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Abstract— The minimum time swing up of a rotary inverted
pendulum is considered. For our rotary inverted pendulum,
a DC motor rotates a stiff arm at one end in the horizontal
plane. The opposite end of the arm is instrumented with a
joint whose axis is along the radial direction of the motor.
A pendulum is suspended at the joint. The task is to design a
controller that swings up the pendulum and maintains it upright
and maintains the arm position. From practical tuning point of
view, a PID controller plus an impulse controller is proposed
for the swing up control. An iterative tuning of the impulsive
control actions is applied to achieve the minimum-time swing-
up. To make the overall control strategy more robust, a new
mode switching control method is also proposed. Compared to
the existing dual mode nonlinear controller provided by the
manufacturer, the swing up time is significantly reduced as
demonstrated by extensive experimental results.

Index Terms— Rotary inverted pendulum; swing up control;
PID control; impulsive control; energy based mode control;
minimum-time control.

I. I NTRODUCTION

Inverted pendulum has been widely used in both linear and
nonlinear control education with applications to other under-
actuated mechanical systems, involving nonlinear dynamics,
robotics and aerospace vehicles testing [1], [2], [3]. In this
paper, a rotary type inverted pendulum, also known as the
Furuta pendulum, is considered. The objective is to swing
up the pendulum and make it stable at the “upright” position
with two different but appealing control problems. The first
is to balance and stabilize the pendulum at its upright
position. The popular method is to linearize along the desired
equilibrium point and apply the linear quadratic regulator
(LQR) or pole placement technique [4]. The second is to
swing up the pendulum from its hanging position to the
upright position which is a more challenging control problem
due to its nonlinear under-actuated mechanical nature. If
practical factors such as the actuator saturation and the
component friction are taken into account, the swing up
control problem will be more complicated. To make the
control process globally stable, mode switching between
these two controllers, i.e., the swing up controller and the
upright position regulator, should be carefully considered.
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This work was demonstrated during theFirst Inter-
national Summer School of Iterative Learning Control
(http://www.csois.usu.edu/ilc/summerschool03). The
movie clips before and after applying the impulse step control scheme for the
swing up process are viewable fromhttp://www.csois.usu.edu/
people/yqchen/misc/ILC impulsive before.mpg and
http://www.csois.usu.edu/people/yqchen/misc/
ILC impulsive after.mpg.

Different control algorithms have been proposed for swing
up control [5], [6], [7], [8], [9], [10]. Most of the methods
dealt with the simplified second order model of the rotary
inverted pendulum. The rotation of the arm was not taken
into full consideration, nor the disturbance of friction as
in the partial feedback linearization approach [5], [6], [7]
where the trajectory of the pendulum is actually pre-specified.
Another technique, namely energy based control [8], [9],
[10], neglects the reaction torques from the pendulum to
the arm, so that the energy control method can be studied
without considering the position and the velocity of the arm.
In [8], the stability property of the energy based control
is analyzed. Recently, a fourth order model of the Furuta
system is presented in [4], where a speed-gradient algorithm
is used for swing up for the order 4 nonlinear system where
the arm momentum is considered. For non-linear swing up
process, neural network and fuzzy logic algorithms were
tried in [11], [12], [13] while in [14], [15], under-actuated
pendulum control method was investigated by using dynamic
programming or reinforcement learning method.

Since the Furuta pendulum has practical implications for
industry applications, it is desirable to develop control algo-
rithms that can deal with the model uncertainty and mea-
surement noise with simple controller structure. Therefore,
in this paper, we seek to apply PID controller for swing up
control. To achieve minimum time swing up, we propose to
add an impulsive or pulse-step feedforward controller which
is to be tuned through several iterative tuning experiments.
During our experiments, we also applied a new simple and
robust mode switch control.

The remaining part of this paper is organized as follows. In
Sec. II, the mathematical model of the Furuta system is pre-
sented. The PID algorithm for swing up process is described
in Sec. III. Sec. IV is devoted to the proposed pulse-step
control method with details on how the control signal can
be constructed. For completeness, the mode control and the
balance control are discussed together in Sec. V. Experiment
results are presented in Sec. VI. Finally, Sec. VII concludes
this paper with some remarks on further investigations.

