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Abstract— In this paper, Lyapunov-based adaptive control
is presented for a class of nonlinearly parametrized systems in
the presence of periodic disturbances. Through the use of an
integral Lyapunov function, the controller singularity problem
is elegantly solved as it avoids the nonlinear parametrization
from entering into the adaptive control and repetitive control.
Both global stability of the adaptive system and asymptotic
convergence of the tracking error are established, and tracking
error bounds are provided to quantify the control performance
analytically.

I. INTRODUCTION

Adaptive control has been extensively studied in the liter-
ature for nonlinear systems that are linear-in-the-parameters.
However, only few results available for nonlinear systems
that are nonlinearly parametrized owing to its dif£culty
in analysis and design though nonlinear parametrization
is common in many control applications such as fermen-
tation processes [1], bioreactor processes [2], and friction
dynamics [3]. Adaptive control for nonlinearly parametrized
systems has been an important and challenging area. In [4],
a globally stable output-feedback controller was developed
using high-gain adaptation for nonlinearly parametrized
systems with known and constant relative degree. Via
Lyapunov synthesis, an interesting control design was pro-
vided for a class of £rst-order nonlinearly parametrized
plants similar to those arising in fermentation processes
[1]. In [5], based on a min-max optimization strategy, a
novel control scheme was investigated for nonlinear systems
with convex/concave parametrization. Recently, a family of
integral Lyapunov functions is used to avoid the control
singularity problem in feedback linearization-based designs,
and to design the derect adaptive controller for a class of
nonlinearly parametrized systems [6].

Many practical systems such as batch processes perform
repeatable tasks and are commonly subject to periodic
disturbances [7]. Perfect tracking for such tasks may not be
achieved by the aforementioned adaptive control designs.
Learning control and repetitive control are the alternative
methods to address this problem. Both methods exploit
the repetitive features for improving system performance.
Learning control is formulated as that a single £nite hori-
zon tracking task is repeatedly performed, and for each
operation cycle the system is returned to the same initial
condition. Repetitive control is for the periodic reference
trajectory and disturbance with a known period, and there
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is no initial repositioning between successive periods. For
more details, refer to [8], [9], [10] and references therein. In
the literature, learning control without initial repositioning
is fundamentally the same as repetitive control. Thus, we
are not going to distinguish them, but take them as the same,
and call this approach, repetitive control in this paper with
the above understanding. There have been attempts made
to develop such schemes [11], [12], [13], [14]. Lyapunov-
based saturated learning approaches were presented for
robotic manipulators in [11] and for general nonlinear error
dynamics in [13]. Learning algorithms were systematically
developed in [12], based on kernel and in¤uence func-
tions. In [14], non-linear iterative learning was developed
elegantly by using Lyapunov adaptive techniques, and the
dead-zone modi£cation for robust parameter adaptation.
Adaptive iterative learning control has been studied for a
class of nonlinear systems in strict feedback form [24].

The key in the Lyapunov method is the choice of
Lyapunov function. The resulting controller is not unique
and the control performance varies with the choice of the
function [15]. In this paper, the integral Lyapunov function,
proposed in [6], [15] and discussed further in [16], [17],
is utilized for the repetitive control design. The developed
adaptive repetitive controller is applicable to a class of non-
linearly parametrized systems. Note that efforts have been
made for the balanced incorporation of adaptive control and
learning control. For robotic manipulators, different update
laws were introduced for parameter adaptation, e.g., in
iteration domain [18] and in time domain [19]. In [20], the
learning rules were proposed for PID gains estimation. The
research results for nonlinear systems can be found in [14].
However, these works are all for systems that are linear-
in-the-parameters. Compared with the previous works, the
main contributions of the paper lie in:

(i) the use of the integral Lyapunov function in avoiding
the nonlinear parametrization from entering into the
repetitive controller, consequently avoiding the possi-
ble singularity problem,

(ii) the combination of repetitive control and adaptive
control leading to the globally stable adaptive system,
and

(iii) the performance analysis providing the explicit
bounds on the tracking error.

The rest of the paper is organized as follows. The problem
formulation is given in Section 2. In Section 3, non-adaptive
repetitive control is presented for nonlinearly parameterized
systems. The adaptive one is developed by using general



σ-modi£cation parameter estimator and the performance
analysis is presented in Section 4 followed by Section 5,
which concludes the work.

