
 
 

 

  
Abstract— A robust control algorithm is proposed for 

stabilization and tracking control of underactuated multibody 
mechanical systems governed by nonlinear equations of 
motion. Sliding, or variable structure, control is a simple but 
robust nonlinear control approach that is capable of handling 
both disturbances and parameter uncertainties. We formulate 
the sliding control approach for general underactuated 
multibody systems, and define first order sliding surfaces, one 
per actuated degrees of freedom, as a linear combination of 
the tracking position and velocity errors of both actuated and 
unactuated coordinates. The controllers are then determined 
based on a Lyapunov function construction. The Lyapunov 
stability analysis, along with the bounds defined for 
parameter uncertainties and disturbances, guarantee that all 
system trajectories reach and remain on the sliding surfaces. 
The sliding surfaces are proved to be asymptotically or 
marginally stable, depending on the presence or absence of 
potential energy terms in the equations of motion. A 3-
dimentional multibody model of a complex satellite system is 
presented and its equations of motion are derived. The 
proposed sliding control approach is developed for the 
satellite system and applied to maneuver the satellite using its 
appendages when it has lost all three rotational degrees of 
freedom. 

I. INTRODUCTION 
Underactuated mechanical systems are those that have 

fewer actuators than total degrees-of-freedom (DOF). 
There are several types of underactuated systems, including 
multi-rigid body systems such as robots and satellite 
systems [1 – 5], deformable multibody systems such 
flexible link robots and surface vessels, systems actuator 
with coupled actuator and rigid body dynamics, and 
underactuated spacecrafts with or without shape change 
actuators [6 – 15]. Research in control of underactuated 
systems has surged in the past decade. Several 
classifications have been presented and stability and 
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controllability issues have been discussed [16 – 17]. Some 
of the control approaches include feedback linearization [9 
– 10, 18 – 19], controlled Lagrangians and matching 
conditions [20 – 21], sliding mode control [3, 7, 22], and 
backstepping approaches [23]. 

In this paper we apply the sliding control approach [24] 
to underactuated nonlinear multibody systems. First, we 
introduce simple formulation of the sliding control 
approach to underactuated mechanical systems by defining 
the sliding surfaces as a linear combination of the actuated 
and unactuated position and velocity tracking errors. 
Lyapunov theory is used to derive a control law, which 
guarantees all system trajectories will reach and stay on the 
sliding surfaces. The sliding surfaces are shown to be 
asymptotically stable when potential energy is present but 
only marginally stable in its absence.  A multibody model 
of the complex satellite system is presented and its 
equations of motion are derived. The proposed sliding 
control algorithm is applied to the satellite system to 
reorient the it using its appendages such as antenna, rods, 
and solar arrays, assuming it has lost all three rotational 
DOF.  

II. SLIDING CONTROL FOR UNDERACTUATED SYSTEMS 
The goal of sliding control approach is to define an 

asymptotically stable surface such all system trajectories 
converge to this surface and slide along it until they reach 
their desired destination [24]. 

A. Sliding Control Formulation for Underactuated 
Multibody Systems 
Consider a multibody mechanical system with n DOF 

represented by the generalized coordinate vector q. The 
equations of motion of the system may be written as 

duqqfqq ++= ),( &&&)M( , (1) 
where M is the nn ×  mass matrix, u is the control vector, 
d is the disturbance vector, and f is the vector of Coriolis 
and centrifugal forces as well as conservative and non-
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conservative forces. If the system in Eq. (1) is 
underactuated, then the control vector has a size m < n, and 
the equations of motion may be partitioned into m actuated 
and r = n – m unactuated equations as 
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where Maa ( mm × ),  Muu ( rr × ), and Mau ( rm × ) are 
the mass sub-matrices corresponding to the actuated, 
unactuated, and coupling terms, respectively. Similarly, the 

vectors in Eq. (1) are partitioned as [ ]TT
u

T
a qqq &&&&&& = , 
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a ddd = . Equation (2) may 

be solved for the accelerations, yielding 
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B. Surface Definition for Underactuated Multibody 
Systems 
The sliding surfaces are defined as a weighted 

combination of position tracking error, dqqq −=~ , and 

velocity tracking error, dqqq &&& −=~  [24], where the 
superscript “d” denotes the desired values. The m surfaces 
for the underactuated case are defined by appending the 
weighted position and velocity errors of the unactuated 
coordinates to the actuated ones, 

uuuuaaaa qqqqs ~~~~ λαλα +++= && , (4) 

where aα , mm
a

×ℜ∈λ  are diagonal, positive-definite 

matrices and uα , rm
u

×ℜ∈λ .  The time derivative of the 
surface is defined as, using Eq. (3), 
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Assuming that our model of sM  is exact (i.e. 

