMPLE: THE BALL AND BEAM

Note that. in principle thg problem above is qot a sFandard We apply the synthesis methodology of the previous
LPV design problem since the controller is subject tGections to the well-known ball and beam experiment whose

structural constraints, namely;, = 0, As2 andC> given. nonlinear equations of motion are given by ([6])
Nevertheless, as we show in the sequel, the problem can

be reduced to that of stabilizing an auxiliary plant, whose (il; + M) i 4+ MGsin(6) — Mré? = 0
state space realization can be obtained from the problem R / _

data. This constitutes an LPV version of the development (M1 + J + .J,) 6 + 2Mrif + MGrcos(6) = T
in [13] for LTI systems.

Lemma 4.1: Given the LPV system: in which r is the ball positiong is the beam angle 7 is

the applied torque, and the remaining system parameters are
listed in Table 4.1. The applied torque is assumed to have
(14)  the form

T=T4d+Tm

consider the following LPV auxiliary plant where 7,4 is a disturbance torque and,, is the torque

A B,Cy| By B, 0 produced by a servomotor connected to the beam, modelled
0 A | 0 0 I by
auxr — 15 .
G C, 0 D,y 00 (15) T = & (Te — Tm)

C, 0 D,y 00 ) ) .

) in which 7. is the commanded torque.
Assume that there exists an LPV controll§, ... We define state variables, disturbance input, and control

A | By input according to
Kaux - Ac;ll gg (16) xr1 =T, T = ’f'7 T3 = 9, Ty = é, T5 = Tm

that internally stabilize€?,., and achieves a closed—loop@0Ng with disturbance input = 7, and control input; =
performance level = sup,p | Fe(Causs Kaus)||+, where T yielding the nonlinear state equation
P and||.||. denote the set of admissible parameter trajecto-

T] =
ries and a suitable norm, such &sinduced, respectively. .1 2 5 .
Then the controller iy = B (z12] — Gsin(z3))
T3 = T4
. —2M xy — MG +x5+d
K- 17) by = T1ToL4 / x1 cos(xs) + x5
M.Z’l +J+Jp
Ts = a(u—x
has the following properties: ° ( 2
i.- It satisfies the structural constraints (10). where B := M/(J,/R? + M). _ N
ii.- It internally stabilizes the original plant (14), and The exosystem generating constant-velocity ball position
jii.- The closed loop system achieves the same perfofommands is given by
mance level obtained for the auxiliary plant, i.e. ”
1| _ | W2
SuPpE’PH}—f(GvK)H*:’V' |:w2:| - [ 0 :|

1359



Table 4.1: Ball and Beam Parameters . . . . .
this plant entails finding a solution to a set foihctional

Pa“a]‘c;emr Ejls‘;r:fst:’” 8/3'5“?{ matrix inequalities, or, equivalently an infinite set of LI
R ball radius 0.01 mg (see for instance [4] or [3]). An approximate solution to
J beam inertia 0.02 kg m? this problem can be obtained by gridding the parameter
o ball inertia 2x107 kgm? space and enforcing these LMIs at a finite number of points
G acceleration due to gravity 9.81 m/s?

1, but pursuing this approach still requires both expanding
the solution to the original set of functional inequalities
terms of some basis and solving a large number of LMIs.
The regulated and measured outputs are taken to be badl circumvent this difficulty, in this example we will take
position error advantage of the fact that botl}, and B,, are independent
Z=y=x1 — wW;. of p to recast the problem as the synthesis of g,
controller for a polytopic plant. To this effect note thapoun

It is straightforward to verify that Assumption 2.1 is satis independently restrictingw: (1)) < 1 m and [ws(#)] < 1

fied for m/s, the parameter vectei(t) is guaranteed to lie in the
w1 bOX [Epﬁl] X [Bzaﬁﬂ Wlth
W2 _ 1 - _ 1
2°(w) = 0 , ul(w) = MG (wy + wa/a) R S L= R
0 Py =—VM/(J+ ), Po=M/J+ )
MG w, Finally, neglecting the correlation betwegn and p- leads

and the associated zero-error submanifold is given by 10 @ standard quadratic stability problem for polytopic
parameter dependent plants [3] that can be solved by

