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Low Complexity Control of Piecewise Affine
Systems with Stability Guarantee

Pascal Grieder, Michal Kvasnica, Mato Ba@otind Manfred Morari

Abstract [8], but mainly because of the exponential number

. . , of transitions between regions which can occur when
Piecewise affine systems are powerful models far

describing both non-linear and hybrid systems. Oné1 cqntroller Is computed in a dynamic programming
. . fashion [6], [10].

of the key problems in controlling these systems is™_ "

the inherent computational complexity of controller 11iS paper addresses the clear need for low com-

synthesis and analysis, especially if constraints c)Hlexny controllers for hybrid systems and presents two

states and inputs are present. This paper illustrate@90rithms which tend to achieve this goal. Specifi-

how reachability analysis based on multi-parametricc@lly: the computation of a minimum-time feedback

programming may serve to obtain controllers ofcontroller is presented as well as a control scheme
low complexity. Specifically, two different controllerWNich aims at obtaining a low (but not necessarily
computation schemes are presented. In addition, Einimal) number of switches in the system dynamics.
method to obtain stability guarantees for generall @ddition, a general scheme for obtaining stabil-

receding horizon control of PWA systems is given. 'Y guarantees for generic PWA systems subject to
receding horizon control will be presented. Unlike

the method in [11], we do not require the PWA
dynamics to be continuous. This scheme can also be
used in connection with other controller computation
|. INTRODUCTION methods [11], [1], [6], [10] to obtain stability guar-
Optimal control of piecewise affine (PWA) sys-antees. Specifically, an invariant target set along with
tems has garnered increasing interest in the researghpiecewise linear feedback law and an associated
community since they represent a powerful tool folLyapunov function is computed with semi-definite pro-
approximating non-linear systems and because of thegramming methods and the optimal control problem
equivalence to hybrid systems [9]. Optimal controlis subsequently updated according to [12] in order to
for PWA systems may be obtained by solving mixed-obtain stability properties.
integer optimization problems on-line [4], [11], or
as was shown in [1], [6], [10], by solving off-line
a number of multi-parametric programs which were
introduced for constrained linear systems in [5]. By , . i
multi-parametric programming, a linear (mp-LP) or This section flrst covers some of the fundamentals
quadratic (mp-QP) optimization problem is solved off-0f MP-QP for linear systems before restating recent
line. The associated solution takes the form of a PWAESUlts for PWA systems. Consider a discrete-time
state feedback law. In particular, the state-space [f€ar time-invariant system
partitioned into polyhedral sets and for each of those
sets the optimal control law is given as one affine z(k+1) = Ax(k)+ Bu(k) ()
function of the state. In the on-line implementation of
such controllers, input computation reduces to a simpleith A € R"*™ and B € R"*"™. Let z(k) denote the
set-membership test. Even though the approaches limeasured state at timé and z, (uix) denote the
[1], [6], [10] rely on off-line computation of a feedback predicted state (input) at time, given z(0). Assume
law, the computation quickly becomes prohibitive fornow that the states and the inputs of the system in (1)
larger problems. This is not only due to the highare subject to the following constraints
complexity of the multi-parametric programs involved
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IIl. PROBLEM DESCRIPTION ANDPROPERTIES

z(k) eXCR", wuk)eUCR”, Vk>0, (2
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finite-time optimal control problem

N-1

N1 J5(#(0)) =  min ul, Ruy, + z3, Qy,

IO = min D (Rux+ e Qu) ) o s 2, U o
k=0 ) s + .’E&VQf$N, (5a)
' +rNQran, (3a) subj. to zn € Xset, (50)
subj.ta z, €X, up_1 €U, Vke{l,...,N}, (3b) Lizy + Egup < Wi, if ap € Dy (50)
TN € Xset, (3c) Tp41 = Az + Biug + fi, zo = x(0), (5d)

Tpy1 = Azp + Bug, xo = x(0), (3d)

Q=0Q'+0, Qf=94=0, R=R'>0. (5e)
Q=09'x0, Qf=0Q; >0, R=R">0, (3e)

where (3c) is a user defined set constraint on the final In the following section, an algorithm is needed that
state which may be chosen along wi@y such that can detect if a convex polyhedrdh, is covered by
stability of the closed-loop system is guaranteed [12R finite set of non-empty convex polyhedf®,} % ;.