ss MM ˆ= ) and 1ˆ −
sM  exists, then the control vector 

can be calculated by setting 0=s& , yielding 

[ ])/( ˆˆˆ 1 εsksdfu satM rsss +++−= − & , (6) 

where [ ]Tmmm /εssatk/εssatksat )( )( )/( 111 K=εsk  
and the saturation function “sat” is a continuous 
approximation of the sign function.  The reaching condition 

can be derived by defining 2
2
1 s  as the Lyapunov function 

such that 0 ,
2
1 2 >ηη−≤= ssss

dt
d

& . Hence, vector k 

is selected such that the reaching conditions are satisfied 
for all surfaces: 

ssssssss DddFffηDFk ≤−≤−++= ˆ ,ˆ,  (7) 

C. Stability Conditions 
In the case of fully actuated systems (with full state 

feedback), it has been well established that sliding control 
method can guarantee the system response reaching the 
sliding surface and that the surface is asymptotically stable. 
Such claims cannot be made, however, for underactuated 
systems.  The controller of Eq. (6) does guarantee that all 
system trajectories will reach the surface by selecting 

aα and uα  such that 1ˆ −
sM exists and proper selection of 

the estimation error functions in Eq. (7). However, there is 
no guarantee that, once on the surface, the trajectory will 
lead to the desired origin. Stability of the surface can be 
established if the combination of the m surface linear 
equations and the r unactuated acceleration equations of 
Eq. (3) are proved to be stable. Thus, let’s consider the case 
where the trajectory has reached the surface, 0=s . 
Assume that there are no disturbances or parameter 
uncertainties and substitute for u in Eq. (3). The linear 
surface equations and the unactuated part of Eq. (3) form a 
complete set of n equations:  
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If we linearize Eq. (8a) equations about the equilibrium 
point )0,( eq , the local stability criteria reduce to 
conditions under which the linearized state matrix in Eq. 
(8a) is Hurwitz. These conditions general lead to selection 
of the surface parameters ,, aa λα  uu λα  and , . 

For nonlinear multibody mechanical systems, the sources 
of nonlinearity are normally velocity squared terms and 
geometric. Hence, linearization leads to the conclusion that 
if there is potential energy present, then the system will be 
locally asymptotically stable near the equilibrium point. As 
an example, consider the inverted pendulum on a cart 
problem. The system has two DOF but only one controller 
(the force applied to move the cart). The goal is to stabilize 
the pendulum arm to, or make it track an oscillatory motion 
about its unstable equilibrium point (vertically upward arm) 
while stabilizing the cart at some desired location. The only 
conditions of stability for this problem are that 1) the initial 
position of the arm must be above the horizontal and 2) the 
rate of exponential convergence of the arm angle, while on 
the surface, must be faster than the cart position. 

In the absence of potential energy, the system is only 
marginally stable since there are 2r poles of the linearized 
system exactly equal to zero independent of our choice of 
surface parameters. In such cases, multiple surfaces must 
be constructed to bring all the states to their desired 
equilibrium point. In other words, we can only position m 
DOF at a time, so we need to construct additional surfaces 
by changing the surface parameters and position the 
remaining states at a later stage. Such discontinuous sliding 
mode control approach has been proposed for the 
nonholonomic integrator [25]. 

III. BOEING 702 SATELLITE SYSTEM 
Consider the Boeing 702 Satellite system, shown in Fig. 

1. The objective is attitude control of the main vehicle 
through its appendages when the vehicle has lost one or all 
three of its reaction wheels.  

A multibody model of the satellite consists of a main 
vehicle (length l0, width w0) and its appendages consisting 
of two solar arrays (length ls, mass ms), two dish antennas 
(radius lr, mass md) and four rods (length lr, mass mr), as 
shown in Fig. 2.  
There are a total of 14 DOF, 6 for the main vehicle (body 
0) and 8 articulated DOF for the 8 appendages (bodies 1 – 
8). The articulated generalized coordinates are collected 

into a vector as T][ 821 φφφ= Kφ .  The vehicle 
motion is represented by 3 linear motion variables 

Tzyx ][=r  which are actuated by thrusters and 3 

Euler angles T
zyx ][ θθθ=θ . 

A. Equations of Motion 
The Lagrangian of our satellite model can be written as: 
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where m0 and J0 are the mass and inertia matrix of the main 
vehicle, and mi and Ji are the masses and inertia matrix of 
the appendage body i. Assuming there are control inputs 
(actuators) for the 8 articulated coordinates, ui, and the 3 
translational coordinates of the main vehicle, ur, the 
Lagrangian equations of motion are derived and written in 
matrix form as 

 
Fig. 2: The Boeing 702 Satellite system courtesy of Space Technology 
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Fig. 1: Top view of the Boeing 702 Satellite system multibody model 
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where 
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The elements of the mass matrix and the Coriolis and 
centrifugal force vector will be furnished by the 
corresponding author upon request. 