II. M ODEL OF THEFURUTA PENDULUM

A. A Description of the Furuta System

The Furuta pendulum system consists of a rotary servo
motor system which drives an independent output gear [16].
The rotary pendulum arm is mounted to the output gear and
the pendulum is attached to the hinge. Clearly, this is an
under-actuated mechanical system. A schematic representa-
tion of the system is shown in Fig. 1 [16] whereα denotes the
angle of the pendulum to the upright position andθ denotes



the angle of the rotor arm. The control purpose is to design
a controller that starts with the pendulum in the “down”
hanging position, swings it up and maintains it upright.

(a) An illustrative configuration
(swinging up)

 

(b) Laboratory Setup (down hanging
position)

Fig. 1. The Rotary Inverted Pendulum System (Furuta Pendulum)

B. The Dynamic Model

To derive a dynamic system model, the coordinate frame
systems shown in Fig. 1 are introduced. With some stan-
dard assumptions such as no friction, rigid objects etc., the
dynamic model are given as follows [16]:

(mpr
2 +Jb)θ̈+mprα̈Ip cos(α)−mprα̇

2Ip sin(α) = T (1)

mpIp cos(α)θ̈r − mpIp sin(α)α̇θ̇r (2)

+mpα̈I2

p − mpgIp sin(α) = 0

where T is the input torque from the DC motor;mp is
the mass of the pendulum;Ip is the length from the center
of gravity of the pendulum w.r.t. the motor axis;Jb is the
moment of inertia of the arm and the gears;θ is the deflection
of the arm from the zero position;α is the deflection of the
pendulum from the vertical upright position; andr is the
length of the arm.

III. SWING UP USING A SIMPLE PID POSITIVE

FEEDBACK CONTROLLER

As stated above, the goal of the Furuta controller is to
swing up the pendulum from stable “down” position to the
unstable equilibrium “up” position and be balanced there.
The overall controller can actually be divided into three parts:
1) the swing up controller, 2) the mode switching controller
and 3) the balancing controller/regulator.

Many different control algorithms can be used to perform
the swing up control. Here, a positive feedback PID controller
is proposed because of its simple structure, effectivenessand
easy tuning. For the balancing control, full-state feedback
LQR is applied. The mode switching controller determines
when to switch between the two controllers (swing up
controller and balancing controller). In particular, whenthe

pendulum is under balancing control and receives some dis-
turbance, it may need to switch back to swing up controller.
A good mode switching controller can switch the controller
between these two controllers smoothly and make the whole
control process globally robust. A robust energy-based mode
switching controller is presented in Sec. V.

Now we start to derive the PID control law for our Furuta
system. Here a positive feedback loop is used to swing up
the pendulum. It actually consists of two loops as shown in
Fig. 2. The outer loop specifies the trajectory for the arm

Inner-Loop PD

Controller

Outer-Loop PD

Controller
PlantComputed Torque

d
θ

d
V T θθαα && ,,,

−+

θθ &,

Fig. 2. Swing up using positive feedback PID controller alone

angles and at the same time excites the internal dynamics
to swing pendulum to the balancing position. By moving
the arm back and forth, one can eventually bring up the
pendulum. It is fairly intuitive to design the outer loop as
follows:

θd = Pα + Dα̇ (3)

whereθd is the given trajectory of the the arm andα is the
pendulum angle deviated from the down hanging position
which is positive in the clockwise direction and negative in
the counterclockwise direction. Note thatα is limited within
±180◦ (wrapped around).

The values of the two parametersP and D play a key
role in bringing up the pendulum smoothly. To prevent the
pendulum from colliding with the other components, we
need to limitθ within ±90◦. Initially, P can be chosen as
0.5. To properly chooseD, a compromise should be made
between increasing the reaction time and decreasing the noise
amplification. In our system,D is set to be 0.001 (sec.) at
first. P andD can be tuned to adjust the “positive damping”
in the system and meet the experiment criterions.

The inner loop performs the position control of the arm.
For the servo arm to track the desired position, a feedback
PD controller is designed as follows:

Vd = Kp(θd − θ) + Kdθ̇. (4)

whereKp andKd is the parameters to be tuned.
The first thing to do is to find out the closed-loop transfer

function between the input and the output of the arm angle.
For the Furuta system, the model of the motor is given by

V = ImRm + KmKg θ̇, (5)

where
V(Volts): Voltage applied to motor;
Im(Amp): Current in motor;
Km(V/deg./sec.): Back EMF constant;
Kg: Gear ratio in motor;

gearbox and external gears
θ(deg.): Arm angular position.

