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Abstract 
This paper introduces a straightforward analysis of a 1-bit 
noise-shaping quantizer using variable structure control 
methods. The method using the concept of equivalent 
control to access the bound on state signals when the 
sliding condition is reached. Simulation examples and an 
experimental circuit using off-the-shelf electronic 
components are given to demonstrate the theoretical 
analysis. 
 
1. Introduction 

Signal quantization is an area that is related to many 
engineering applications. Among various quantization 
schemes, sigma-delta modulation is a well-known 
technique to alter the frequency distribution of quantization 
noise via the feedback connection of a quantizer with a 
filter. This technique has various practical uses in data 
conversion [8] and power conversion [9]. The history of 
sigma-delta modulation goes back to at least 1952, when de 
Jager [10] invented the delta modulator for coding analog 
signals using negative feedback. The delta modulator is a 
simple feedback system with a one-bit quantizer in the 
forward path and an integrator in the feedback path. As the 
name implies, the delta modulator generates the binary 
signal, which carries information of the differentiation of 
the input signal. Later, in 1962, Inose, Yasuda and 
Murakami [11] modified the delta modulator by adding an 
integrator as a pre-filter, to obtain a modulator which 
directly carries the information on the input magnitude. 
This modulator was a prototype of the various sigma-delta 
modulators of today. 

Using a 1-bit quantizer in the feedback loop, the 
sigma-delta modulator is essentially a nonlinear dynamic 
system. By far, the most popular method for analyzing a 
sigma-delta modulator is based on the linear system 
method, which models the quantizer as a source of additive 
noise and yields an output noise spectrum determined by 
the magnitude response of the loop sensitivity function 
under the white-noise assumption of the quantization error. 
Accordingly, the sensitivity function is also called the noise 
transfer function for sigma-delta modulators. However, this 
is a misnomer, since the white-noise assumption is 
incorrect [12], and the so-called noise transfer function 
fails to predict accurately the quantization noise spectrum. 

In effect, the linear system method cannot explain many of 
the characteristics of the sigma-delta modulator, especially 
its stability. Various methods have been used to derive the 
stability conditions, including for example, norm analysis 
[13], the describing function method [14][15] and 
geometrical analysis [16][17][18]. However, all of these 
methods have deficiencies or limitations, and so can only 
achieve limited success. Unlike other analysis methods, the 
theory of sliding modes [6][19], which is a control 
technique that uses a switching scheme to stabilize a 
system or to track a signal, seems not to have attracted 
much attention for its potential in developing a rigorous 
theory of sigma-delta modulators. The theory of sliding 
modes was first applied to analyze the stability of the delta 
and sigma-delta modulator by Sira-Ramirez [20], who 
mainly considered the first-order case. Zourntos and Johns 
[21] proposed variable-structure sigma-delta modulators 
based on the variable structure control with sliding mode; 
they achieved stability by adapting the loop filter. 
Alternatively, the sigma delta modulator is essentially a 
relay feedback system (RFS) with a fast relay switch [4]. 
Advanced theories and analysis for RFS were investigated 
in recent years for stability and limit cycle behavior 
[1][4][5]. 

The research works on variable structure control and 
RFS provide a good amount of materials to understand the 
delta-sigma modulator. However, for practice engineers, a 
clear design guideline derived from the theory is needed, 
especially for high-order loop filters. Unfortunately, little 
works were done (based on variable structure or RFS) to 
emphasize this need [22][23]. The intention of this work is 
to introduce a straightforward analysis of 1-bit 
noise-shaping quantizer based on the well-known variable 
structure feedback control framework. It is shown that if 
the loop filter is also stable, global contraction of the state 
trajectory can be ensured. When the loop filter contains 
unstable poles (e.g., on the imaginary axis), a state 
constraint is proposed to allow the state trajectory reach the 
sliding surface. In practice, all the states have saturation 
limits (i.e., bounded by supply voltage). Although the 
sliding condition can still be maintained when some states 
are saturated, the noise-shaping quantization property is 
destroyed due to non-linearity. This work also presents an 
estimation of the state magnitude in practical 
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implementation using a zeroth order holder. Two examples 
are given to illustrate the design methods. 
 
