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Abstract  

Researchers at Sandia National Laboratories have developed a 
next-generation agent-based economic 'laboratory' (N-ABLE) for 
analyzing the economic factors, feedbacks, and downstream 
effects of infrastructure interdependencies.  N-ABLE is a 
simulation environment in which hundreds of thousands of 
individual economic actors simulate real-world manufacturing 
firms, government agencies, and households.  N-ABLE will be 
demonstrated on a laptop supported by both an input and output 
graphical user interface that will allow users to change 
parameters and simulate a multitude of  �shocks� to the economy 
including electric power outages and shipping port closures.  The 
tool has been used by several universities and three national 
laboratories for studies involving the economic impact of 
infrastructure and supply chain disruptions. 
 

Introduction 

The most common tools currently used for economic modeling 
are either macroeconomic or computable general equilibrium 
(CGE) tools. Both rely on regression analysis of aggregate data to 
develop parameters for use in economic forecasting. These 
macromodels can provide accurate forecasts, but problems arise 
when totally new economic policies are introduced with no past 
relevant data that can be used to develop modeling parameters. 
Also, modeling of shocks or discontinuities imposes certain 
limitations on the analysis. Although microsimulation could offer 
more modeling flexibility, it had been hampered by both a lack of 
essential microdata and the extensive calculation time required to 
micromodel something as large and complex as the US economy.  
Advances in massively parallel techniques for solving complex 
modeling problems, coupled with new sources of microlevel data, 
have now made microsimulation a viable economic analysis tool.  
 
N-ABLE microsimulates the economy using an agent-based 
discrete-event model. This modeling approach is well suited for 
investigating the behavior of complex, nonlinear stochastic 
systems like the economy. Agents start each time increment 
making decisions much like their real-life counterparts. 
Decisions on actions to take are based either on probabilities 
computed from actual microeconomic data or on results of 
learning models including genetic algorithms. These decisions 
include purchasing products, hiring workers, selling bonds, 
collecting welfare payments, conducting open market operations, 
and others. Macroeconomic variables, such as gross domestic 
product, inflation (CPI), and the unemployment rate are 

computed as aggregate results of innumerable decisions by the 
individual economic agents. 
 
NABLE can specifically address �what-if� questions such as: 
1. What economic sectors are most vulnerable to infrastructure 
disruptions and interdependencies?  
2. Which sectors have different usages of energy, transportation, 
financial, communication sectors? 
3. What short-run economic changes affect infrastructure 
performance? 
4. What firms are most affected? Who does well, poorly? 
5. How do firms, individuals, and other economic components 
respond, over time and over regions? 
6. What economic mechanism do national, state, and local 
governments have to assist firms and other economic sectors in 
their regions?  
 

This analysis capability provides a rich education 
environment for students and researchers alike to study the 
impact of various policy decisions as well as learn more about 
the dynamics of a complex system such as an economy and 
infrastructure networks. 
 

Individually and collectively, we depend on critical 
infrastructures in the United States to provide the essential 
services that support (among other things) our economic 
prosperity, quality of life, and national security [1]. These 
infrastructures have recently been categorized into the following 
sectors: agriculture, food, water, public health, emergency 
services, government, defense industrial base, information and 
telecommunications, energy, transportation, banking and finance, 
chemical industry and hazardous materials, and postal and 
shipping [2]. While historically these infrastructures have been 
vulnerable to malevolent acts and to natural disasters, today, 
these systems are more threatened by the increasing complexity 
inherent in their growing interconnectedness and 
interdependence [3].   

Increasing interconnectivity is being driven by modern 
business trends that rely heavily upon telecommunications for 
management and operation. On balance, interconnectivity will 
improve our nation�s economic efficiency; however, tight 
coupling between infrastructures also results in situations where 
a disturbance in a formerly isolated infrastructure unexpectedly 
cascades across diverse and seemingly unrelated infrastructures. 
In simulations using Sandia National Laboratories� Aspen 
Electricity Enhancement model, i.e. Aspen-EE, this effect is 
observed when policy decisions lead to power disruptions that 



 
 

 

cause second-order impacts on pricing trends [4]. The 
interconnection of these infrastructures creates tremendous 
interdependency and vulnerability. 

