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Abstract— Two new output feedback adaptive control
schemes based on Model Reference Adaptive Control (MRAC)
and adaptive laws for updating the controller parameters
are developed for a class of linear multi-input multi-output
(MIMO) systems with state delay. A controller structure estab-
lished on a new error equation parametrization is proposed to
achieve tracking with the error tending to zero asymptotically.
To achieve exact asymptotical tracking, we introduce, in the
standard MRAC structure for plants without delay, a new
additional adaptive feedforward control component as an
output of a dynamical system driven by the reference signal.
Adaptive laws are developed using the SPR-Lyapunov design
approach and two assumptions regarding the prior knowledge
of the high-frequency matrix Kp. This work is the first
asymptotic exact zero tracking results for this class of systems
in the framework of the certainty equivalence approach.

I. I NTRODUCTION

Many physical systems can be modeled by delay differen-
tial equations. In these models, time delays are often used to
represent the effect of e.g. transmission, and transportation.
Often time delays can be used as an approximation of
complex models. Much effort has been devoted to providing
a theory for the control of such systems. Interesting and
important results in many directions are found, see, e.g.
the 141 references in the recent survey paper [1]. However
less attention has been given to the topic of output adaptive
control of continuous-time state delay systems, and only
a few results deal with model reference adaptive output
feedback controlof systems with state delays.

Adaptive stabilizing controllers were synthesized in [2],
[3] for output feedback linear state delay systems, and in [4]
for state feedback linear systems with state delays, subject
to uncertainties with unknown bounds and known functional
properties. All these stabilizing controllers guarantee that
all closed loop solutions converge to a some bounded
residual set. An adaptive discontinuous output feedback
controller was considered in [5] to achieve exact asymptotic
regulation for a class of single-input, single-output systems
described by nonlinear functional differential equations. See
also the recent paper for the MIMO case [6]. Subsequently,
adaptive tracking control was considered for the same class
of systems in [7], using a continuous feedback on one
hand, and discontinuous feedback on the other hand. Using
continuous feedback, [7] achieved only practical tracking ,
i.e. convergence to some bounded residual set. Discontin-
uous feedback enabled [7], as well as [8] to achieve exact

asymptotic tracking, i.e. in the sense that the tracking error
asymptotically approaches zero. State feedback MRAC was
investigated in [9], [10].

Recently a new approach, [11], [12], was developed for
the output model reference adaptive control of single input
(u(t) ∈ R) single output (y(t) ∈ R) linear continuous-time
plants with state delay described by equations, suitably
initialized, of the form

ẋ(t) =Ax(t)+Aτx(t− τ)+bu(t), y(t) = cTx(t)

with unknownA, Aτ , b andc of appropriate dimensions and
known time delayτ. The main idea is to treat the state delay
element not as a part of the plant but rather as the input to
the systemW0(s) = cT(Is−A)−1b and then decompose the
control law into two components. The first base component
is designed by a standard MRAC procedure, [13]–[15], as
for a plant without delayW0(s) but applied to the time-
delay plant. The second component is formed bya special
adaptively adjusted dynamic systemP(s,θ f f ) as a function
of the reference signalr(t). This makes it possible to use
the well-understood MRAC design technique.

The main contribution of the present paper is the design
of a new adaptive control scheme which generalizes the
results in [12] as follows:

i the class of systems is enlarged to a class of multi-
input u(t) ∈ Rm multi-outputy(t) ∈ Rm systems.

ii we construct two different types of prefilters
P(s,θ f f ), which issue the feedforward component
uf f whose function is to counteract the state delay.

iii the adaptation algorithms are synthesized using
the SPR-Lyapunov design approach for two cases
of prior knowledge of the high-frequency matrix
Kp.

The structure of the paper is as follows. In Section II
we formulate the MIMO adaptive control problem. In
Section III we suggest the new parametrization for the
error equation, which leads to a new controller structure.
It is developed in Section IV. In Sections V and VI we
develop two adaptive designs for asymptotic output tracking
when we use two different assumptions concerning the prior
knowledge of the high-frequency matrixKp: the symmetry
assumption of [15], or the assumption on the signs of the
leading principal minors ofKp [16], respectively. Some final
remarks are found in Section VI.



