

An Agent-Based Simulation Laboratory for Economics and Infrastructure Interdependency

David A. Schoenwald, Dianne C. Barton, and Mark A. Ehlen

Computation, Computers, Information, and Mathematics Center

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-0318
daschoe@sandia.gov

Abstract

Researchers at Sandia National Laboratories have developed a
next-generation agent-based economic 'laboratory' (N-ABLE) for
analyzing the economic factors, feedbacks, and downstream
effects of infrastructure interdependencies. N-ABLE is a
simulation environment in which hundreds of thousands of
individual economic actors simulate real-world manufacturing
firms, government agencies, and households. N-ABLE will be
demonstrated on a laptop supported by both an input and output
graphical user interface that will allow users to change
parameters and simulate a multitude of �shocks� to the economy
including electric power outages and shipping port closures. The
tool has been used by several universities and three national
laboratories for studies involving the economic impact of
infrastructure and supply chain disruptions.

Introduction

The most common tools currently used for economic modeling
are either macroeconomic or computable general equilibrium
(CGE) tools. Both rely on regression analysis of aggregate data to
develop parameters for use in economic forecasting. These
macromodels can provide accurate forecasts, but problems arise
when totally new economic policies are introduced with no past
relevant data that can be used to develop modeling parameters.
Also, modeling of shocks or discontinuities imposes certain
limitations on the analysis. Although microsimulation could offer
more modeling flexibility, it had been hampered by both a lack of
essential microdata and the extensive calculation time required to
micromodel something as large and complex as the US economy.
Advances in massively parallel techniques for solving complex
modeling problems, coupled with new sources of microlevel data,
have now made microsimulation a viable economic analysis tool.

N-ABLE microsimulates the economy using an agent-based
discrete-event model. This modeling approach is well suited for
investigating the behavior of complex, nonlinear stochastic
systems like the economy. Agents start each time increment
making decisions much like their real-life counterparts.
Decisions on actions to take are based either on probabilities
computed from actual microeconomic data or on results of
learning models including genetic algorithms. These decisions
include purchasing products, hiring workers, selling bonds,
collecting welfare payments, conducting open market operations,
and others. Macroeconomic variables, such as gross domestic
product, inflation (CPI), and the unemployment rate are

computed as aggregate results of innumerable decisions by the
individual economic agents.

NABLE can specifically address �what-if� questions such as:
1. What economic sectors are most vulnerable to infrastructure
disruptions and interdependencies?
2. Which sectors have different usages of energy, transportation,
financial, communication sectors?
3. What short-run economic changes affect infrastructure
performance?
4. What firms are most affected? Who does well, poorly?
5. How do firms, individuals, and other economic components
respond, over time and over regions?
6. What economic mechanism do national, state, and local
governments have to assist firms and other economic sectors in
their regions?

This analysis capability provides a rich education
environment for students and researchers alike to study the
impact of various policy decisions as well as learn more about
the dynamics of a complex system such as an economy and
infrastructure networks.

Individually and collectively, we depend on critical
infrastructures in the United States to provide the essential
services that support (among other things) our economic
prosperity, quality of life, and national security [1]. These
infrastructures have recently been categorized into the following
sectors: agriculture, food, water, public health, emergency
services, government, defense industrial base, information and
telecommunications, energy, transportation, banking and finance,
chemical industry and hazardous materials, and postal and
shipping [2]. While historically these infrastructures have been
vulnerable to malevolent acts and to natural disasters, today,
these systems are more threatened by the increasing complexity
inherent in their growing interconnectedness and
interdependence [3].

Increasing interconnectivity is being driven by modern
business trends that rely heavily upon telecommunications for
management and operation. On balance, interconnectivity will
improve our nation�s economic efficiency; however, tight
coupling between infrastructures also results in situations where
a disturbance in a formerly isolated infrastructure unexpectedly
cascades across diverse and seemingly unrelated infrastructures.
In simulations using Sandia National Laboratories� Aspen
Electricity Enhancement model, i.e. Aspen-EE, this effect is
observed when policy decisions lead to power disruptions that

cause second-order impacts on pricing trends [4]. The
interconnection of these infrastructures creates tremendous
interdependency and vulnerability.