The torque generated by the motor is then given by

T = KmKgIm = Jsθ̈, (6)



whereJs is the total moment of inertia of the arm, the gears
and the pendulum w.r.t. the motor axis.

By some mathematical manipulations, the closed-loop
transfer function is obtained as follows:

θ

θd

=
Kp + Kds

JsRm

KmKg

s2 + (KmKg + Kd)s + Kp

. (7)

So, the closed-loop system has a second-order characteristic
polynomial:

s2 + 2ζω0s + ω2

0
, (8)

whereζ can be set to about 0.707 and the natural frequency
of the control system should be much larger than the natural
frequency of the pendulum. In this way, the closed-loop
response of the arm could be considerably faster than that of
the pendulum and a better compromise between overshoot
and transient time can be achieved. To prevent the arm from
moving too much to over-damp the pendulum, a saturation
block is applied between the inner loop and outer loop.
Again, to limit the motor input voltageVmotor within ±5
(volt), a saturator block can be added in front of the voltage
input to the DC motor. At this point, we remark that
based on our experimental experience, it is hard to achieve
the minimum time swing up control by only tuning PID
parameters. More advanced components should be added into
the swing up controller. In this paper, we propose to apply
the impulse or the pulse-step control which is explained in
detail in the next section.

IV. I TERATIVE IMPULSIVE CONTROL

Several different strategies can be combined to swing up
the pendulum. To achieve a minimal time swing up, it follows
from the Pontryagin’s maximum principle that the minimal
time strategy for swinging up the pendulum is of bang-bang
type. The complexity of the minimal-time control strategy
increases with the order of the system. For a second-order
plant, a simple pulse-step control can be used to give fast set-
point changes and sub-optimal results. This impulsive control
is inspired by the optimal control theory, but also comes from
our observations. That is, by applying a pulse step torque at
one end of the pendulum, with the direction of the torque
the same as the velocity of the pendulum, it can be expected
to swing up the pendulum more aggressively.

Pulse-step control may give good results for the system
using simple controllers as illustrated in [17]. The motiva-
tions of using impulsive control were well explained in [18],
[19] with some applications demonstrated in [20], [21]. The
analysis and design methods for impulsive control systems
can be found in [22], [19], [23].

Note that, the pulse-step control method proposed in this
paper is actually an open loop strategy. To make the con-
trol strategy more robust, a feedback-feedforward structure
should be considered where the uncertainty in the system
model and the disturbance can be compensated by the
feedback controller.

In our experiment, the pulse-step control signal is a step
type function of the following form:

uff (t) =







0 : θ̇ = 0

ū : θ̇ < 0

u : θ̇ > 0

(9)

whereū andu are the constant amplitudes to be further tuned.
To make the control stable, the pulse step control signal is
added before the inner-loop feedback, as shown in Fig. 3. By
carefully setting the parameters, we can manage to achieve
the optimal objective [24].
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Fig. 3. Swing up using PID and Pulse Control

Pulse-step control is important to the minimal-time swing
up, especially for the initial phase of swing up. At the
beginning, the amplitude of the pendulum movement is small,
so is the amplitude of the arm. Then, the energy of the
pendulum increases slowly in the beginning. Applying a
pulse control, that is, an additional torque independent of
the initial states of the pendulum, the energy accumulating
process will be speeded up and consequently the swing up
time can be reduced.

In Sec. VI, we will show show to iteratively tune the pulse
step parameters to achieve the minimum time swing up via
a number of experiments.

V. BALANCE CONTROL AND MODE SWITCH CONTROL

When the pendulum is almost upright, a state feedback
controller should be implemented to maintain it upright and
reject the possible external disturbance. The state feedback
controller is designed using the well known linear quadratic
regulator based on the linearized plant model. It may also
be implemented by pole placement method or other linear
control methods.

When the pendulum is at the upright position, it is easy to
keep it up. However, keeping it upright nicely is not enough.
It is required that the whole control process (swinging up,
balancing, and the mode switching) must be robust. That
is, when any disturbance is applied to the pendulum, the
controller can switch properly between the swing up control
and the balance control. The pendulum can swing up, ap-
proach the upright position and switch to the balance control
smoothly. When it is disturbed from the balance state and
deviated from the upright position to certain degrees larger
than a threshold value, it should switch back to the swing
up control and approach the upright position again. So, it is
important to design a proper mode switching control to make
the whole control system robust.