II. PROBLEM STATEMENT

In this section we formulate the control problem, includ-
ing the state delay plant model and the reference model,
assumptions and control objective. The uncertain multi-
input (u(t)) multi-output (y(t)) linear continuous-time plant
with state delay is of the form

ẋ(t) =Ax(t)+Aτx(t− τ)+Bu(t), x(t) ∈ Rn

y(t) =Cx(t), y(t) ∈ Rm (1)

wherex(t) ∈Rn, y(t) ∈Rm andu(t) ∈Rm are, respectively,
the state, output and control input. The constant matrices
A, Aτ and B of appropriate dimensions have unknown
elements. The time-delayτ is assumed to be known. It is
also assumed that the states are not accessible and only
input-output measurements are available.

It is a specification that all signals of the closed loop
system remain bounded and that the plant outputy(t)
asymptotically exact follows the outputyr(t) of a reference
model with the transfer function

yr(t) = Wr(s)r(t) (2)

whereWr(s)∈Rm×m is a stable rational transfer matrix, and
r(t) ∈ Rm is a bounded reference input signal. Asymptotic
tracking is demanded, i.e. limt→∞ ‖e(t)‖= 0.

The following assumptions are made on the plant (1) and
the reference model (2):(A1) When there is no term with
state delay, the plant (1) can be described by

y = W0(s)u W0(s) = C(Is−A)−1B∈ Rm×m (3)

where W0(s) is the transfer matrix associated with an
undelayed plant;(A2) the observability indexν of W0(s) is
known; (A3) the transmission zeros ofW0(s) have negative
real parts;(A4) W0(s) is strictly proper, full rank, and has
vector relative degree 1;(A5) Aτ = BA∗T

τ ; (A6) in view
of the assumption (A4) and without loss of generality, a
diagonal SPR reference model is defined, as in [16],

WR(s) = diag

[
1

s+ari

]
ari > 0, i = 1, . . . ,m. (4)

For the high frequency gain matrixKp = lims→∞ sW0(s) we
consider the following two cases:(A7.1) there is a known
matrix Sp ∈Rm×m such thatKpSp = (KpSp)T , or (A7.2) the
signs of the leading principal minors of the high frequency
gain matrixKp are known.

III. PROPOSEDERROREQUATION PARAMETRIZATION

Let us assume that all the parameters of (1) are known,
and let us defineu∗1 as the standard matching control [13],
[15] for the plant without delay (3)

u∗1(t) =θ
∗
e y(t)+θ

∗T
1 x1(t)+θ

∗T
2 x2(t)+θ

∗
r r(t) (5)

where

x1 =Hm(s)[u∗1] x1 ∈ Rm(ν−1) (6)

x2 =Hm(s)[y] x2 ∈ Rm(ν−1) (7)

Hm(s) =
[Im×msν−2 . . . Im×ms Im×m]T

Λ(s)
Hm(s) ∈ Rm(ν−1)×m

(8)

θ ∗
1 ,θ ∗

2 ∈ Rm(ν−1)×m θ ∗
e ∈ Rm×m θ ∗

r ∈ Rm×m, Λ(s) =
sν−1 + · · ·+ λms+ λ0 is a monic Hurwitz polynomial, and
Im×m∈ Rm×m is the identity matrix.

With the definition ofΛ(s), Hm(s) andW0(s) in (3), there
exist θ ∗

r = K−1
p , θ ∗

e , θ ∗
1 andθ ∗

2 [13], [15] such that

θ
∗
r W−1

R (s)W0(s) =

Im×m−θ
∗T
e Hm(s)−θ

∗T
1 Hm(s)W0(s)−θ

∗T
2 W0(s) (9)

When applying (5) to the actual plant (1), then from (1) and
(9) and for anyu, the tracking errore= y−yr is given by

e=Wr(s)Kp

[
u−θ

∗
eiy−θ

∗T
1 x1−θ

∗T
2 x2−θ

∗
r r +A∗T

τ x(t− τ)