Because interdependent infrastructure networks are complex
systems, they do not readily submit to traditional reductionist
analysis where an individual infrastructure would be examined in
isolation from other infrastructure elements. The reductionist
approach ignores that linkages between infrastructure elements
do exist and that such linkages cannot be deduced from isolated
analysis. Complex systems exhibit a rich variety of behaviors,
including many that are counterintuitive. To capture these
effects, we must view complex systems from a holistic rather
than a reductionist point of view.

Agent-Based Approaches for Complex Systems

To analyze interdependent infrastructure systems in a more
holistic way, Sandia and other research institutions have
developed models of critical infrastructure systems using agent-
based approaches. Sandia�s first agent-based model of the U.S.
economy, developed in the mid-1990s, is called Aspen [5]. This
model is a Monte Carlo simulation that uses agents to represent
various decision-making segments in the economy, such as
banks, households, industries, and the Federal Reserve. An agent
is a computational entity that receives information and act on its
environment in an autonomous way; that is, an agent�s behavior
depends at least partially on its own experience. Through the use
of evolutionary learning techniques, Aspen allows one to
examine the interactive behavior of these agents as they make
real-life decisions in an environment where agents communicate
with each other and adapt their behaviors to changing economic
conditions, all the while learning from their past experience. In
2000, Sandia developed a new model of infrastructure
interdependency called Aspen-EE. This model extended the
capabilities of Aspen to include the impact of market structures
and power outages in the electric power system, a critical
infrastructure, on other infrastructures in the economy [4].

One of the limitations of recent agent-based models is that
communication is treated simply as message passing between
agents. Effectively, the telecommunications infrastructure is not
specifically represented. None of the models simulates the
differences in communication over telephone, computer,
wireless, or other networks and therefore cannot model the
impact of specific communication failures on the whole system.
Nor can current models simulate the impact of other
infrastructure failures on telecommunications.

To address the communications deficiencies described
above, Sandia revised and restructured the Aspen-EE model to
include a more realistic representation of the telecommunications
infrastructure. This new model of infrastructure interdependency
is called NABLE. In NABLE, communication is treated as an
integrated agent system capable of creating, transforming,
sending, receiving, and storing information and messages over
time and across distance. With NABLE, we can model
communication networks or medium-specific vulnerabilities to
failures and their dependence on supporting infrastructures like
power.

The Model

In building NABLE, we used the agent-based model Aspen-
EE as the foundation and completely revamped its architecture.
NABLE was written in C++ to run on a single-processor-
machine. A version of NABLE for parallel-processor machines is
underway.

Agent-based models assume that complex behavior emerges
from many individual, relatively simple interactions rather than
from the complexity inherent in any particular agent. Agents have
simple rules of behavior and react to their environment (i.e., the
other agents and any static features) without reference to any
global goals�in other words, the agents are undertaking purely
local transactions. The net results of these local interactions and
decisions are phenomena that emerge on a global level. When
unexpected results emerge from the simulation, it is important to
be confident that we understand the fundamental processes built
into the model. The complexity of agent-based modeling should
be in the results of the model and not in its assumptions.

Representing Infrastructures

There are several ways that we can implement the notion of
infrastructures in NABLE. One method of representing certain
types of infrastructures in NABLE is through the use of spigots
and sinks. Such infrastructures are for commodities that run
continuously, like water from a municipality and electricity from
a local utility. A sink is where a producer puts product into an
infrastructure. For example, a power company may have a natural
gas-fired electric generating plant producing power. It would put
power on the transmission lines by passing the power into the
associated sink. A spigot is where a consumer gets the product,
such as turning on the lights in a residence or getting water from
a faucet.

The actual creation of sinks and spigots is hidden from the
user. An agent that buys power, for example, from a power
market, automatically gets a spigot from which it can draw the
power. An agent that buys water from a bottled water company,
however, gets shipments of bottled water, not a spigot.

Sinks and spigots serve to communicate demand and
availability between a producer and a consumer. Relative to
electric power, for example, the consumer agent is restricted by a
power outage since they will not be able to make purchases
electronically during an outage. Similarly, it is important for the
producer to know that the cumulative pull on the power system at
a given moment is greater than its ability to produce, so that the
NABLE program can know when to �start� the outage.

Another method for representing infrastructures is through
the construction of a network; such as we have done with the
communications network in NABLE. If communications systems
are overwhelmed with the sheer volume of communication, they
could ripple through the system and, in effect, cause an outage.