II. PROBLEM FORMULATION

Consider a class of single-input single-output (SISO)
nonlinear systems described by⎧⎨

⎩
ẋi = xi+1, i = 1, 2, · · · , n − 1
ẋn = 1

b(x) [f(x) + g(x)(u + δ(t))]
y = x1

(1)

where x = [x1, x2, ..., xn]T = [y, ẏ, · · · , yn−1]T ∈ Rn,
u ∈ R and y ∈ R are the state variables, system input
and output, respectively; δ(t) ∈ R is the disturbance to
the system; g(x) is a known continuous function; functions
f(x), b(x) ∈ C1 can be expressed as

f(x) = θT wf (x) + f0(x), b(x) = θT wb(x) + b0(x)

where θ ∈ Rp is a vector of unknown constant parameters,
wf (x) ∈ Rp and wb(x) ∈ Rp are known regressor
vectors, and f0(x), b0(x) ∈ C1 are known functions.
The parameter θ enters into the parameterized system (1)
nonlinearly due to the parametrization of b(x). Denote
xd(t) = [yd(t), ẏd(t), · · · , yn−1

d (t)]T , where yd(t) is the
desired output to be tracked.

Assumption 1: The desired trajectory xd(t) is of period-
icity with known period T and δ(t) is also periodic with the
same period, i.e., xd(t) = xd(t − T ) and δ(t) = δ(t − T ).

Remark 1: Assumption 1 implies that the desired output
yd(t) and its derivatives up to (n − 1)th order as well as
the disturbance δ(t) are of the periodicity.

The control objective of this paper is described as fol-
lows: Given the desired trajectory xd(t) for nonlinearly
parameterized system (1) in the presence of the disturbance
δ(t), design an adaptive repetitive controller such that the
system follows the desired trajectory, while all the states
and the control remain bounded.

In Section III, the non-adaptive controller is £rst de-
veloped for system (1) in the presence of the periodic
disturbance, and then non-adaptive control is considered
for systems with non-periodic uncertainty. For simplicity
of presentation, in Section IV, the adaptive control design
is presented only for system (1). The same design procedure
can be taken for the systems with non-periodic uncertainty.

III. NON-ADAPTIVE REPETITIVE CONTROL

In this section, the control design is given by assuming
that θ is known. De£ne the £ltered error ef as

ef = [ΛT 1]e(t), e = [e1, e2, · · · , en] = x − xd

where Λ = [λ1, λ2, · · · , λn−1]T is chosen such that the
polynomial sn−1 + λn−1s

n−2 + · · · + λ1 is Hurwitz. For
the control design, the following scalar function is chosen
[15]

Vf =
∫ ef

0

σbα(x̄n−1, σ + ν1)dσ

with
x̄n−1 = [x1, x2, · · · , xn−1]T ,

ν1 = y
(n−1)
d − [ΛT , 0]e

and
bα(x) = b(x)α(x).

Function Vf is referred to as the integral Lyapunov
function and α(x) is the smooth weighting function. The
integral Lyapunov function is used to remove the possible
singularity problem and offers a design tool to retain some
system’s nonlinearites. In fact, there is no necessity to can-
cel all the nonlinearities for a stable closed-loop. In many
cases some nonlinearities of the system may be helpful
for achieving control objective. Examples for choosing Vf

are given in [15]. In this paper, both b(x) and g(x) are
assumed to be strictly positive. Without losing generality,
the following assumption is made.

Assumption 2: α(x) > 0 is chosen such that there
exist positive constants gα,0, bα,1 and bα,0 satisfying that
gα(x) ≥ gα,0 > 0 and bα,1 ≥ bα(x) ≥ bα,0 > 0, for all
x ∈ Rn.

Lemma 1: Under Assumption 2, Vf satis£es the follow-
ing inequality:

1
2
bα,0e

2
f ≤ Vf ≤ 1

2
bα,1e

2
f

Proof: The proof is straitforward by the de£nition of
Vf and Assumption 2.

From (1), the time derivative of ef can be written as

ėf =
1

b(x)
[f(x) + g(x)(u + δ(t))] + ν (2)

where ν = −y
(n)
d + [0 ΛT ]e.