Because interdependent infrastructure networks are complex 
systems, they do not readily submit to traditional reductionist 
analysis where an individual infrastructure would be examined in 
isolation from other infrastructure elements. The reductionist 
approach ignores that linkages between infrastructure elements 
do exist and that such linkages cannot be deduced from isolated 
analysis. Complex systems exhibit a rich variety of behaviors, 
including many that are counterintuitive. To capture these 
effects, we must view complex systems from a holistic rather 
than a reductionist point of view.   

Agent-Based Approaches for Complex Systems 

To analyze interdependent infrastructure systems in a more 
holistic way, Sandia and other research institutions have 
developed models of critical infrastructure systems using agent-
based approaches. Sandia�s first agent-based model of the U.S. 
economy, developed in the mid-1990s, is called Aspen [5]. This 
model is a Monte Carlo simulation that uses agents to represent 
various decision-making segments in the economy, such as 
banks, households, industries, and the Federal Reserve. An agent 
is a computational entity that receives information and act on its 
environment in an autonomous way; that is, an agent�s behavior 
depends at least partially on its own experience. Through the use 
of evolutionary learning techniques, Aspen allows one to 
examine the interactive behavior of these agents as they make 
real-life decisions in an environment where agents communicate 
with each other and adapt their behaviors to changing economic 
conditions, all the while learning from their past experience. In 
2000, Sandia developed a new model of infrastructure 
interdependency called Aspen-EE. This model extended the 
capabilities of Aspen to include the impact of market structures 
and power outages in the electric power system, a critical 
infrastructure, on other infrastructures in the economy [4]. 

One of the limitations of recent agent-based models is that 
communication is treated simply as message passing between 
agents. Effectively, the telecommunications infrastructure is not 
specifically represented. None of the models simulates the 
differences in communication over telephone, computer, 
wireless, or other networks and therefore cannot model the 
impact of specific communication failures on the whole system. 
Nor can current models simulate the impact of other 
infrastructure failures on telecommunications.   

To address the communications deficiencies described 
above, Sandia revised and restructured the Aspen-EE model to 
include a more realistic representation of the telecommunications 
infrastructure. This new model of infrastructure interdependency 
is called NABLE. In NABLE, communication is treated as an 
integrated agent system capable of creating, transforming, 
sending, receiving, and storing information and messages over 
time and across distance. With NABLE, we can model 
communication networks or medium-specific vulnerabilities to 
failures and their dependence on supporting infrastructures like 
power. 

The Model 

In building NABLE, we used the agent-based model Aspen-
EE as the foundation and completely revamped its architecture. 
NABLE was written in C++ to run on a single-processor-
machine. A version of NABLE for parallel-processor machines is 
underway. 

Agent-based models assume that complex behavior emerges 
from many individual, relatively simple interactions rather than 
from the complexity inherent in any particular agent. Agents have 
simple rules of behavior and react to their environment (i.e., the 
other agents and any static features) without reference to any 
global goals�in other words, the agents are undertaking purely 
local transactions. The net results of these local interactions and 
decisions are phenomena that emerge on a global level. When 
unexpected results emerge from the simulation, it is important to 
be confident that we understand the fundamental processes built 
into the model. The complexity of agent-based modeling should 
be in the results of the model and not in its assumptions. 

Representing Infrastructures 

There are several ways that we can implement the notion of 
infrastructures in NABLE. One method of representing certain 
types of infrastructures in NABLE is through the use of spigots 
and sinks. Such infrastructures are for commodities that run 
continuously, like water from a municipality and electricity from 
a local utility. A sink is where a producer puts product into an 
infrastructure. For example, a power company may have a natural 
gas-fired electric generating plant producing power. It would put 
power on the transmission lines by passing the power into the 
associated sink. A spigot is where a consumer gets the product, 
such as turning on the lights in a residence or getting water from 
a faucet. 

The actual creation of sinks and spigots is hidden from the 
user. An agent that buys power, for example, from a power 
market, automatically gets a spigot from which it can draw the 
power. An agent that buys water from a bottled water company, 
however, gets shipments of bottled water, not a spigot.  