2. Quantization and Noise Shaping 
A general quantization problem can be formulated as, 
 )()()()()( sEsHsRsHsY nrs += , 
where R(s) is the signal to be quantized, E(s) the quantized 
error and Ys(s) the quantized result. Hr(s) and Hn(s) are 
frequency responses of the signal and noise shaping 
functions. Intuitively, if E(s) is made to be white, selecting 
Hn(s) is equivalently to shape the quantization noise. For 
single-bit quantization, Ys(s) is a bi-level signal and Hr(s) 
and Hn(s) satisfy, 
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where N1(s), N2(s) and D(s) are polynomials with deg(D) > 
deg(N2). Eq.(1) can be rewritten as, 
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By connecting E(s) and Ys(s) with a symmetric bi-level 
quantizer, a 1-bit noise-shaping quantizer can be realized as 
shown in Figure 1. 
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Figure 1. A general 1-bit noise-shaping quantizer 
where G1 and G2 represents the noise and signal 

shaping function, r the bounded input signal, ys the 
output binary sequence 

From the control system perspective, the objective of the 
feedback implementation of Figure 1 is to make e as small 
as possible by a relay feedback. Let G1 and G2 be strictly 
proper transfer functions and are written as, 
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The input signal r is assumed to be bounded by r  (|r| 
≤ r ). Consider the minimal state space representation of 
Figure 1 (Eq.(2)) as, 
 CXerBBuAXX

dt
d

r =++=  ,  (5) 

The ability to maintain the output e to be (or around) zero 
(the so-called sliding condition) by using output relay 
feedback depends on the order of sliding set [3]. This 
degree is defined as the smallest integer m such that CAm-1B 
≠ 0. It has been shown that for m ≥ 2, the ability to 
maintain e = 0 is very limited (see [1][4]). Therefore, for 

the quantizer, the selection of the noise shaping function is 
then restricted to deg(D(s))−deg(N1(s))=1 so that CB≠0 
(see Eq.(1)). This in turn means the relative degree of G1(s) 
is 1 (i.e., bn-1≠0 of Eq.(3)).  
 
3. Maintaining Sliding Condition  
The behavior of the feedback system under sliding 
condition can be analyzed by the equivalent control 
technique. To maintain state trajectory on the sliding 
surface e = 0, the equivalent control of Eq.(5) is [6], 
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As a result, the state trajectory under the sliding condition 
is governed by the following dynamic, 
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The following facts can be derived from standard control 
theory practice [2]. 
Fact 1: the characteristic equation of the state transition 
matrix of Eq.(7) is 
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Fact 2: the transfer function from input r to a signal η = 
CAX is, 
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 which is not minimal with at least a pole-zero 
cancellation at s = 0. 
From Fact 1, it is obvious that to have a sliding condition, 
the zeros of G1(s) must be stable. This guarantees a 
bounded state trajectory when sliding occurs. Fact 2 
ensures that Gs(s) is stable and its l1-norm exists. The static 
switching control feedback of Figure 1 can be written as, 
 )(1 esignU

CB
yu s −=−= , 0>U . (9) 

It is then necessary to find out the magnitude of U  to 
maintain the sliding condition. Consider the energy 
function 2

2
1 eVe = . The derivative of Ve is, 

 ( )eesignrCBesignUV
dt
d

re )()( ⋅−⋅−−= η , where η = 

CAX. (10) 
Therefore, to trap e on the sliding surface (e=0), a 
conservative estimate of the minimum magnitude U  is, 
 rCBU r ⋅+≥ η . (11) 

where r  denotes the maximum amplitude of r. The signal 
η is actually the output of Eq.(7) and its magnitude when 
the states are trapped on the sliding surface is estimated as, 
 rsGs 1