−θ
∗T
1 Hm(s)A∗T

τ x(t− τ)
]
. (10)

To find a suitable error equation parametrization, we ma-
nipulate the last term of (10). Firstly, we introduce a new
dynamical system

z(t) =θ
∗T
1 Hm(s)[A∗T

τ x(t− τ)] = θ
∗T
z zx(t) (11)

where θ ∗T
z = [θ ∗1T

1 A∗T
τ , θ ∗2T

1 A∗T
τ , . . . , θ

∗(ν−1)T
1 A∗T

τ ] and

zx(t) =Hn(s)[x(t− τ)] (12)

Hn(s) =
[In×nsν−2, . . . , In×ns, In×n]T

Λ(s)
(13)

HereAz∈Rm×n(ν−1), zx ∈Rn(ν−1), Hn(s)∈Rn(ν−1)×n and
In×n is then×n identity matrix.

Remark 1:The transfer function matrixHn(s) from (13)
has the same structure as the transfer matrixHm(s) from (8),
only instead of the identity matrixIm×m in the numerator
of (8) we have the identity matrixIn×n.

Secondly we decompose the signalszx in (12) into two
componentszx(t) = ze(t)+zr(t) where

ze(t) =Hn(s)
[
ex(t− τ)

]
zr(t) = Hn(s)

[
xr(t− τ)

]
ex(t− τ) =x(t− τ)−xr(t− τ) (14)

wherexr(t)∈Rn is the state of the reference model (4) with
the state space triple(Ar ,Br ,Cr).

Then, using (11) and (14) from (10) we obtain thebasic
error equation

e(t) =Wr(s)Kp

[
u(t)−θ

∗
e e(t)−θ

∗T
1 x1(t)−θ

∗T
2 x2(t)−θ

∗
r r(t)

−θ
∗T
xr

xr(t)−θ
∗T
τ xr(t− τ)−θ

∗T
z zr(t)

]
−Wr(s)Kp

[
θ
∗T
τ ex(t− τ)+θ

∗T
z ze(t)

]
(15)

whereθ ∗
τ =−A∗τ andθ ∗

xr
= CT

r θ ∗T
e .

Remark 2:Note thatex(t) andze(t) are not available for
measurement and we shall use them only for analysis.



IV. PROPOSEDADAPTIVE CONTROLLER STRUCTURE

The error parametrization (15) motivates the following
controller structure

u(t) =θe(t)e(t)+θ
T
1 (t)x1(t)+θ

T
2 (t)x2(t)+θr(t)r(t)

+θ
T
xr

(t)xr(t)+θ
T
τ (t)xr(t− τ)+θ

T
z (t)zr(t) (16)

where θ1, θ2 ∈ Rm(ν−1)×m, θe, θr , θy ∈ Rm×m,
θxr (t),θτ(t) ∈ Rn×m and θz∈ Rn(ν−1)×m are the adaptation
gain matrices,x1 = Hm(s)[u] ∈ Rm(ν−1), and x2, Hm(s)
taken from (7)-(8).

For clarity, we shall decomposeu(t) as the sum of the
two componentsuf (t) anduf f (t),

u(t) = uf (t)+uf f (t) (17)

which will be defined in the next subsections IV-A and IV-
B.

A. The standard control component with output feedback

The first componentuf (t) contains the output feedback
control component,

uf (t) = θee(t)+θ
T
1 x1(t)+θ

T
2 x2(t)+θr r(t) = θ

T
f ω̂ f (18)

with θ f = [θe θ T
1 θ T

2 θr ]T ∈ R2mν×m and ω̂ f =
[eT xT

1 xT
2 rT ]T ∈ R2mν . uf (t) is the “classical” model

matching adaptive control version of (5) which is widely
used in MIMO MRAC for plants without time-delays, see
e.g. the textbooks [13]–[15], with the modification that in
(5), e= y−yr is used instead ofy.