The Mechanics of NABLE

 Agents in NABLE, like in previous Aspen models, are
decision makers. Each agent behaves the way its counterpart in
the real world would behave, as the simulation traces the agent�s
daily actions, e.g., buying commodities, selling commodities,
paying for commodities by check, credit card, or other electronic
payment means, etc. Agents of the same type draw from the same
decision rules. For example, all firm agents of the same type,
e.g., Firm_B, use the same rule to decide from which agent that
they will purchase commodities. However, the decision from
which agent to actually purchase a commodity may vary from
agent to agent because of its own constraints, such as insufficient
income to purchase the commodity desired at a particular point in
the simulation or because an agent is more concerned about
getting the lowest price and spends more time shopping.

As explained previously, the user builds agent types with a
set of building blocks, or templates, each with its own name. The
number of individual agents of each type created during a
simulation is also specified by the user. For example, a
simulation in which the user creates two types of firms, Firm_A
and Firm_B, might contain 10 individual Firm_A agents and 20
individual Firm_B agents.

A simulation in NABLE is a sequence of events.
Fundamentally, an event is just a point in the sequence where
something �interesting� happens. Therefore, an event is not an
action�an event is more like a piece of paper from a �take-a-
number� paper dispenser that one might find at the Motor
Vehicle Division (MVD). That is, an event gives a priority to an
abstract concept so that it can be sorted and scheduled. To use
the MVD example, your business (which is perhaps a driver�s
license renewal) is an abstract concept that can be sorted and
ordered simply by giving you a piece of paper with a number on
it. The order in which MVD customers are processed is then
given by an ascending sequence (1, 2, 3, �). That is to say, as a
customer, you have been given a numerical priority that is
independent of your business and one that roughly corresponds to
the order in which you arrived at the MVD office (that is, it�s a
�fair� priority for the particular situation). In NABLE the
prioritization scheme is a bit more complicated (i.e., we also
prioritize by your �business�), but the concept is the same. The
simulation is accomplished by processing the events in a correct
sequence.

There are several types of events; all have important roles in
producing the final output of the model. Two kinds of events,
however, do most of the work: task events and message events.
Both event types involve model computations. A task event is
one in which an agent independently begins a new sequence of
actions. A message event is one in which an agent communicates
with another agent, possibly to complete a sequence of actions.
Task events have higher priority than message events.

A task event usually starts off a chain of message
events. For example, an agent can decide to pay all its bills on
the first of the month. So every month, it schedules a task, �Pay
All Bills� to remind itself to pay its bills the next month. Then,
when the time comes the next month to �Pay All Bills,� the agent

sends off a series of messages along the lines of �I am paying my
bill; here is a check for $50.� These messages are scheduled on
the calendar (see below) for the moment when they should arrive,
say, four days in the future for a check sent through the postal
system�and the moment they arrive is triggered by a message
[delivery] event scheduled specially for that purpose.

NABLE uses the concept of a calendar to sequence events
during a simulation. Events are scheduled on the calendar (a
priority queue), with different priorities assigned by NABLE
programmers to different events. Priority is determined by the
event�s time, its type, and any applicable secondary priority. At
the top of the calendar, which changes dynamically, is either the
highest priority event, or one of several events that have
equivalent priority, where that priority is the highest priority
relative to all other priorities of events on the calendar.

Time in Aspen-EE is divided into a minimum time step that
is determined by NABLE users. Thus, one time step can be set to
be equivalent to one minute, and any other unit of time can be
derived from that. For example, if the minimum time step was
one minute, as it is in the current version of NABLE, an hour
would take 60 time steps, a day would take 1,440 time steps, and
a week would take 10,080 time steps. Each time step can have
zero or more events. Since events are prioritized by time, type,
and secondary priority, one can interpret the priority scheme as
�dividing� the time step into stages. For example, all task events
have higher priority than any message event; hence, all task
events will be processed before the first message event.

Commodity Sales and Prices. Agents will sell a certain
amount of products per day. To simulate how the agents, like
firms, set prices for their commodities, NABLE uses a genetic
algorithm learning classifier system (GALCS) in which the
agents determine four trends daily: (a) whether the commodity
price has been recently increasing or decreasing, (b) whether
sales have been recently increasing or decreasing, (c) whether
profits have been recently increasing or decreasing, and (d)
whether prices are higher or lower than the industry average.
Based on answers to (a) through (d), the agent finds itself in one
of 16 states.