Sinks and spigots serve to communicate demand and 
availability between a producer and a consumer. Relative to 
electric power, for example, the consumer agent is restricted by a 
power outage since they will not be able to make purchases 
electronically during an outage. Similarly, it is important for the 
producer to know that the cumulative pull on the power system at 
a given moment is greater than its ability to produce, so that the 
NABLE program can know when to �start� the outage. 

Another method for representing infrastructures is through 
the construction of a network; such as we have done with the 
communications network in NABLE. If communications systems 
are overwhelmed with the sheer volume of communication, they 
could ripple through the system and, in effect, cause an outage.  



 
 

 

The Mechanics of NABLE 

 Agents in NABLE, like in previous Aspen models, are 
decision makers. Each agent behaves the way its counterpart in 
the real world would behave, as the simulation traces the agent�s 
daily actions, e.g., buying commodities, selling commodities, 
paying for commodities by check, credit card, or other electronic 
payment means, etc. Agents of the same type draw from the same 
decision rules. For example, all firm agents of the same type, 
e.g., Firm_B, use the same rule to decide from which agent that 
they will purchase commodities. However, the decision from 
which agent to actually purchase a commodity may vary from 
agent to agent because of its own constraints, such as insufficient 
income to purchase the commodity desired at a particular point in 
the simulation or because an agent is more concerned about 
getting the lowest price and spends more time shopping. 

As explained previously, the user builds agent types with a 
set of building blocks, or templates, each with its own name. The 
number of individual agents of each type created during a 
simulation is also specified by the user. For example, a 
simulation in which the user creates two types of firms, Firm_A 
and Firm_B, might contain 10 individual Firm_A agents and 20 
individual Firm_B agents. 

A simulation in NABLE is a sequence of events. 
Fundamentally, an event is just a point in the sequence where 
something �interesting� happens. Therefore, an event is not an 
action�an event is more like a piece of paper from a �take-a-
number� paper dispenser that one might find at the Motor 
Vehicle Division (MVD). That is, an event gives a priority to an 
abstract concept so that it can be sorted and scheduled. To use 
the MVD example, your business (which is perhaps a driver�s 
license renewal) is an abstract concept that can be sorted and 
ordered simply by giving you a piece of paper with a number on 
it. The order in which MVD customers are processed is then 
given by an ascending sequence (1, 2, 3, �). That is to say, as a 
customer, you have been given a numerical priority that is 
independent of your business and one that roughly corresponds to 
the order in which you arrived at the MVD office (that is, it�s a 
�fair� priority for the particular situation). In NABLE the 
prioritization scheme is a bit more complicated (i.e., we also 
prioritize by your �business�), but the concept is the same. The 
simulation is accomplished by processing the events in a correct 
sequence.  

There are several types of events; all have important roles in 
producing the final output of the model. Two kinds of events, 
however, do most of the work: task events and message events. 
Both event types involve model computations. A task event is 
one in which an agent independently begins a new sequence of 
actions. A message event is one in which an agent communicates 
with another agent, possibly to complete a sequence of actions. 
Task events have higher priority than message events. 

A task event usually starts off a chain of message 
events. For example, an agent can decide to pay all its bills on 
the first of the month. So every month, it schedules a task, �Pay 
All Bills� to remind itself to pay its bills the next month. Then, 
when the time comes the next month to �Pay All Bills,� the agent 

sends off a series of messages along the lines of �I am paying my 
bill; here is a check for $50.� These messages are scheduled on 
the calendar (see below) for the moment when they should arrive, 
say, four days in the future for a check sent through the postal 
system�and the moment they arrive is triggered by a message 
[delivery] event scheduled specially for that purpose.  

NABLE uses the concept of a calendar to sequence events 
during a simulation. Events are scheduled on the calendar (a 
priority queue), with different priorities assigned by NABLE 
programmers to different events. Priority is determined by the 
event�s time, its type, and any applicable secondary priority. At 
the top of the calendar, which changes dynamically, is either the 
highest priority event, or one of several events that have 
equivalent priority, where that priority is the highest priority 
relative to all other priorities of events on the calendar. 