B. The additional dynamical feedforward control compo-
nent

The second component defines additional feedforward.

uf f (t) =θ
T
xr

xr(t)+θ
T
τ xr(t− τ)+θ

T
z zr(t) = θ

T
f f ω f f (19)

with θ f f (t) = [θ T
xr

θ T
τ θ T

z ]T ∈ Rn(ν+1)×m and ω f f (t) =
[xT

r (t) xT
r (t − τ) zT

r (t)]T ∈ Rn(ν+1) is the output of a dy-
namical system with the reference signalr as the input.
In addition to the usual memoryless feedforward term
θr(t)r(t) with the adjusted gainθr(t) contained inuf (t),
see (18),uf f (t) includes terms with the adjusted matrix
gainsθxr (t), θτ(t) and θz(t). uf f (t) is hence formed by a
special adaptively adjusted dynamic systemas a function
of the reference signal. Thisdynamic feedforward system
constitutes the main contribution of our approach.

In the next two sections we will design adaptive laws for
the two distinct assumptions, given in section II, about the
high frequency gain matrixKp. First we use the symmetry
conditions of Kp [15] (Assumption A7.1), and then the
assumption on the signs of the leading principal minors of
Kp [16] (Assumption A7.2).

V. A DAPTIVE CONTROLLER: ASSUMPTION(A7.1)

Introducing the parameter errors̃θ f (t) and θ̃ f f (t) and
using the adaptive control (17) – (19), the basic tracking
error equation (15) can be expressed as

e(t) =Wr(s)Kp

[
θ̃

T
f (t)ω̂ f (t)+ θ̃

T
f f (t)ω f f (t)

−θ
∗T
τ ex(t− τ)−θ

∗T
z ze(t)

]
(20)

where θ̃ f (t) = θ f (t)− θ ∗
f , θ̃ f f (t) = θ f f (t)− θ ∗

f f , θ ∗
f =

[θ ∗
e θ ∗T

1 θ ∗T
2 θ ∗

r ]T andθ ∗
f f = [θ ∗T

xr
θ ∗T

τ θ ∗T
z ]T .

To design the mechanism of updating the controller ma-
trices, the usual way of MRAC for the delay free systems is
used, see, e.g. [16]. The augmented vector ˆx(t) = [x x1 x2]T

is introduced, and the state of the corresponding nonmin-
imal realizationĈ(sI− Â)−1B̂ of Wr is denoted by ˆxr(t).
Then we can write the following state space representation
for (20)

dê(t)
dt

=Âê(t)+ B̂Kp

[
θ̃

T
f (t)ω̂ f (t)+ θ̃

T
f f (t)ω f f (t)

−θ
∗T
τ l̂T ê(t− τ)−θ

∗T
z Ceẑe(t)

]
dẑe(t)

dt
=Aeẑe(t)+Bel̂

T ê(t− τ)

ze(t) =Ceẑe(t), l̂ = [In×n 0n×m(ν−1) 0n×m(ν−1)]
T

e(t) =y(t)−yr(t) = Ĉê(t) (21)

where the triple(Ae,Be,Ce) is a minimal state space real-
ization for the stable transfer matrixHn(s) from (14), and
0n×m(ν−1) is a zeron×m(ν −1) matrix.

BecauseĈ(sI−Â)−1B̂=Wr(s) is SPR, the triple(Â, B̂,Ĉ)
satisfies the following equations given by the matrix version
of KY Lemma, see, e.g. [14], [16],

ÂT P̂+ P̂Â+ Q̂ =0 P̂B̂ = ĈT (22)

where P̂ = P̂T > 0 and Q̂ = Q̂T > 0. SinceAe in (21) is
stable, it also holds that

AT
e Pz+PzAe+Qz = 0 (23)

wherePz = PT
z > 0 andQz = QT

z > 0.
We are now ready to state the main result of this section.
Theorem 1:Consider system (1) and the reference model

(4). Suppose that assumptions (A1) to (A7.1) hold. Then the
adaptive control (17)–(19) with update laws

θ̇
T
f (t) =−Spe(t)ω̂T

f (t)