)(≤η  (12) 

where ||⋅||1 denotes the l1-norm. The following lemma 
summarizes the analysis. 
Lemma 1: the sliding condition e=0 of Eq.(5) under the 

feedback of Eq.(9) can be maintained if the following 
conditions are satisfied: 
(1.) The relative degree of G1(s) is 1 and all the zeros 
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are stable. 
(2.) ( ) rCBsGU rs ⋅+≥

1
)(   

Note that Lemma 1 says nothing about stability of the 
feedback system under arbitrary initial conditions. Once 
U  is determined and satisfies Lemma 1, the state 
trajectory will stay inside a bounded set called sliding 
region as, 
 { }0 and   , =⋅−<∈= CXrCBUCAXRXXS r

n  (13) 
Another important issue regarding practical 
implementation is to ensure that all the states stay within 
their saturation limits. Checking whether the saturation 
limits are exceeded can be done by investigating the 
l1-norm of the transfer function for each state on the sliding 
region (Eq.(13)).  
 
4. Convergence to Sliding surface 
It is important to know the sets of initial conditions which 
guarantee the sliding condition. In this paper, a practical 
view point is taken by constraining the state to ensure 
sliding condition.  
 
4.1 Stable Open Loop Filter 
For a stable open loop filter, it is possible to establish a 
global contraction region of the system (Figure 1). When 
G1(s) satisfies condition (1.) in Lemma 1 and is stable (all 
poles on the open LHP), G1(s) is also strictly positive real 
(SPR). The Kalman-Yacubovich lemma [7] states that there 
exists P and Q, both positive definite and symmetric, such 
that 
 ATP + PA = −Q and PB = CT. (14) 
Define PXXV T5.0= , we have, 
 rPBXPBuXQXXV

dt
d

r
TTT ++−=

2
1  

By Eq.(5), we have 
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Let Q = WTW and PBr = WTq, Eq.(15) can be rewritten as, 
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Define the following three sets: 
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It can be shown that for finite r, Ωr is finite since W is 
non-singular. We can establish the invariant contraction 
region of the state X in the following lemma.  
Lemma 2: if the transfer function between u and e in Eq.(5) 

is strictly positive real, 
ρΩ  is an invariant contraction 

region of the states under the feedback of Eq.(9) where 
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[Proof]: Since for every 
ρΩ∉X , we have 0<V&  from 

Eq.(16).
The contraction region states nothing about entering the 
sliding surface. Consider e(0) > 0 so we have u(0) = 

CB
U− . If no switching happens, the steady state response 

of Figure 1 becomes, 
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If the signs of both CA-1B and CB are the same, the 
response is less and equal to zero if, 
 rsG
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As a result, the switching must occur. Similar analysis can 
be shown when e(0) < 0. The trajectory will stay on the 
sliding surface if it hits the sliding region (Eq.(13)). Note 
that Eq.(21) is a sufficient condition considering a general 
bounded input r. If r=0, for example, switching will happen 
when the signs of both CA-1B and CB are the same, 
regardless of the magnitude of U . 
A simple geometrical interpretation can be shown to 
illustrate the stability condition. First observe that 

{ }UU rr
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inequalities. 
For rr ≤≤0 , 
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Figure 2 depicts various sets (Eqs.(17)-(19)), sliding 
surface and sliding region for a 2nd order system. The 
illustration shows that the sliding surface within the 
invariant set is also sliding region. 

x1

x2 

ρΩ Ωy

η = rCBU r+−

η = rCBU r−  
r q 

− r q

r−Ω

x 

x 

e=CX=0 
(sliding surface) 

rΩ  
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Figure 2 Geometric interpretation of Lemma 2 