Differentiating Vf along (2) yields

V̇f =
∂Vf

∂ef
ėf +

∂Vf

∂x̄n−1

˙̄xn−1 +
∂Vf

∂ν1
ν̇1

= α(x)ef [θT w(z) + g(x)(u + δ(t)) + h(z)] (3)

where
z = [xT , xT

d , yn
d ]T ,

and

w(z) = wf (x)

+
1

efα(x)

∫ ef

0

[
σ

n−1∑
i=0

∂wb,α(x̄n−1, σ + ν1)
∂xi

xi+1

+νwb,α(x̄n−1, σ + ν1)
]
dσ

h(z) = f0(x)

+
1

efα(x)

∫ ef

0

[
σ

n−1∑
i=0

∂b0,α(x̄n−1, σ + ν1)
∂xi

xi+1

+νb0,α(x̄n−1, σ + ν1)
]
dσ

(4)



Following the design in [15], u is chosen as

u =
1

g(x)

[
−κ

ef

α(x)
− θT w(z) − h(z)

]
, κ > 0 (5)

which renders (3) to

V̇f = −κe2
f + gα(x)efδ(t) (6)

Remark 2: Owing to the presence of δ(t), it is clear that
the asymptotic stability cannot be guaranteed even if δ(t) is
periodic. Therefore, model-based controller (5) cannot solve
the complete disturbance rejection problem.

Repetitive control is now incorporated in the feedback
control in order to solve the problem. Let us consider the
controller

u = ur + uf (7)

where uf is the feedback control given by (5) and ur is the
repetitive control given by

ur(t) = −δ̂(t) (8)

The disturbance estimation is updated based on the follow-
ing learning law

δ̂(t) =
{

sat(δ̂e(t)) + γgα(x(t))ef (t), t > 0
0, t ∈ [−T, 0]

(9)
where γ > 0, γgα(x) is the learning gain, δ̂e(t) = δ̂(t−T )
and sat : R → R is the saturation function de£ned by

sat(δ̂e(t)) =
{

δ̂e(t), |δ̂e(t)| ≤ δ̄

(δ̂e(t)/|δ̂e(t)|)δ̄, |δ̂e(t)| > δ̄

where δ̄ is the saturation bound satisfying that δ̄ ≥ δ0 and
δ0 = supt∈[−T,0] δ(t).

Lemma 2: Under Assumptions 1 and 2, all the signals in
the closed-loop system consisting of plant (1) and repetitive
controller (7) are globally uniformly bounded, and the error
between the actual and the desired trajectories converges to
zero asymptotically as t → ∞, i.e., limt→∞ e(t) = 0.

Proof: Combining (1) and (7), the time derivative of
ef can be written as

ėf =
1

b(x)
[f(x) + g(x)(uf + δ̃(t))] + ν (10)

with
δ̃(t) = δ(t) − δ̂(t),

which renders (6) to

V̇f = −κe2
f + gα(x)ef δ̃(t) (11)

De£ne the Lyapunov function candidate

V1(t) = Vr(t) + Vf (t)

with

Vr(t) =
1
2γ

∫ t

t−T

δ̃2(τ)dτ.

The derivative of V1 with respect to time can be computed
as, keeping in mind of (11),

V̇1(t) = V̇r(t) + V̇f (t)

=
1
2γ

{[δ(t) − δ̂(t)]2 − [δ(t − T ) − δ̂(t − T )]2}
+V̇f (t)

≤ 1
2γ

{[δ(t) − δ̂(t)]2 − [δ(t) − sat(δ̂(t − T ))]2}
+V̇f (t)

= − 1
2γ

{[δ̂(t) − sat(δ̂(t − T ))]2

+2δ̃(t)[δ̂(t) − sat(δ̂(t − T ))]} + V̇f (t)

= − 1
2γ

[γ2g2
α(x(t))e2

f (t) + 2γgα(x(t))ef (t)δ̃(t)]

−κe2
f (t) + gα(x(t))ef (t)δ̃(t)

= −
(γ

2
g2

α(x(t)) + κ
)

e2
f (t) (12)

Because bα(x) ∈ C1, Vf is a C1 function of x and xd. This
ensures that Vf (0) ∈ L∞ for any bounded initial values
x(0) and xd(0).