B. Surface Definition 
This system has 14 DOF (n = 14) and 11 controllers (m = 

11, r = 3). The mass matrix M and force vector f partitions 
according to Eq. (10) are defined as 
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Since we are only concerned with attitude control, we will 
define 3 independent surfaces to maintain current position 
of the satellite in our control algorithm. In other words, we 
define exponentially stable surfaces for vehicle 
translational motion as: 

 ~~ rr rrr λ+α= &s  (11) 

The main vehicle rotation is coupled to the appendage 
rotations through the equations of motion and by defining 
the remaining 8 surfaces according to Eq. (4) as: 

θθs θθ
~~~~ λ+α+λ+α= && φφ φφ  (12) 

If we set up the 11 surface equations (Eqs. 11 and 12) 
and the 3 unactuated equations of motion (Eq. 10) 
corresponding to θ  according to Eq. (8), and linearize 
about any equilibrium point, the resulting linear system will 
have 2r poles equal to zero and is only marginally stable. 
Therefore, we have to let some of the appendages stabilize 
at points other than our desired equilibrium to stabilizeθ  at 
values the desired point.  This problem can be overcome by 
changing φ  at a later time. This could change θ  again to 
an undesired value. We can, however, take advantage of 
system’s physical properties and achieve the desired 
equilibrium for both θ  and φ  through a repetitive process. 
Details of such a procedure are not in the scope of this 
report and should be the subject of further research. 

C. Simulations 

The relevant geometric data are: , m 8.100 == wl   

m. 9.0  , m 9 == rs ll We have assumed the main 
vehicle to be a hollow cube with thickness .15m and 
density of 2700 kg/m3. The solar arrays are assumed to be 
rectangular with width 9m, thickness: .0375m and density 
of 247 kg/m3. The rods are have a radius .075m and density 
1819 kg/m3. The antenna dishes have a disk shape with 
radius lr , thickness .05 m, and density 1819 kg/m3.  

The control parameters were selected based on the 
stability criteria discussed earlier; i.e. precision attitude 
control while stabilizing the appendages at some 
equilibrium point. The control (and surface) parameters, 
which are not yet optimized, are .01 .2, == ηε , 

2  ,1 == rr λα , θθ α=λ=λ=α 2,0 ,001. φφ , and 
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The desired position for the main vehicle in all cases is the 
origin. There are no desired positions for the articulated 
coordinates except the fact that they must reach 
equilibrium. 

We have tried three individual cases where, in each case, 
a single main vehicle rotation is desired while keeping the 
other two rotation angles constant.  The desired roll motion 
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Fig. 3: Main vehicle roll angles for different desired 
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Fig. 4: Articulated angle time histories for different desired 
roll angles  
 
Figures 3 shows the time history of the main vehicle 
rotations for different desired roll angles. Figure 4 shows 
the time history of the 3 of the articulated angles during the 
roll motion. 

Clearly, the controller is able rotate and stabilize the 
main vehicle in 30 seconds without requiring large 
appendage rotations. Figure 5 shows the required control 
torque for three of the appendages, which are reasonable 
and within the output torque range of commonly biaxial 
gimbals. Figure 6 shows four of the appendage trajectories 
reaching and sliding along the surfaces during the 5o roll 
motion. Figures 7 and 8 verify the controller performance 
for 5o pitch and yaw angle rotations, respectively. 

IV. CONCLUSIONS 
A general approach to sliding control of underactuated 
nonlinear multibody mechanical system was presented. The 
approach constructs as many first order surfaces as there 
are  
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Fig. 5: Control torques of articulated angles for different 
desired roll angles 
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Fig. 6: Articulate angles phase plots for 5º roll angle 
 
controllers from the tracking position and velocity errors of 
both actuated and unactuated coordinates. Lyapunov theory 
was used to develop the controller and guarantee all 
trajectories will reach and remain on the surface. 
Asymptotic stability of the surface was not established for 
the general case. However, the surface can be made locally 
asymptotically stable around the equilibrium points through 
proper selection of the surface parameters when potential 
energy is present. The surface can be made only marginally 
locally stable when there is no potential energy. The 
controller was successfully applied for attitude control of a 
complicated satellite system through its appendages. The 
system was only marginally stable which restricted us to 
only stabilize the appendages while controlling the exact 
orientation of the main vehicle.  We are currently 
developing a multi-stage sliding controller to maintain the 
appendage position at desired values while reorienting the 
main vehicle. 
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Fig. 7: Main vehicle Euler angles during pitch motion 

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

θ 
x (

de
g)

0 20 40 60 80 100 120 140 160 180 200
-0.01

0

0.01

θ 
y (

de
g)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

time (sec)

θ 
z (

de
g)

  
Fig. 8: Main vehicle Euler angles during yaw motion 
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