 
4.2 Constraining the State 
For a more general case where the open loop filter could be 
unstable, a state constraint is proposed in this paper to 
ensure sliding condition. From Eqs.(10) and (11), the 
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energy function Ve can be made decreasing if the 
magnitude of η=CAX is bounded. Assume that the bound is 
possible and is equal to η . The state trajectory will 
eventually hit the sliding surface and stay on the surface if 
 rCBU r ⋅+≥η  (22) 

In addition, Fact 1 and 2 are applied if η does not reach the 
bound η  when staying on the sliding surface. Therefore, 
using the concept of equivalent control (Eqs.(6) - (8)), we 
have, 
 rsGs 1

)(≤η  (23) 

One possibility of imposing the limit on η  is to make η  a 
physical signal in implementation. For example, consider 
the canonical form of Eq.(5) as, 
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 [ ] 1001 xXe == L  (24) 
The signal η is actually the state x2.  
 
5. Practical Design Issues 
In reality, however, it is impossible to have a switch acting 
infinitely fast as assumed in previous sections. One of the 
applications of sigma-delta modulator is to perform 
analog-to-digital conversion where a sample-and-hold 
function is added (Figure 3). 
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u 
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T 

Figure 3 An A/D conversion using sigma-delta modulation 
where T is the sampling period 

Now the switching action of Eq.(9) becomes, 
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Let e(k) = e(kT), from Eq.(5), 
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where ξ is of order T, i.e., ξ = O(T). Therefore,  
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For a sufficiently small T, it is possible to have a U , 
larger than the optimal estimate of Eq.(13), which makes 
Eq(27) less than zero when e(k−1)≠0. As a result, we have 

)1()( −< keke  when e(k−1)≠0. In other words, e(k) will 
be trapped in a bounded region (so-called chattering). 
Referring to Eq.(26), the worst-case increment of e(t) is, 
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Since e(k) is decreasing, the bound of e(t) can be estimated 
as, 
 UTte 2)( ≤  (28) 
Eq.(28) not only gives an estimate of the chattering 
amplitude, but also reveals that the amplitude is 
proportional to the amplitude of the switch. In other words, 
a good choice of U  is very important to minimize the size 
of chattering which affects the S/N ratio of the conversion.  
 
6. Simulation and Experiment 
Example 1: 
A 4-th order stable loop filter is considered (G1(s) in Eq.(2)) 
as: 
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N1(s) is the denominator of a 3-rd order Butterworth 
lowpass filter with cutoff frequency at 20 KHz. The input 
signal is assumed to be bounded by 1 ( 1=r ) and the input 
channel is the same as the feedback (i.e., N1(s) = N2(s) in 
Eq.(1) or Br = B in Eq.(5)). It can be verified that when Br = 
B, the transfer function Gr(s) = 0 (Eq.(5)). Further, we 
have, 
 CB = 1, CA-1B = -1.27×1012 and ||G2(s)||1 = ||G1(s)||1 = 
1.27×1012. 
Therefore, the lower bound of feedback parameter U  to 
maintain the sliding condition is (Eq.(11)), 
 1≥U  (30) 
The same lower bound can also be computed to ensure 
switching (Eq.(21)). A simulation is conducted using the 
digital implementation (Figure 3) with the sampling 
frequency 1000 KHz (50 times the bandwidth of 20 KHz). 
The gain U  is selected to be 2. Using Eq.(28), the error 
e(t) is bounded as, 
 -61042)( ×=≤ UTte  
This value is then used as the estimate of the quantization 
error bound (Eq.(1)). Figure 4 shows the spectrum of the 
simulation result. Note that the quantization error is pushed 
into the high frequency range and the theoretical prediction 
is quite accurate.  

 
Figure 4 Spectrum of the binary sequence for 1 KHz 
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sinusoidal reference signal in Example 1 and theretical 
prediction of the quantization error spectrum 

 
Example 2: 
In this example we consider implementing a 4-th order 
loop filter as, 
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Figure 5 shows the schematic circuit of the sigma-delta 
modulation. The comparator’s bandwidth limitation is 
equivalent to 2.8571 MHz sampling frequency as dipicted 
in Figure 3.  