θ̇
T
f f (t) =−Spe(t)ωT

f f (t) (24)

guarantee that all the closed loop signals are bounded and
the tracking errore(t) = y(t)− yr(t) converges to zero
asymptotically, i.e. limt→∞ ‖e(t)‖= 0.
To proof this theorem we will use the standard MRAC
analysis technique for delay free plants, e.g. [13], [15],
[16], but instead of using the standard quadratic Lyapunov



function, an appropriate Lyapunov Krasovskii functional is
added as in [12],

V =êT P̂ê+ ẑT
e Pzẑe+

∫ t

t−τ

êT(s)Qeê(s)ds

+ tr(θ̃ f − K̂1)Γp(θ̃ f − K̂1)T + tr(θ̃ f f Γpθ̃
T
f f ), (25)

whereQe = QT
e > 0, Γp = KT

p S−1
p wherein the known matrix

Sp satisfies Assumption A7.1,

K̂1 =− r
2[K−1

p 0 0 0], (26)

and r is an as yet unspecified positive constant.
With this definition of K̂1, using (21), (22), (24)

and Assumption (A7.1) we have tr[K̂1Γp
˙̃
θ T

f ] =
− r

2ê(t)T P̂B̂B̂T P̂ê(t). Then some simple computations
using (22), (24) and (26) withQ̂ = Q+ Qe, Q = QT > 0
lead to the derivative ofV along the solution of (21),

V̇|(21) =− êT(t)Qê(t)− rê(t)T P̂B̂B̂T P̂ê(t)− ẑT
e (t)Qzẑe(t)

− êT(t− τ)Qeê(t− τ)−2êT(t)P̂B̂Kpθ
∗T
τ l̂T ê(t− τ)

−2êT(t)P̂B̂Kpθ
∗T
z Ceẑe(t)

+2ẑT
e (t)PzBel̂

T ê(t− τ) (27)

For convenience, let us define the matricesQe = (qe1+qe2+
qe3)I , Qz = (qz1 + qz2)I , and the scalarr = r1 + r2, where
qei, qzi and r i , (i = 1, . . .) are positive constants. Note that
these constants are only used in the process of the proof and
not used in the control design, and hence we can suppose
that they take arbitrary positive values.

Combining the second and fifth, second and sixth and
third and seventh terms of (27), completing the squares and
dropping negative terms we obtain

V̇|(21) ≤− êT(t)Qê(t)−qz2ẑT
e (t)ẑe(t)−qe3êT(t− τ)ê(t− τ)

− êT(t− τ)
[
qe1I − 1

r1
Ψτ1

]
ê(t− τ)

− êT(t− τ)
[
qe2I − 1

qz1
Ψτ2

]
ê(t− τ)

− ẑT
e (t)

[
qz2− 1

r2
Ψz

]
ẑe(t) (28)

where

Ψτ1 =l̂θ ∗
τ KT

p Kpθ
∗T
τ l̂T Ψτ2 = l̂BT

e PzPzBel̂
T

Ψz =CT
e θ

∗
z KT

p Kpθ
∗T
z Ce (29)

Let us select the values ofr1, r2, qe2 andqz1 such that the
following inequalities are satisfied,

r1 > 1
qe1

λmax[Ψτ1] qz1 > 1
qe2

λmax[Ψτ2] r2 > 1
qz2

λmax[Ψz]

whereλmax(Ψ) is the maximum eigenvalue ofΨ. Then, we
obtain from (28)

V̇|(21) ≤− êT(t)Qê(t)−qz2ẑT
e (t)ẑe(t)

−qe3êT(t− τ)ê(t− τ)≤ 0 (30)

This implies [17] thatV and, therefore, ˆe(t), e(t), ẑe(t), Θ̃ f ,
Θ f , Θ̃ f f , Θ f f ∈ L∞. This fact is central to the remainder of
the stability analysis, which follows directly using the steps
in [15].