From (12), V̇1 ≤ 0, which implies V1(t) ≤ V1(0). Thus,
V1 ∈ L∞ and Vf ∈ L∞ as well. By Assumption 2,
integrating (12) leads to∫ t

0

e2
f (τ)dτ ≤ 2

γgα,0 + 2κ
(V1(0) − V1(t)),

which implies ef ∈ L2. In addition, by Lemma 1, ef ∈ L∞.
It follows that e ∈ L∞ from the de£nition of ef , and x ∈
L∞ from the boundedness of xd. It is easy to check that
uf ∈ L∞ from (5), δ̃(t) ∈ L∞ from (9), and ėf ∈ L∞ from
(10). Therefore, by Barbalat’s lemma, limt→∞ ef (t) = 0,
which implies limt→∞ e(t) = 0.

Remark 3: The choice of the learning laws is not unique
in the repetitive control design. For instance, the following
learning law can be obtained by saturating the entire right-
hand side of (9) as:

δ̂(t) =
{

sat(δ̂e(t)), t > 0
0, t ∈ [−T, 0]

(13)

where δ̂e(t) = δ̂(t − T ) + γgα(x(t))ef (t), which keeps
δ̂(t) within the saturation bound for all time. Computing
the derivative of Vr gives rise to

V̇r(t) =
1
2γ

[δ̃2(t) − δ̃2(t − T )]

= − 1
2γ

[δ̂(t) − δ̂(t − T )][2δ(t)

−δ̂(t) − δ̂(t − T )]

= − 1
2γ

[δ̂(t) − δ̂(t − T )][2δ̃(t)

+δ̂(t) − δ̂(t − T )] (14)



Cancelling the term − 1
2γ [δ̂(t) − δ̂(t − T )]2 results in

V̇r(t) ≤ − 1
γ

[δ̂(t) − δ̂(t − T )]δ̃(t)

According to the de£nition of saturation function, it can be
seen that

[δ̂(t) − δ̂(t − T )]δ̃(t) ≥ γgα(x(t))ef (t)δ̃(t) (15)

Thus,
V̇r(t) ≤ −gα(x(t))ef (t)δ̃(t),

which leads to
V̇1(t) ≤ −κe2

f (t) (16)

Therefore, Lemma 2 still holds if one replaces (9) with (13).
Remark 4: Comparing equations (12) and (16), both the

equations have the same control parameter κ > 0 to
guarantee the stability of the closed-loop systems, and (12)
has an additional parameter for adjusting the bound on V̇1(t)
by γ. The larger the γ is, the less the bound is. Increasing γ
may improve the convergence rate of learning law (9). On
the other hand, (16) does not confer such a bene£t through
the only change made is the learning law, changed from (9)
to (13). This small change leads to different treatment and
different performance. This is the case actually due to the
cancellation of the term in (14) and the use of inequality
(15).

In this paper, we give a general method for adaptive
repetitive control for such a class of systems, and both the
different learning laws can guarantee the convergence of the
tracking errors. However, the two different learning laws are
by no means exclusive. Other forms exist, and modi£cations
are possible. We are not going to elaborate further as it is
not the purpose of the paper.

Now we consider the control design for the following
class of nonlinear uncertain systems⎧⎨
⎩

ẋi = xi+1, i = 1, 2, · · · , n − 1
ẋn = 1

b(x) [f(x) + g(x)(u + ∆(ς, x, t) + δ(t))]
y = x1

(17)
where ∆(ς, x, t) represents the matching non-periodic un-
certainty and ς is the uncertain variable on a pre-speci£ed
compact set.

Assume that ‖∆(ς, x, t)‖ ≤ ρ(x, t), for all (x, t) ∈ Rn ×
R+, and the bound function ρ(x, t) is known. We construct
the following controller, by adding us to (7),

u = ur + uf + us, (18)

us = −ρsign(ef ) (19)

which renders (10) to

ėf =
1

b(x)
[f(x)) (20)

+g(x)(uf + us + ∆(ς, x, t) + δ̃(t))] + ν

This in turn results in

V̇f ≤ −κe2
f + gα(x)ef δ̃(t) (21)

To complete the stability and convergence analysis, we can
follow the lines similar to those after (11) in the proof of
Lemma 2.

Remark 5: In the above, we present a way to deal with
the uncertain systems in the spirit of robust control. One
may only apply robust control to solve the problem, for
example, by choosing

us = −(ρ + δ0)sign(ef )

and
ur = 0.