To design a mode control algorithm, one way is to find out
the extent to which the balance control can still take effect.
These can be some constraints on the angles and velocities of
the pendulum and the arm. These constrains form a window
with switching parameters obtainable by experiments. Note
that mode control is a switching control and should avoids
bouncing. So, the condition for switching from the swing up
mode to the balance mode and the condition for switching



from the balance mode to the swing up mode could be
different.

As stated above, it is not trivial to make a practical control
algorithm in the desirable way. Many parameters need to be
estimated and tuned. Sometimes, the pendulum is disturbed
from the upright position and enters the swinging up control
mode. Under the effect of swing up control, the system may
never satisfy the conditions to enter the balance control mode
again.

There exists other control algorithms, such as dynamic pro-
gramming and reinforcement learning control [14], [15], that
can make the whole control process somewhat robust. But
the dynamic programming may require impractical amount
of computation effort and the reinforcement learning may
need lots of trials before finding a desirable control law. The
exploration phrase in the reinforcement learning may damage
the actual hardware setup.

Here, we propose a simple but robust mode control logic
to achieve the global stabilization. First, some observations
for our experiment setup are presented.

• Assume that the system has zero energy at the down
position. When the pendulum is approximately at the
upright position, the velocities and angles of both pen-
dulum and the arm are very small. So the kinetic energy
of the system is very small. The energy the system holds
is mostly the potential energy. Note that the potential
energy varies little in the balance state.

• During the process of swinging up, the arm movement
only has kinetic energy variation which is much smaller
compared with the energy of the pendulum. So, the
process can be viewed as the process of pumping energy
into the pendulum.

• When the pendulum is approaching the upright position,
the arm also approaches a standstill state. That is, the
kinetic energy of the arm is pumped into the potential
energy of the pendulum.

• Under the effect of the swing up control, when the
pendulum approaches the upright position, the system
energy is always increasing and arrives its local maxi-
mum in a single period.

• During the swing up process, the system energy goes
to local minimal when it falls to the down position.
This is due to the friction and reaction to the motor.
Figure 4 shows a typical swing up process from one of
our experiments.

• When the pendulum is disturbed from the upright posi-
tion and goes beyond the control domain of the balance
control, it will fall down. Then, the system energy is
decreasing because of the electromagnetism effect and
friction, as can be seen in Fig. 9.

From the above observations, it is clear that there is a
correspondence between the energy level and the orbits for
Hamiltonian systems [24]. It can be clearly concluded that
the energy should be the right criterion for the mode switch-
ing control. Moreover, this energy-based mode switching
control is simple to implement and can achieve a much better
robust performance.

First, we can calculateEup, the energy of the system when
the pendulum is at its strictly up position. Then in the overall
control process, the energyE (kinetic and potential) of the
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Fig. 4. Energy variation in a typical swing up process

system is computed and compared withEc = Eup−ε, where
ε is a small positive value. WhenE is larger thanEc, the
control law switches to the balance control. WhenE is lower
than Ec, the control law switches to the swing up control.
To avoid the switch bouncing (oscillation), the value ofε
is, although important, easy to obtain during the experiments
by trial-and-error method. Our experiments proved that this
simple mode control helps achieve good global stabilization.

VI. EXPERIMENTS

A. Hardware platform

The hardware platform of the Furuta system consists of
a rotary servo motor system which drives an independent
output gear. The rotary pendulum arm is mounted to the
output gear. At the end of the pendulum arm is a hinge. The
pendulum attaches to the hinge. Since we need to measure
the states of the system, i.e., the angles and the velocitiesof
the arm and the pendulum, two quadrature encodes are used
with one for the arm and the other for the pendulum. See
Fig. 1(b) for a photo of the system setup.

B. Balancing control and mode switching control

For balancing control, with the linearized model of the
system, the following parameters are used

Q = diag([.25, 4, 0, 1])

R = 0.05

for the LQR controller design. For the mode switching
control, the potential energy for the system at the upright
position is computed asEup = 0.295 (J). ε is set to be

ε = 0.01Eup = 0.0295(J).