Definition 1: We define the N-step feasible set Due to space constraints, we refer the reader to [2],
XN CR™ as the set of initial states(0) for which  [7], where an efficient algorithm is given to perform
the optimal control problem (3) is feasible, i.e. this task.

N n Nm I1l. COMPUTATION OF STABILIZING
A7 ={z(0) eR"[3UN € RT™, CONTROLLERS FORPIECEWISEAFFINE SYSTEMS
xp €X, up—q1 €U, Vke{l,...,N}}.

_ / i VA H H H
where Uy = [y, .., uy_,]" IS the optimization scribed in [6] is the lack of an a priori stability
vector. By considering:(0) as a parameter, problem uarantee for the closed-loop system. Other methods
(3) can be stated as an mp-QP [5] which can b? P Sy :

solved to obtain a feedback solution with the foIIowing.ll] only proy|de S“?‘b"'tY guarantees if the origin
properties is contained in the interior of one of the sefy.

Th 1-15] Consider the finite i . dWe propose a method for obtaining stabilizing con-

qurem .[bl] on3$| (_arrht e 'E'te t|mefc;)nstrte)1||ne trollers for generic PWA systems. For general dynamic

regulation Bﬂ? em (3). Then, t. e.set 0 ea]_? € paéystems, stability is guaranteed if an invariant set is
rametersX* is convex, the optimizet/y, : A" —

RN i . 4 bi ise affine (PWA). | imposed as a terminal state constraint (see (3c)) and
is continuous and piecewise affine ( ). i.e. the terminal cost in (3) corresponds to a Lyapunov

. _ function for that set [12]. Analogous to controllers for
Un(2(0)) = Fra(0) + Gy, if - 2(0) € Py linear systems, we here compute a control invariant set
P,={zeR'Hz<K,}, r=1,...,R Xino With an associated Lyapunov function. In a first
step a stabilizing piecewise linear feedback controller
and the optimal cost/;; : XV — R is continuous, is computed. This can be achieved by searching for
convex and piecewise quadratic. feedback controllerd(; and a matrixP such that
According to Theorem 1, the feasible state spacé
is partitioned intoR polytopic regions, i.e. XN = P00
{P,}_,. The results in [5] were extended in [6] to (Ai + BiK;)'P(A; + BiK;) - P = 0, Viel
compute the optimal explicit feedback controller for.
PWA systems of the form

One of the main drawbacks of the methods de-

This can be rewritten as an LMI by using Schur
complements and introducing the new variabiés=
K;Q andQ = P~ 1,

z(k+1) = A;z(k) + Biu(k) + fi, (4a)
Liz(k) + Eu(k) <W;, i€l (4b) r;%der(Q), subj. to
if x(k) € D; (4c) Q =0,
. . . A;Q + B;Y;) ,
whereby the dynamics (4a) with the associated con- Q (A Yl =0, Viel.
straints” (4b) are valid in the polyhedral sB% de- (A4:Q + B;Y3)' Q - !

fined in (4c). The setZf C N is defined asZ = L .

{1,... ,If(} where; denotes the number of different  The maximization of d€t)) serves to maximize the
dynamics andN = {0,1,...} denotes the set of region of stability. Large target sets generally make
il_rlltegerfs treater ec Iualbf)ero' (tam; = {162’4. 3 ,ththe subsequent controller computations simpler. In a
x&nieﬁr n }'gst‘("g( kiu(;fe)\)”.al\?ot(e? a?nwe(d%) ot 'second step, the maximal output admissible xgt,
requirez(k+1) = fewa(z(k), u(k)) to be continuous. Of the PWA system subject to the feedback controllers