Time in Aspen-EE is divided into a minimum time step that 
is determined by NABLE users. Thus, one time step can be set to 
be equivalent to one minute, and any other unit of time can be 
derived from that. For example, if the minimum time step was 
one minute, as it is in the current version of NABLE, an hour 
would take 60 time steps, a day would take 1,440 time steps, and 
a week would take 10,080 time steps. Each time step can have 
zero or more events. Since events are prioritized by time, type, 
and secondary priority, one can interpret the priority scheme as 
�dividing� the time step into stages. For example, all task events 
have higher priority than any message event; hence, all task 
events will be processed before the first message event.  

Commodity Sales and Prices. Agents will sell a certain 
amount of products per day. To simulate how the agents, like 
firms, set prices for their commodities, NABLE uses a genetic 
algorithm learning classifier system (GALCS) in which the 
agents determine four trends daily: (a) whether the commodity 
price has been recently increasing or decreasing, (b) whether 
sales have been recently increasing or decreasing, (c) whether 
profits have been recently increasing or decreasing, and (d) 
whether prices are higher or lower than the industry average. 
Based on answers to (a) through (d), the agent finds itself in one 
of 16 states. 

The GALCS assigns a probability vector (p D, p I, p C) to 
each state, 

where p D = probability that the agent will decrease a given 
price (by a certain exogenously specified 
amount) the next time the agent enters the same 
state, 

 p I  = probability that the agent will increase the price, 
and 

 p C = probability that the agent will keep the price 
constant. 

Upon entering a certain state, the agent decides how to change a 
given price by using the corresponding probability vector and 
choosing a random number. The agent then adjusts the vector 
according to how the price change affects profits. The example 
below can help to explain this process. 
 



 
 

 

Suppose that at a particular time for state 2, the following 
condition exists:  
(p D, p I , p C ) = (0.1, 0.6, 0.3). Assume that an agent then enters 
this state and draws a random number indicating the need for a 
price increase. Suppose further that as a result of increasing the 
price, profits drop. To reflect this drop, the vector is then 
adjusted to (0.15, 0.5, 0.35). Thus, NABLE simulates the agent�s 
learning process. The agent learns that raising prices in state 2 
was detrimental. As a result of an incorrect decision, the vector is 
adjusted to reflect a decreased probability of a price increase. 
The changed probability vector reflects the unlikelihood that the 
agent will increase prices upon re-entry into state 2.For more 
details on GALCSs and GALCS results from other Sandia runs, 
see Aspen: A Microsimulation Model of the Economy [5].   

Buyers 

Any CommAgent with a Buyers block can purchase 
commodities from other agents who sell those commodities. A 
Buyers block tells the agent how to go about obtaining what it 
needs. Essentially, then, buyers are a way to obtain raw materials 
for the production.  

Structure of the Communications Network for Financial 
Transactions 

A new communications network has been developed for 
NABLE. No previous Aspen model contained this type of 
structure. The purpose of the communications network is to 
represent more realistically the process by which agents 
communicate with each other across electronic media. The 
traditional message-delivery system, used in NABLE and in 
previous Aspen models, features instantaneous receipt of a 
message once that message is sent. With the new network, delays 
are built into the process. Importantly, the new communications 
network does not supplant the traditional message-delivery 
system. Instead, it is used in tandem with that system to currently 
handle only financial transactions that are used for the sample 
telecommunications and banking problem. 

Composition of the Network 

The central hub of the communications network is a global 
router, a special agent in NABLE. The router is connected to 
CommTerminals (communications terminals) that belong to the 
individual CommAgents in the simulation, forming what is 
known as a star topology (see inset to right).  

Agents use their CommTerminals to send messages to other 
agents. In the current version of NABLE, each message is sent in 
a single packet. A packet sent from one agent to another does not 
go directly to the other agent. Instead, the packet is transmitted 
through the global router. The router accepts as many packets as 
it has room for in its buffer and drops the rest. There is a 
prioritization scheme; basically, higher priority messages get 
�first dibs� on an empty buffer slot, but do not bump a lower-
priority message from a filled slot. The packets sit in the router�s 
buffer for a small randomized amount of time and are ultimately 
forwarded to their final destination. 