Asymptotic tracking can still be achieved, but at the price
of high control chattering, comparing with our design using
ur. Thus the introduction of ur is helpful for reducing
chattering. Robust control is one well-known deterministic
approach to treat the uncertainties in a dynamic system.
Upper bounds on the uncertainties play an important role
in the control design. In the published literature, the design
techniques are available for developing continuous robust
controllers. Following these techniques, we can develop a
continuous controller to replace the discontinuous one so
that the resulting closed-loop system is uniformly ultimately
bounded. However, asymptotic tracking cannot be achieved
even in the presence of the periodic disturbance.

IV. ADAPTIVE REPETITIVE CONTROL

In the case of unknown θ, the repetitive controller given
by (7) is not realisable. We propose the following adaptive
repetitive controller

u = ur + ûf (22)

ûf =
1

g(x)

[
−κ

ef

α(x)
− θ̂T w(z) − h(z)

]
(23)

where ur is given as (8). Denote θ̂ the estimate of θ and
M > ‖θ‖ an upper bound on ‖θ‖. The following parameter
update law is used

˙̂
θ = −Γ[α(x)efw(z) + σ(‖θ̂‖)θ̂] (24)

with the general switching σ-modi£cation

σ(‖θ̂‖) =

⎧⎨
⎩

0, if ‖θ̂‖ ≤ M̂

σm(‖θ̂‖), if M̂ < ‖θ̂‖ < 2M̂

σ0, if ‖θ̂‖ ≥ 2M̂

(25)

where
σm(‖θ̂‖) ≥ 0,

as well as

σm(M̂) = 0 and σm(2M̂) = σ0.

M̂ is given by the update law

˙̂
M = βσ(‖θ̂‖)θ̂ (26)



with M̂(0) = 0 and β > 0.
Typical σ-modi£cation estimation schemes can be found

in [21]. Update law (26) was proposed in [22] and is used
in the general σ-modi£cation algorithm.

Theorem 1: Under Assumptions 1 and 2, all the signals
in the closed-loop adaptive system consisting of plant (1),
repetitive controller (22) and adaptive law (24) are globally
uniformly bounded, and the error between the actual and
the desired trajectories converges to zero asymptotically as
t → ∞, i.e., limt→∞ e(t) = 0.

Proof: Consider the Lyapunov candidate

V2 = V1 +
1
2

(
θ̃T Γ−1θ̃ +

1
β

M̃2

)

with
θ̃ = θ − θ̂

and
M̃ = M̂ − M.

The derivative V̇1 can be computed as

V̇1 = −
(γ

2
g2

α(x) + κ
)

e2
f + α(x)ef θ̃T w (27)

and then the derivative V̇2 can be calculated as

V̇2 = V̇1 + θ̃T Γ−1 ˙̃
θ +

1
β

M̃ ˙̃M

= V̇1 − [α(x)ef θ̃T w + σ(‖θ̂‖)θ̃T θ] (28)

+σ(‖θ̂‖)‖θ̂‖M̃
= V̇1 − α(x)ef θ̃T w − σ(‖θ̂‖)‖θ̂‖(‖θ̂‖ − M̂)

−σ(‖θ̂‖)(M‖θ̂‖ − θT θ̂)

From the de£nition of σ(‖θ̂‖), it is seen that

−σ(‖θ̂‖)(M‖θ̂‖ − θT θ̂)
≤ −σ(‖θ̂‖)(M‖θ̂‖ − ‖θ‖‖θ̂‖) ≤ 0

−σ(‖θ̂‖)‖θ̂‖(‖θ̂‖ − M̂) ≤ 0 (29)

Keeping in mind of (27), we have

V̇2 ≤ V̇1 − α(x)ef θ̃T w ≤ −
(γ

2
g2

α(x) + κ
)

e2
f (30)

From (30), we know
V̇2 ≤ 0,

which implies
V2(t) ≤ V2(0).

Since V2(0) ∈ L∞, then V2 ∈ L∞. Thus, V1 ∈ L∞, θ̃ ∈
L∞ and M̃ ∈ L∞. By Assumption 2, integrating (30) leads
to ∫ t

0

e2
f (τ)dτ ≤ 2

γgα,0 + 2κ
(V2(0) − V2(t)),

which implies ef ∈ L2.
In addition, by Lemma 1, ef ∈ L∞. It follows from

the de£nition of ef that e ∈ L∞, and x ∈ L∞ from the
boundedness of xd. It is easy to check that ûf ∈ L∞ and

ėf ∈ L∞. Therefore, by Barbalat’s lemma, limt→∞ ef (t) =
0, which implies that limt→∞ e(t) = 0.