Because ˆe(t) = x̂(t) − x̂r(t) and x̂r(t) ∈ L∞, it holds
that x̂(t)=[xT(t), xT

1 (t),xT
2 (t)]T ∈ L∞, which implies that

x(t),x1(t),x2(t) and y(t) ∈ L∞. Since r(t) is uniformly
bounded and the transfer matrixHn(s) from (14) is stable,
ω̂ f = [eT xT

1 xT
2 rT ]T and ω f f (t) = [xT

r (t) xT
r (t − τ) zT

r (t)]T

are bounded. Consequentlyu(t) = uf (t) + uf f (t) is also
bounded. Therefore, all the signals in the closed-loop sys-
tem are bounded. From (25) and (30) we establish that ˆe(t)
and thereforee(t)∈ L2. Furthermore, using ˆe(t), ẑe(t),θ f (t),
θ f f (t), ω̂ f (t),ω f f (t) ∈ L∞ in (21) we have thaṫ̂e(t), ė(t) ∈
L∞. Hence,e∈ L2

⋂
L∞, andė(t) ∈ L∞, which by Barb̆alat’s

Lemma [15] implies that‖e(t)‖→ 0 ast → ∞.

VI. A DAPTIVE CONTROLLER: ASSUMPTION(A7.2)

To avoid the quite restrictive Assumption (A7.1), we will
use in this section the recent results for multivariable MRAC
design in [16] for plants without delays. The design in [16]
is based on theSDU factorization [18] of the high frequency
gain matrixKp, with the assumption the signs of the leading
principal minors ofKp are known. Such an assumptions is
less restrictive than the symmetry condition in Assumption
(A7.1). The following preliminary lemmas are needed.

Lemma 1 [16]: Every m×m matrix Kp with nonzero
leading principal minors∆1, . . . ∆m can be factored as Kp =
SDU where S is symmetric positive definite, D is diagonal,
and U is unity upper triangular.

This factorization ofKp is convenient because of the
distinct role played by each of its factorsS, D andU . The
role of S is to assure theWr(s)S is SPR. The r̂ole of D is to
enable a straightforward extension of the SISO assumption
about the sign of the high-frequency gain. The rôle of U
is to allow its absorption by the controller parametrization
[16].

Lemma 2 [16]: For any Wr(s) from (4) a positive
definite S= ST exists such that Wr(s)S is SPR.

Substituting theSDU factorization of Kp in the basic
error equation (15), and using the decompositionUu =
u− (Im×m−U) as in [16], we obtain

e(t) =Wr(s)SD
[
u(t)− (I −U)u(t)−Uθ

∗
e e(t)−Uθ

∗T
1 x1(t)

−Uθ
∗T
2 x2(t)−Uθ

∗
r r(t)−Uθ

∗T
xr

xr(t)−Uθ
∗T
τ xr(t− τ)

−Uθ
∗T
z zr(t)

]
−Wr(s)SD

[
Uθ

∗T
τ ex(t− τ)+Uθ

∗T
z ze(t)

]
(31)

By defining θ̂ ∗
e = U θ̂ ∗

e , θ̂ ∗T
1 = Uiθ

∗T
1 , θ̂ ∗T

2 = Uθ ∗T
2 , θ̂ ∗

r =
Uθ ∗

r , θ̂ ∗
u = (Im×m−U)u, θ̂ ∗T

xr
= Uθ ∗T

xr
, θ̂ ∗T

τ = Uθ ∗T
τ , θ̂ ∗T

z =
Uθ ∗T

z , and θ̂ ∗T
z = Uθ ∗T

z , we obtain from (31)

e(t) =Wr(s)SD
[
u(t)− θ̂

∗
e e(t)− θ̂

∗T
1 x1(t)− θ̂

∗T
2 x2(t)

− θ̂
∗
r r(t)− θ̂

∗
u u− θ̂

∗T
xr

xr(t)− θ̂
∗T
τ xr(t− τ)− θ̂

∗T
z zr(t)

]
−Wr(s)SD

[
θ̂
∗T
τ ex(t− τ)+ θ̂

∗T
z ze(t)

]
. (32)



We can rewrite (32) as

e(t) =Wr(s)SD
[
u(t)−K∗T

f (t)ω f (t)−Θ∗T
f f (t)ω f f (t)

]
−Wr(s)SD

[
θ̂
∗T
τ ex(t− τ)+ θ̂

∗T
z ze(t)

]
(33)

where

K∗
f =[θ̂ ∗

e θ̂
∗T
1 θ̂

∗T
2 θ̂

∗
r θ̂

∗
u ]T , Θ∗

f f = [θ̂ ∗T
xr

θ̂
∗T
τ θ̂

∗T
z ]T ,

ω f =[eT xT
1 xT

2 rT uT ]T , ω f f = [xT
r (t) xT

r (t− τ) zT
r (t)]T .