C. PID controller for swing up

As stated in Sec. II, we first use the PID controller to
perform the swing up control. The control law is shown in
(3) and (4). For (3),P can be calculated theoretically to be
0.5 andD is set to0.001 (sec.) at the first trial.
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Fig. 5. Swing up process for the PID controller alone

To set the parameters in the control law (4), substituting
(5), (6) and (7) into (4) gives the system characteristic
polynomial as follows:

f(s) = s2 + (14.5897 + 27.174Kd)s + 27.174Kp, (10)

In (7), the damping ratio is set asζ = 0.707 and the
natural frequencyω0 of the inner loop control is set to
be 6ωp. ωp = 6.46 (rad./sec.) is the natural frequency
of the pendulum for small oscillations. Finally, the initial
parameters in (4) are given byKp = 1.045V/◦ and Kd =
−0.0273(V/◦/sec.). Using the Matlab/Simulink RTW (Real-
Time Workshop) platform, the PID controller mentioned
above can be implemented on our experiment setup. First, we
want to achieve the minimum time swing up under the PID
controller alone. To make the swing up faster and smoother,
we further tuned the PID parameters. The output of the outer-
loop controller is truncated to within±5◦ to make the swing
up more stable and efficient.P is tuned to be0.7, so that
the energy is pumped into pendulum more quickly. At the
same time, the movement of the pendulum dose not conflict
with our experimental setup. Similarly,Kp = 1(V/◦) and
Kd = −0.02(V/◦/sec.) is proved to be the optimal setting
through experiments.

Figure 5 shows the dynamic process of the system for
swing up. It can be seen that the swing up time is 8.742 sec.
with the PID controller alone.

D. PID controller and impulse-step controller for swing up

To speed up the swing up, the proposed pulse-step control
signal uff is added to the whole swing up process. It is
expected to increase the control effort and pump energy to the
pendulum more quickly. This open-loop feedforward control
is quite simple. Referring to (9), here we useu = −ū. The
pulse-step control gives a constant speed feedforward control
output signal,uff , as shown in Fig. 3. The optimal value
of this control signal,ū, is decided by experiments in an
iterative way. Ifū is too large, the arm may move too much
to one direction and actually reduce the amplitude of the
oscillations of the pendulum.
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Fig. 7. Deadzone sizetz versus the swing up time at̄u = 24 (deg.)

For our experiments, we start with̄u = 15◦ and increase
it incrementally. Figure 6 shows the curve of theū versus
the achieved swing up time.

It can be seen that the optimal swing up time ist = 2.794
sec. atū = 24◦, which is about one third of the swing up
time achieved by the PID controller alone.

To further explore the possibility of reducing the swing
up time, we first observe that there exists some interferences
within the control signal when the velocity of the pendulum
crosses zero. So, it is reasonable to add a deadzone block
after the velocity signal of the pendulum’s . When the output
of the deadzone block is zero, no pulse control is activated.
The arrange of the deadzonetz is tuned in our experiments.
Figure 7 showstz versus the swing up time at̄u = 24◦.
Clearly, there is an optimal choice oftz which is found to
be tz = 0.13 sec.

To summarize, for the control strategy stated above, with
P = 0.7, D = 0.001 (sec.), Kp = 1(V/◦), Kd =
−0.02(V/◦/sec), ū = 24◦ and tz = 0.13 sec., the achieved
minimal swing up time is thatt = 2.716 sec. The dynamics
of the swing up process is shown in Fig. 8.

Figure 9 shows the effectiveness of the energy-based mode
switching control. The pendulum swings up to the balance
position first and then a disturbance was applied to deviate
the pendulum from the balancing position. In this case, the
energy of the system is decreased. Therefore, the control
mode is changed to the swing up control mode by which the
energy of the system is increased again. Finally, the mode is
switched back to the balance control mode again.
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Fig. 8. Swing up using the PID feedback controller and the impulse
feedforward controller
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VII. C ONCLUSIONS

In this paper, a PID positive feedback controller and
a feedforward impulse-step controller have been success-
fully applied to experimentally investigate the minimum-
time swing up problem of a rotary inverted pendulum. The
swing up time has been reduced approximately from being
longer than 8 sec. to being less than 3 sec. To make the
whole control process globally stable, an energy based mode
switching control was also attempted. The control strategy
experienced in this paper can also be applied to other under-
actuated systems.
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