The GALCS assigns a probability vector (p D, p I, p C) to
each state,

where p D = probability that the agent will decrease a given
price (by a certain exogenously specified
amount) the next time the agent enters the same
state,

 p I = probability that the agent will increase the price,
and

 p C = probability that the agent will keep the price
constant.

Upon entering a certain state, the agent decides how to change a
given price by using the corresponding probability vector and
choosing a random number. The agent then adjusts the vector
according to how the price change affects profits. The example
below can help to explain this process.

Suppose that at a particular time for state 2, the following
condition exists:
(p D, p I , p C) = (0.1, 0.6, 0.3). Assume that an agent then enters
this state and draws a random number indicating the need for a
price increase. Suppose further that as a result of increasing the
price, profits drop. To reflect this drop, the vector is then
adjusted to (0.15, 0.5, 0.35). Thus, NABLE simulates the agent�s
learning process. The agent learns that raising prices in state 2
was detrimental. As a result of an incorrect decision, the vector is
adjusted to reflect a decreased probability of a price increase.
The changed probability vector reflects the unlikelihood that the
agent will increase prices upon re-entry into state 2.For more
details on GALCSs and GALCS results from other Sandia runs,
see Aspen: A Microsimulation Model of the Economy [5].

Buyers

Any CommAgent with a Buyers block can purchase
commodities from other agents who sell those commodities. A
Buyers block tells the agent how to go about obtaining what it
needs. Essentially, then, buyers are a way to obtain raw materials
for the production.

Structure of the Communications Network for Financial
Transactions

A new communications network has been developed for
NABLE. No previous Aspen model contained this type of
structure. The purpose of the communications network is to
represent more realistically the process by which agents
communicate with each other across electronic media. The
traditional message-delivery system, used in NABLE and in
previous Aspen models, features instantaneous receipt of a
message once that message is sent. With the new network, delays
are built into the process. Importantly, the new communications
network does not supplant the traditional message-delivery
system. Instead, it is used in tandem with that system to currently
handle only financial transactions that are used for the sample
telecommunications and banking problem.

Composition of the Network

The central hub of the communications network is a global
router, a special agent in NABLE. The router is connected to
CommTerminals (communications terminals) that belong to the
individual CommAgents in the simulation, forming what is
known as a star topology (see inset to right).

Agents use their CommTerminals to send messages to other
agents. In the current version of NABLE, each message is sent in
a single packet. A packet sent from one agent to another does not
go directly to the other agent. Instead, the packet is transmitted
through the global router. The router accepts as many packets as
it has room for in its buffer and drops the rest. There is a
prioritization scheme; basically, higher priority messages get
�first dibs� on an empty buffer slot, but do not bump a lower-
priority message from a filled slot. The packets sit in the router�s
buffer for a small randomized amount of time and are ultimately
forwarded to their final destination.

The only characteristic in this entire communications system
that the user can currently affect through the input file is the size
of the buffer in the global router. Other characteristics can be
changed to simulate outages, but this is currently done through
the Router code by NABLE programmers. This capability will be
added to the input file variables in future versions of the model.
The buffer-size input parameter is called BankRouterBUFSIZE,
which is located in the Run Data portion of the input file. With
one router forwarding packets and the user having some measure
of control over the number of packets the router can handle at
one time, we can analyze the router�s behavior in detail to ensure
it is behaving correctly.

Example

To test the new communications network in NABLE, we
have chosen to model interactivity and interdependency between
the telecommunications and banking infrastructures. The
sequence below provides further details for the various steps in
the process. The term router in these steps refers to the global
router.

1. One agent (in this case, Consumer) sends a check to another
agent (here, it is Firm_B). The check writer could have an
account in the same bank as the agent to whom the check is
written or an account in a different bank; hence, the
presence of Bank_A, which in the example could belong to
the consumer. The check must go through the router.

2. After handling the check according to its message-
processing rules, the router sends the check to Firm_B.

3. Firm B sends the check to Bank_B, its own bank. The check
must go through the router.

4. After handling the check according to its message-
processing rules, the router sends the check to Bank_B.

5. Bank_B credits Firm_B�s account. If the consumer has an
account at Bank_B, Bank_B will debit the consumer�s
account.

6. Bank_B sends a clear-check message to itself if the
consumer�s account is at Bank_B. If the consumer�s account
is at Bank_A, Bank_B sends the clear-check message to
Bank_A. The clear-check message must go through the
router.