 
Figure 5 Circuit realization of a 4th-order sigma-delta 

modulator in Example 2 (CMP: comparator; VDD: 5 Volts) 
The circuit implementation of Figure 5 gives the following 
state-space representation where the states are the voltages 
of the operational amplifiers. 
 

 ,

102670
0
0
0

205330
345150
541820
985130

0000
242510000

045294000
008955700

ruX
dt
dX



















+



















+



















=
(35) 

 [ ] 10001 xXe ==  
The corresponding parameters are computed as, 
 CB = 985130, CBr = 0 and ||Gs(s)||1 = 6.07×105. 
From Figure 5, the maximum amplitude of the input signal 
r is restricted to the circuit supply voltage VDD = 5 Volts 
(i.e., 5=r ). Considering again a bounded input reference 
signal, from Eqs.(11) and (12), we have, 
 61004.3 ×≥U  
If this lower bound is used, the feedback control law is 
(Eq.(9)), 
 u = −3.09×sign(e). (36) 
Secondly, since the loop filter is not stable, it is necessary 
to constrain the variable η = CAX (see Section 4.2). From 
Eqs. (23) and (35), 
 |η| = 895570|x2|×VDD ≤ 3.04×106 ⇒ |x2| ≤ 3.39 (37) 
The bounds of x3 and x4 on the sliding surface can also be 
computed as, 
 |x3| ≤ 4.05 and |x4| ≤ 4.56 (38) 
The results of Eqs.(36) to (38) shows that the state signals 
do not exceed the supply voltage limit. Figure 5 shows a 
simplified implementation in which both the switching 
control gain (Eq.(36)) and the state constraint (Eq.(37)) are, 
 u = −5.0×sign(e) and |x2| ≤ 5.0. (39) 
As a result, the error e (or x1) is bounded by (Eq.(28)), 

 45.32)()( 1 =≤= UTtxte  (40) 
Assuming all components of Figure 5 are ideal, simulation 
using the control law (Eq.(39)) and 2.8571 MHz sampling 
frequency was conducted and the time sequence of each 
states are plotted in Figure 6. In the simulation, a non-zero 
initial condition of X = [5.0 -5.0 7.0 9.0]T is applied (not on 
the sliding surface). It is shown that the system is stable 
and all state signals stays within the saturation limit of 5 
volts. Figure 7 shows the signal of x2 at initial stage. Notice 
that it hits the saturation limit initially but becomes stable 
afterwards. 

 
Figure 6 State signals (steady state) of Example 2 where 
the input is a 1 KHz sin signal and the initial condition is 

T9.0]-  7.0  5.0-  [5.0  =X ; (a) x1; (b) x2; (c) x3; (d) x4 

 
Figure 7 The signal of x2 in Example 2 at initial stage 
(hitting the saturation limit (±5V) but become stable 

afterwards) 
The circuit of Figure 5 was implemented using 
off-the-shelf electronic components. Figure 8 shows the 
state signals of the experiment. It verifies that the system is 
stable and all states stays withing the saturation limit. 
However, notice that the signals are smoother than the 
simulation (Figure 6) because the electronic components 
are not ideal and cannot act infinitely fast.  
 
7. Conclusion 
An analysis of 1-bit noise-shaping quantizer using variable 
structure control methods is presented. The method using 
the concept of equivalent control to access the bound on 
state signals when the sliding condition is reached. For a 
stable loop filter, the global stability can be proved using 
the Lyanpunov stability theory. For an unstable loop filter, 
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the paper proposes a state constraint approach to ensure the 
sliding condition. Simulation examples and an 
experimental circuit using off-the-shelf electronic 
components are given to demonstrate the theoretical 
analysis.  
 

 
Figure 8 State signals of the experimental circuit (C1 to C4 

represents states x1 to x4; PK-PK means peak-to-peak) 
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