In order to remove the zero entries from the above
parametrization ofK f , we introduce, as in [16], the new
parameter vectorsΘk

f via the identity[
Θ∗1T

f Ω1
f · · ·Θ∗kT

f Ωk
f · · ·Θ∗mT

f Ωm
f

]T = K∗T
f ω f . (34)

In addition to the concatenatedk-th rows of the matrices
θ̂ ∗

e , θ̂ ∗
1 , θ̂ ∗

2 , θ̂ ∗
r , each row vectorΘ∗kT

f includes the unknown
entries of thek-th rows ofθ̂ ∗

u . The strictly upper-trianglarity
of θ̂ ∗

u ensures that the control signal is implementable
without singularity.

The corresponding regressor vectors are

Ω1
f (t) =[ωT

f u2 u3 . . .um−1 um]T

Ω2
f (t) =[ωT

f u3 . . .um−1 um]T

...

Ωm
f (t) =[ωT

f ]T . (35)

This new parametrization motives the following controller
structure instead of (17)-(19)

u(t) =
[
Θ1T

f Ω1
f · · ·ΘkT

f Ωk
f · · ·ΘmT

f Ωm
f

]T +θ
T
f f ω f f , (36)

and gives the following error equation instead of (33)

e(t) =Wr(s)SD
[Θ1T

f (t)Ω1
f (t)

...
ΘmT

f (t)Ωm
f (t)

−

Θ1∗T
f (t)Ω1

f (t)
...

Θm∗T
f (t)Ωm

f (t)


+θ

T
f f (t)ω f f (t)−Θ∗T

f f (t)ω f f (t)
]

−Wr(s)SD
[
θ̂
∗T
τ ex(t− τ)+ θ̂

∗T
z ze(t)

]
. (37)

Introducing the parameter errors̃Θk
f (t) = Θk

f (t)−Θ∗k
f , k =

1, . . . ,m and Θ̃ f f (t) = θ f f (t)−Θ∗
f f , the equation for the

tracking error follows from (37),

e(t) =Wr(s)SD
[(

Θ̃1T
f Ω1

f · · ·Θ̃kT
f Ωk

f · · ·ΘmT
f Ωm

f

)T
+ Θ̃T

f f ω f f

]
−Wr(s)SD

[
θ̂
∗T
τ ex(t− τ)+ θ̂

∗T
z ze(t)

]
. (38)

As in Section V, the augmented vector ¯x(t) = [x x1 x2]T is
introduced, and the state of the corresponding non-minimal
realizationC̄(sI− Ā)−1B̄ of Wr(s)S, (C̄B̄ = S) is denoted

by x̄r(t). Then we can write the following state space
representation of (38)

˙̄e(t) =B̄D
[(

Θ̃1T
f Ω1

f · · ·Θ̃kT
f Ωk

f · · ·ΘmT
f Ωm

f

)T
+ Θ̃T

f f (t)ω f f (t)
]

− B̄D
[
θ̂
∗T
τ l̂T ē(t− τ)+ θ̂

∗T
z Cez̄e(t)

]
˙̄ze(t) =Aez̄e(t)+Bel̂

T ē(t− τ)
ze(t) =Cez̄e(t)
e(t) =y(t)−yr(t) = C̄ē(t) (39)

BecauseC̄(sI− Ā)−1B̄ = Wr(s)S is SPR [16], the triple
(Ā, B̄,C̄) satisfies the following equations, as in (22),

ĀT P̄+ P̄Ā+ Q̂ =0 P̄B̄ = C̄T (40)

whereP̄ = P̄T > 0 andQ̂ = Qe+Q.
To design the update laws, we use the functional

V =ēT P̄ē+ z̄T
e Pzz̄e+

∫ t

t−τ

ēT(s)Qeē(s)ds+ tr(Θ̃ f f Γ−1D̄Θ̃T
f f )