7. After handling the clear-check message according to its
message-processing rules, the router sends the message
either to Bank_B or Bank_A.

8. If the clear-check message is received by Bank_A, that bank
debits the account of the consumer.

9. At some later point, Bank_B reconciles the account with
Firm_B and with the consumer if it also has an account with
Bank_B. Otherwise, Bank_A will reconcile the consumer�s
account. The reconciliation activities are also done through
messaging, but the messages are not passed through the
router.

 The delays introduced by the router after steps 1 and 3
prevent Firm B from being able to spend the funds. The delay in
the router as a result of step 6 has little effect, but it adds traffic
to the router. By introducing a delay for step 9, the process
prevents both the consumer and Firm_B from knowing whether
any deposited checks (from step 5) have arrived, i.e., effectively
cleared, and that the associated funds are ready to be spent.

The approach taken in the check-clearing process enables
banks to make the funds from all deposited checks (even for very
large amounts) available immediately. This policy decision can
be changed, but it adds more steps to the whole transaction. The
funds-availability policy is really independent of the underlying
network structure.

Results and Analysis

One basic test problem was used in all of the analysis runs.
The problem is a supply chain with Consumer agents driving
demand for goods at the end of the chain. For example, type F
firms require two units of A and two units of C to make 1 unit of
F. There was also one Bank agent in the problem. Various
individual parameters such as production level and router buffer
size were altered for each test run. Simulations using the model
were run with the following individual agents:100 Consumer
agents, 10 Firm_A agents, 10 Firm_B agents, 7 Firm_C agents, 4
Firm_D agents, 3 Firm_E agents, 3 Firm_F agents, and 1 Bank
agent.

Analysis of the Router Buffer Capacity

As a first analysis, we perturbed the size of the finite
communications buffer and evaluated the impact on the
percentage of dropped packets. An analysis was done for a buffer
size of 7, 9, 10 and 12. At a buffer size of 12, there were no
packets dropped during the simulation.

We would expect the number of dropped packets to increase
supralinearly as the buffer size is reduced, and that is observed in
the test-case simulation. We define here the concept of severely
errored time steps (SETs) by analogy to the term severely errored
seconds used by the telecommunications industry. Severely
errored seconds is a measure of the degradation of transmission
lines [6]. Here, a SET is a measure of the degradation of a packet
connection between agents, and is defined as the percentage of
dropped packets in a time step that exceeds a particular
threshold. Figure 1 presents a histogram of SETs for each of the
three buffer sizes, as the threshold in the definition of SETs is
varied. The increase in dropped packets when the buffer size is
reduced from 9 to 7 is significantly greater than twice the
increase in dropped packets when the buffer size is reduced from
10 to 9.

H istogram of non-se verely-errored tim este ps
a gainst threshold c rite rion for severe error

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

1 3 5 7 9

Th resh old : % of p ackets dro pp ed per tim estep

buffe r size 7
buffe r size 9
buffe r size 10

% of tim estep s
th at are n ot
SETs

Figure 1. Histogram of SETs for the three buffer sizes.

For example, for a SET threshold of 10% packet drop,
99.93% of the time steps are not SETs for a buffer size of 7;
whereas, no time steps are SETs for buffer sizes of 9 and 10. For
a SET threshold of 1% packet drop, 5% of the time steps are
SETs under a buffer size of 7, 0.3% of the time steps are SETs
under a buffer size of 9, and 0.1% of the time steps are SETs
under a buffer size of 10. These results suggest that there are
decreasing marginal benefits for increasing the size of the
communications buffer, as would be expected.

Analysis of Router Outage

The router in this scenario is the communications router for
the Bank agent. The router has a variable buffer size that was
varied in a range of 7 to 14 packets. Once the buffer is full, the
router no longer accepts new packets. These packets are dropped
by the router. The agents that sent these packets (e.g.,
households, firms, etc.) may resend at another time or abandon
their transmission.