Theorem 1 implies boundedness of all the signals in
the closed-loop system and asymptotic convergence of the
output error. The following theorem speci£es both the root-
mean-square and the L∞ bounds for the tracking error.

Theorem 2: If the closed-loop system (1), (22) and (24)
satisfy Assumptions 1 and 2, then, for n ≥ 2,

i) the root-mean-square tracking error bound is given by√
1
t

∫ t

0

e2
1(τ)dτ ≤ k0√

2λ0t
‖ζ(0)‖

√
1 − e−2λ0t

+
k0√

λ0(γg2
α,0 + 2κ)

√
V̄2(0) (31)

where both k0 > 0 and λ0 > 0 are computable constants,

ζ(0) = [e1(0), e2(0), · · · , en−1(0)]T

and

V̄2(0) =
1
2

( 1
γ

Tδ2
0 + bα,1e

2
f (0) (32)

+θ̃T (0)Γ−1θ̃(0) +
1
β

M2
)
,

ii) L∞ tracking error bound is given by

|e1(t)| ≤ k0‖ζ(0)‖e−λ0t

+
k0√

λ0(γg2
α,0 + 2κ)

√
V̄2(0) (33)

Proof: Due to the space limitation, the complete prove
is provided in [23].

Remark 6: In Theorem 2, the error bounds are obtained
for n ≥ 2. In the case of n = 1, ef = e1. The L2 bound
for e1 can be expressed as∫ ∞

0

e2
1(τ)dτ ≤ 2

γg2
α,0 + 2κ

V̄2(0) (34)

By Lemma 1, Vf ≥ 1
2bα,0e

2
1. Since

Vf (t) ≤ V2(t) ≤ V2(0) ≤ V̄2(0) (35)

then the L∞ bound for e1 can be given as

|e1(t)| ≤ 2
bα,0

V̄2(0) (36)

Remark 7: From the de£nitions of ζ and ef , e =
[ζT , ef−ΛT ζ]T , which implies ‖e‖ ≤ (1+‖Λ‖)‖ζ‖+‖ef‖
[15]. The boundedness of states can be concluded by
Lemma 1 and Theorem 2.

Furthermore, through suitably choosing design parame-
ters, the bounds on states are adjustable and subsequently
can be guaranteed within some compact subset of Rn. The
assumption that bα(x) ≤ bα,1, for all x ∈ Rn, might be a
strong restriction, but can be relaxed as argued due to the
boundedness of states. For example, bα(x) ≤ bα,1 holds on
the given compact set. We can also suppose that Assumption
2 holds on the same set, not on whole state space.



Remark 8: It is clear from (31) and (33) that the tracking
error bounds depend on initial state error and design param-
eters γ and/or κ. Smaller steady-state tracking error bounds
can be obtained by choosing larger γ and/or κ. However,
careful adjustment should be made for achieving suitable
transient response and control effort.

Remark 9: The update term γgα(x)ef of (9) is indepen-
dent of both f(x) and b(x). Thus the parametrization does
not enter into the learning law (9). Owing to the use of the
integral Lyapunov function. The situation may be different
if other kind of Lyapunov functions is utilized,

Vf =
1
2
e2
f .

The derivative of Vf along (10) can be calculated as

V̇f = ef ėf (37)

= ef

(
1

b(x)
[f(x) + g(x)(uf + δ̃(t))] + ν

)

This suggests the choice of

uf =
1

g(x)
(−κb(x)ef − f − b(x)ν),

which leads to

V̇f = −κe2
f +

g(x)
b(x)

ef δ̃(t) (38)

To cancel the second term on the right hand side of
(38), we have to choose the update term as γ g(x)

b(x) ef .
The parametrization of b(x) consequently enters into the
learning law, which may result in a possible singularity
problem due to the estimate b̂(x)(= θ̂T wb(x)+b0(x)) close
to zero.

V. CONCLUSION

In this paper, Lyapunov based adaptive repetitive control
has been proposed for systems with nonlinear parametriza-
tion. The controller singularity problem is solved as the
use of the integral Lyapunov function avoids the nonlinear
parametrization from entering into the adaptive control and
repetitive control. Asymptotic convergence of the tracking
error is established in the presence of periodic disturbances,
while the global stability of the closed-loop system is
guaranteed. Tracking error bounds have been provided to
characterize the control performance.
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