M= {z eR’|x3=0,24 = 0,25 = MGz, }. synthesizing anH,, controller for each of the vertices,
for instance using thli nf gs command in Matlab’s LMI
Control Toolbox. The LPV controller is then implemented
by interpolating these four vertex controllers. Note that

Plant linearizations about zero-error trajectories amcisp
fied by the coefficient matrices

[ 0 10 0 0 in this case, sinces(w) and v°(w) are linear inw, the
0 0 -BG 0 0 nonlinear controller given by (11) allows for a direct im-
A(w) = J(\)m 0 0 le (1) plementation of the LPV controller having constaf, and
T MuwitJ+dy 00 _wailffjb wwrrirs | C2
0 0 0 0 —a Nonlinear simulations were conducted to assess the dis-
- 0 0 turbance rejection performance of the LPV controller. A
0 0 r}ominal trajectory corresponding to. an initial ball posi-
Ba(w) = 0 Bu(w) = 0 tion of —1 m and a constant velocity 0f.25 _m_/_s was
1 ’ “ 0 ’ commanded. The plant and controller were initialized to
Mw%J(r)JHb o yield identically zero tracking error for the disturbaricee

- case. A bandlimited (500 Hz) disturbance torque, plotted
C.(w) = Cy(w) = [1000]. in Figure 1, was then applied. Note that this disturbance
has large amplitude compared to the nominal torque com-

Th ili [ 1 f ing i
e auxiliary plant (15) can be formed by using N nd which hasr.(t)| = MGluwy(t)] < 0.49 N-m. The

addition - " :
ball position, ball position tracking error, and beam angle
Ass(w) = 82(w) _ {0 1] 7 responses are shown in Figures 2 — 4. These plots indicate
v 00 that the controller substantially attenuates the influghee
Cy(w) = % = [MG MG/a] the disturbance torque has on the position tracking error
) o ) without causing excessive beam activity. As another figure
which, definingp = (p1, p2) according to of merit, we numerically calculate
! 2Muw, ws [
= - =" " 08 _
=Mz +T+0, 7 Muw? +J+Jp’ [lleafo.8] = 0156
can be cast in the affine parameter-dependent form which compares favorably to the worst-case valuesaf
(Aaux(p)|Baux(p)) - (Agux Bgux> achieved in the LPV design process.
Caux(p) | Daux(p) Caux | Daux VI. CONCLUDING REMARKS

+m (Azlulx Biux> + o (Agux Bzux) The nonlinear output regulation problem is a natural
Caux | Daux Ciux | Diux setting in which to apply LPV synthesis techniques based

Even thouQ_h this description_ is_affine  sincep, and lusually a coarser mesh is used for synthesis, followed bydatitin
p2 are not independent, designing an LPV controller fotsing a finer grid.
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on an LPV plant model derived from nonlinear plant
linearizations about a manifold of zero-error trajectsrie
The LPV formalism allows for other performance objectives
to be addressed, such as the rejection of disturbances not
generated by the exosystem, in addition to traditionalrerro
regulation.

In this paper, we have presented a framework for the
synthesis of nonlinear compensators that meet an important
linearization requirement with respect to LPV controllers
designed on the basis of LPV plant linearizations. We have
derived necessary and sufficient existence conditions that
are automatically satisfied for a class of error feedback-com
pensators satisfying the internal model principle. Moexpv
we have shown that the associated structural constraints
imposed on the underlying LPV compensator can be easily
accommodated in the LPV design process. Finally, we
have illustrated these ideas by designing a compensator for
the ball and beam apparatus for which simulation results
indicate excellent disturbance rejection performanceglo
time-varying zero-error trajectories.
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Fig. 1 Disturbance torque.
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Fig. 2 Commanded ball position (dashed) and ball
position response (solid).
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Fig. 3 Ball position tracking error response.
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Fig. 4 Beam angle response.
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