The purpose of this analysis was to study the impact of an
outage on the percentage of packets dropped by the router
following resumption of communication services. The outage was
tested as both one week and two weeks in duration. Aside from
the length of the outage itself, there was not a significant
difference in router performance following the outage as a
function of the one- or two-week outage. There was more
variation in performance as a function of buffer size. For buffer
sizes greater than or equal to 10, there were no dropped packets
prior to the outage. This was expected since the larger buffer size
is sufficient to accommodate the communications traffic

generated by all the agents used in the NABLE test case. For
buffer sizes of 9 or smaller, there are occasional dropped packets
that increase as the buffer size is lowered to 7. For buffer sizes of
less than 7, there are significant packet losses due to the small
buffer size, which is not sufficient to accommodate the
communications traffic in the test case.

It is postulated here that the communications terminals of
the NABLE agents have stored up messages they wish to send
and have held them in reserve waiting for the router buffer to
clear. Thus even after the router buffer clears, the agents will
continue to send messages that had been dropped during the
outage or post-outage transition.

This behavior of resending messages implies a memory
effect among the agents that exceeds the memory effect of the
router itself. Thus, the continued nonzero packet losses following
the clearing of the router buffer after an outage is explained by
this postulate. There may be means to handle this situation
differently in the future. For instance, the agents could be put on
an organized schedule following an outage. This schedule would
dictate when agents can resubmit their dropped messages as well
as their new messages for some period of time following an
outage. This schedule could be determined by prioritizing the
agents (perhaps certain businesses would have a higher priority
than households, etc.) and also by the size of the router buffer. As
the router buffer size is increased, this post-outage behavior is
improved, but one could argue that traffic will always exceed any
buffer�s ability to handle it following a long enough outage. Still,
one lesson of this analysis is to use as large a buffer size on the
router(s) as is economically feasible. A second lesson is to
employ a more organized post-outage message-resending
behavior perhaps based on a schedule or some optimization
criterion. A third lesson is some kind of fail-safe communications
between the router and the communications terminals, i.e.,
CommTerminals, that make it clear that there is an outage that is
not immediately repairable. This may then trigger the scheduling
protocol proposed above. Clearly, the more sophisticated
schemes the router and communications terminals can employ
when dealing with an outage, the more quickly and smoothly the
network will recover from an extensive outage. Work has been
done to mathematically model these finite buffer queues such as
the one simulated in NABLE. Reference 7 describes a queuing
network model for finite capacity queues such as is realistic in
electronic finance networks.

Acknowledgement

This work was supported in part by the Laboratory Directed
Research and Development (LDRD) program at Sandia National
Laboratories and in part by the National Infrastructure
Simulation and Analysis Center (NISAC), which is funded by the
U.S. Department of Homeland Security. Sandia National
Laboratories is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94AL85000.

References

1. Sandia National Laboratories. U.S. Infrastructure
Assurance Strategic Roadmaps: Strategies for Preserving
Our National Security, SAND98-1496. Albuquerque, NM:
Sandia National Laboratories, 1998.

2. U.S. Department of Homeland Security. The National
Strategy for the Physical Protection of Critical
Infrastructures and Key Assets. February 2003. Available
at
http://www.dhs.gov/interweb/assetlibrary/Physical_Strateg
y.pdf (accessed 13 September 2003).

3. Barton, D. C., and K. L. Stamber. �An Agent-Based
Microsimulation of Critical Infrastructure Systems.� In
Global Energy Exposition 2000 Proceedings, held in Las
Vegas, NV, July 2000. Lancaster, PA: Technomic
Publishing Company, 2000.

4. Barton D. C., E. D. Eidson, D. A. Schoenwald, K. L.
Stamber, and R. K. Reinert. Aspen-EE: An Agent-Based
Model of Infrastructure Interdependency, SAND2000-
2925. Albuquerque, NM: Sandia National Laboratories,
1998.

5. Basu, N., R. J. Pryor, T. Quint, and T. Arnold. Aspen: A
Microsimulation Model of the Economy, SAND96-2459.
Albuquerque, NM: Sandia National Laboratories, October
1996.

6. �RFC INDEX.� Available at http://rfc-
1232.rfcindex.com/rfc-1232-5.htm (accessed 3 October
2003).

7. Balsamo, S., V. De Nitto Personè, and P. Inverardi. �A
Review on Queueing Network Models with Finite Capacity
Queues for Software Architectures Performance
Prediction.� Performance Evaluation 974 (2002): 1�20.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeMI.2
	Page0: 1295
	Page1: 1296
	Page2: 1297
	Page3: 1298
	Page4: 1299
	Page5: 1300