+
m

∑
k=1

(
γ

k
f

)−1
|dk|(Θ̃k

f − K̄k
1)T(Θ̃k

f − K̄k
1) (41)

where γk
f > 0, Γ = ΓT > 0, D̄ = diag{

∣∣d1
∣∣ . . . ∣∣dk

∣∣ . . . |dm|}
whereindk are the entries ofD, and

K̄k
1 =−r(dk)−1[I , 0, . . . , 0]T . (42)

The vectorsK̄k
1 have the same dimension asΘk

f , and r is
an “artificial” gain parameter whose value will be specified
later.

Let the adaptation algorithm be

˙̃Θ
k

f =−γ
k
f sign(dk)Ωk

f e
k, k = 1, . . . ,m

˙̃Θ
T

f f =−Sign(D)Γe(t)ωT
f f (t), (43)

where Sign(D) = diag{sign(d1), . . . ,sign(dm)}
With this adaptation algorithm, the time derivative of (41)

along the trajectories of the error system (39) becomes

V̇|(39) =− ēT(t)Qē(t)− r̄ ē(t)T P̄B̄B̄T P̄ē(t)− z̄T
e (t)Qzz̄e(t)

− ēT(t− τ)Qeē(t− τ)−2ēT(t)P̄B̄Dθ̂
∗T
τ l̂T ē(t− τ)

−2ēT(t)P̄B̄Dθ̂
∗T
z Cez̄e(t)+2z̄T

e (t)PzBel̂
T ē(t− τ)

Using the same arguments as in Section V above, after
the choice ofr1, r2, qe2 andqz1 satisfying the inequalities

r1 > 1
qe1

λmax
[
Ψ̄τ1

]
qz1 > 1

qe2
λmax

[
Ψ̄τ2

]
r2 > 1

qz2
λmax

[
Ψ̄z

]
where

Ψ̄τ1 = l̂ θ̂ ∗
τ D2

θ̂
∗T
τ l̂T Ψ̄τ2 = l̂BT

e PzPzBel̂
T Ψ̄z =CT

e θ̂
∗
z D2

θ̂
∗T
z Ce

we obtain

V̇|(39) ≤− êT(t)Qê(t)−qz2ẑT
e (t)ẑe(t)

−qe3êT(t− τ)ê(t− τ)≤ 0. (44)

By applying the same arguments as in Theorem 1 it can be
shown that limt→∞ ‖e(t)‖= 0.



All this leads to the main result of this section:
Theorem 2:Consider the closed-loop system defined by

the plant in (1), the controller in (36), and the updating
algorithms in (43) with Assumption 7.2. Then the following
two properties hold:

(i) all signals of the closed-loop system are bounded
(ii ) limt→∞ ‖e(t)‖= 0.

CONCLUSION

Two new output feedback adaptive control schemes based
on Model Reference Adaptive Control (MRAC) and adap-
tive laws for updating the controller parameters are devel-
oped for a class of linear multi-input multi-output (MIMO)
systems with state delay. An effective controller structure
established on a new error equation parametrization is
proposed to achievetracking with asymptotical zero error.
To achieve exact asymptotical tracking, we introduce, in
the standard MRAC structure for the plants without delay,
a new adaptive feedforward control component as an output
of a dynamical system driven by the reference signal.
The feedforward prefilter design procedure is developed to
determine the necessary feedforward dynamic system which
satisfies design conditions for two different assumptions
about the prior knowledge of the high-frequency matrixKp:
the symmetry assumption of [15], and the assumption on
the signs of the leading principal minors ofKp [16], re-
spectively. The proposed adaptive control law constructions
make economical use of known results of MIMO model
reference adaptive control to the considered class of de-
layed system. Adaptive laws are developed using the SPR-
Lyapunov design approach. This work is the first asymptotic
exact zero tracking results for this class of systems in the
framework of the certainty equivalence approach.
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