The only characteristic in this entire communications system 
that the user can currently affect through the input file is the size 
of the buffer in the global router. Other characteristics can be 
changed to simulate outages, but this is currently done through 
the Router code by NABLE programmers. This capability will be 
added to the input file variables in future versions of the model. 
The buffer-size input parameter is called BankRouterBUFSIZE, 
which is located in the Run Data portion of the input file. With 
one router forwarding packets and the user having some measure 
of control over the number of packets the router can handle at 
one time, we can analyze the router�s behavior in detail to ensure 
it is behaving correctly. 

Example 

To test the new communications network in NABLE, we 
have chosen to model interactivity and interdependency between 
the telecommunications and banking infrastructures. The 
sequence below provides further details for the various steps in 
the process. The term router in these steps refers to the global 
router. 

1. One agent (in this case, Consumer) sends a check to another 
agent (here, it is Firm_B). The check writer could have an 
account in the same bank as the agent to whom the check is 
written or an account in a different bank; hence, the 
presence of Bank_A, which in the example could belong to 
the consumer. The check must go through the router. 

2. After handling the check according to its message-
processing rules, the router sends the check to Firm_B.  

3. Firm B sends the check to Bank_B, its own bank. The check 
must go through the router. 

4. After handling the check according to its message-
processing rules, the router sends the check to Bank_B.  

5. Bank_B credits Firm_B�s account. If the consumer has an 
account at Bank_B, Bank_B will debit the consumer�s 
account. 

6. Bank_B sends a clear-check message to itself if the 
consumer�s account is at Bank_B. If the consumer�s account 
is at Bank_A, Bank_B sends the clear-check message to 
Bank_A. The clear-check message must go through the 
router.  

7. After handling the clear-check message according to its 
message-processing rules, the router sends the message 
either to Bank_B or Bank_A.  

8. If the clear-check message is received by Bank_A, that bank 
debits the account of the consumer. 

9. At some later point, Bank_B reconciles the account with 
Firm_B and with the consumer if it also has an account with 
Bank_B. Otherwise, Bank_A will reconcile the consumer�s 
account. The reconciliation activities are also done through 
messaging, but the messages are not passed through the 
router. 



 
 

 

       The delays introduced by the router after steps 1 and 3 
prevent Firm B from being able to spend the funds. The delay in 
the router as a result of step 6 has little effect, but it adds traffic 
to the router. By introducing a delay for step 9, the process 
prevents both the consumer and Firm_B from knowing whether 
any deposited checks (from step 5) have arrived, i.e., effectively 
cleared, and that the associated funds are ready to be spent.  

The approach taken in the check-clearing process enables 
banks to make the funds from all deposited checks (even for very 
large amounts) available immediately. This policy decision can 
be changed, but it adds more steps to the whole transaction. The 
funds-availability policy is really independent of the underlying 
network structure. 

Results and Analysis 

One basic test problem was used in all of the analysis runs. 
The problem is a supply chain with Consumer agents driving 
demand for goods at the end of the chain.  For example, type F 
firms require two units of A and two units of C to make 1 unit of 
F. There was also one Bank agent in the problem. Various 
individual parameters such as production level and router buffer 
size were altered for each test run.  Simulations using the model 
were run with the following individual agents:100 Consumer 
agents, 10 Firm_A agents, 10 Firm_B agents, 7 Firm_C agents, 4 
Firm_D agents, 3 Firm_E agents, 3 Firm_F agents,  and 1 Bank 
agent.  

Analysis of the Router Buffer Capacity  

As a first analysis, we perturbed the size of the finite 
communications buffer and evaluated the impact on the 
percentage of dropped packets. An analysis was done for a buffer 
size of 7, 9, 10 and 12. At a buffer size of 12, there were no 
packets dropped during the simulation. 

We would expect the number of dropped packets to increase 
supralinearly as the buffer size is reduced, and that is observed in 
the test-case simulation. We define here the concept of severely 
errored time steps (SETs) by analogy to the term severely errored 
seconds used by the telecommunications industry. Severely 
errored seconds is a measure of the degradation of transmission 
lines [6]. Here, a SET is a measure of the degradation of a packet 
connection between agents, and is defined as the percentage of 
dropped packets in a time step that exceeds a particular 
threshold. Figure 1 presents a histogram of SETs for each of the 
three buffer sizes, as the threshold in the definition of SETs is 
varied. The increase in dropped packets when the buffer size is 
reduced from 9 to 7 is significantly greater than twice the 
increase in dropped packets when the buffer size is reduced from 
10 to 9.   
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Figure 1. Histogram of SETs for the three buffer sizes. 

For example, for a SET threshold of 10% packet drop, 
99.93% of the time steps are not SETs for a buffer size of 7; 
whereas, no time steps are SETs for buffer sizes of 9 and 10. For 
a SET threshold of 1% packet drop, 5% of the time steps are 
SETs under a buffer size of 7, 0.3% of the time steps are SETs 
under a buffer size of 9, and 0.1% of the time steps are SETs 
under a buffer size of 10. These results suggest that there are 
decreasing marginal benefits for increasing the size of the 
communications buffer, as would be expected. 

Analysis of Router Outage 

The router in this scenario is the communications router for 
the Bank agent. The router has a variable buffer size that was 
varied in a range of 7 to 14 packets. Once the buffer is full, the 
router no longer accepts new packets. These packets are dropped 
by the router. The agents that sent these packets (e.g., 
households, firms, etc.) may resend at another time or abandon 
their transmission.  

The purpose of this analysis was to study the impact of an 
outage on the percentage of packets dropped by the router 
following resumption of communication services. The outage was 
tested as both one week and two weeks in duration. Aside from 
the length of the outage itself, there was not a significant 
difference in router performance following the outage as a 
function of the one- or two-week outage. There was more 
variation in performance as a function of buffer size. For buffer 
sizes greater than or equal to 10, there were no dropped packets 
prior to the outage. This was expected since the larger buffer size 
is sufficient to accommodate the communications traffic 



 
 

 

generated by all the agents used in the NABLE test case. For 
buffer sizes of 9 or smaller, there are occasional dropped packets 
that increase as the buffer size is lowered to 7. For buffer sizes of 
less than 7, there are significant packet losses due to the small 
buffer size, which is not sufficient to accommodate the 
communications traffic in the test case. 

It is postulated here that the communications terminals of 
the NABLE agents have stored up messages they wish to send 
and have held them in reserve waiting for the router buffer to 
clear. Thus even after the router buffer clears, the agents will 
continue to send messages that had been dropped during the 
outage or post-outage transition. 

This behavior of resending messages implies a memory 
effect among the agents that exceeds the memory effect of the 
router itself. Thus, the continued nonzero packet losses following 
the clearing of the router buffer after an outage is explained by 
this postulate. There may be means to handle this situation 
differently in the future. For instance, the agents could be put on 
an organized schedule following an outage. This schedule would 
dictate when agents can resubmit their dropped messages as well 
as their new messages for some period of time following an 
outage. This schedule could be determined by prioritizing the 
agents (perhaps certain businesses would have a higher priority 
than households, etc.) and also by the size of the router buffer. As 
the router buffer size is increased, this post-outage behavior is 
improved, but one could argue that traffic will always exceed any 
buffer�s ability to handle it following a long enough outage. Still, 
one lesson of this analysis is to use as large a buffer size on the 
router(s) as is economically feasible. A second lesson is to 
employ a more organized post-outage message-resending 
behavior perhaps based on a schedule or some optimization 
criterion. A third lesson is some kind of fail-safe communications 
between the router and the communications terminals, i.e., 
CommTerminals, that make it clear that there is an outage that is 
not immediately repairable. This may then trigger the scheduling 
protocol proposed above. Clearly, the more sophisticated 
schemes the router and communications terminals can employ 
when dealing with an outage, the more quickly and smoothly the 
network will recover from an extensive outage. Work has been 
done to mathematically model these finite buffer queues such as 
the one simulated in NABLE. Reference 7 describes a queuing 
network model for finite capacity queues such as is realistic in 
electronic finance networks. 
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