The optimization problem considered here is given by<; can be computed with the algorithm in [13], which
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is guaranteed to terminate in a finite number of stepSpecifically,
for the problem at hand. _ KEM(Xiny) = {2(0) € R"| Ju(k) € R™,s.t.
If we add the terminal set constraift,.; = X, i
along with the terminal Lyapunov co®®; = P in Liz(k) + Eyu(k) < Wi, if @(k) € Di,
(5), stability is guaranteed according to [12]. Note that r(k+1) = fewa(z(k), u(k)),
we only need to consider a single convex terminal z(N) € Xipy, Yk >0,N — co}.
set for linear systems. For PWA systems, the termin . .
set X, is given as a union of several convex set?' Off-Line Computation
Xinw = U, X which may be non-convex. However, Before presenting the algorithm, some preliminaries
if the union |J, X is convex, the regions can be Will be introduced. _
merged with the method in [3] which results in reduced Assume a possibly non-convex uniéff of poly-
algorithm run-time and solution complexity. topes A, i.e.U” = U;c o A7, where the seL” =
Note that the proposed method for guaranteeinélvl--wy}} containsL} positive integers. All states
closed-loop stability can easily be combined with othethich can be driven into the set’ are defined by:
control algorithms, e.g., [6], [ll],_ [_10], [1]. H0\_N_ever, PreU®) = {z € X | u e U, fowalz,u) € U°}
the procedure here is merely sufficient for stability. We
cannot guarantee that an invariant set and a Lyapunov = U U {:c eX|Juel,
function will be found in the suggested manner. i€T jeLo
IV. COMPUTATION OF A MINIMUM TIME v €Dy, Aiw+Biut fi € X?}

CONTROLLER FORHYBRID SYSTEMS . ) . .
For a fixedi and j, the target szeP(jO is convex and

The goal is the design of a feedback controller, sucthe dynamics affine, such that it is possible to apply
that the system constraints (2) are satisfied for all imgtandard multi-parametric programming techniques to
and stability is guaranteed. Without loss of generalitysolve the problem at hand [5]. Therefore the set
we restrict ourselves to the regulation problem, i.ePre(U°) is a union of polytopes and can be computed
how the stater can be steered to the origin withoutby solving Iy - L; multi-parametric programs. In
violating any of the system constraints along the close@ddition to the setPre(i/”), we then also obtain an
loop trajectory. associated feedback law which provides feasible inputs

One of the key problems in control of PWA sys-as a function of the state (see Theorem 1). Note that
tems is the lack of convexity in the controlled setsthe various controller partitions may overlap, but that
which produces a significant computational overheadach controller will drive the state intd” in one time
Furthermore, the complexity of the cost-to-go funcstep. We will henceforth use the following notation
tion in the dynamic programming approach in [61U"“ ! = PreU™®") = ;¢ puerss &)

[10] makes it necessary to explore an exponentially In the following, the Algorithm for computing the
growing number of possible target sets during théinimum time controller for PWA systems will be
iterations. The algorithms presented here avoid thedatroduced.

issues to some extent by forfeiting the optimality of

the control law. Specifically, we compute a minimal Algorithm 4.1: Computation: Minimum Time Con-
time and a ‘reduced-switching’ controller. Unlike thetroller

approaches in [6], [10], the cost-to-go here will only 1) Compute the invariant sef;,,, around the origin
assume discrete values. Due to the ‘simple’ cost-to-  (See Figure 1(a)) and an associated Lyapunov
go, the target sets which need to be considered at each function as described in Section III.

iteration step are larger and fewer in number than those 2) Initialize the set list/° = X;,, and initialize

which would be obtained if a cost optimal controller the iteration counteiter = 0.

were to be computed. Thus, both complexity of the 3) Compute Z/e™t!' = Pre(d"r) =

feedback law as well as computation time are greatly Ujewew X;t”“, by solving a sequence

reduced, in general. of multi-parametric programs. Thus, a feedback
If the proposed algorithm terminates, the associated ~ controller partition{P}*" "}/, is associated

feedback controller will cover the maximal control- to each obtained Seﬂf;te"Jrl. Obviously, the

lable set’CPWA(X,,.,). number of regionsR of each partition are a
Definition 2: The setC?VA(X;,,,,) denotes the max- function of iter and j (see Figure 1(b)).

imum controllable set for a PWA system (4), i.e., it 4) For all j* € Liertl f yitertt C

contains all states which can be steered iatg,,. Ujewerﬂ\{j*})(jt”“, then discardx "+
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and setgitertl = gitert1\ [i*1 (see Figure The control law at step 4 of Algorithm 4.2 will drive

1(c)). the state into a set/®*"~! in one time step (see
5) If yiter £ yiter+1 setiter = iter +1 and goto step 3 of Algorithm 4.1). Therefore, the state will
step 3. enter X;,, in iter steps. Once the state entets,,

6) For all & € {1,...,iter — 1} andr € NT the feedback controllers associated with the common
discard all controller region{sP]’?“},, for which  quadratic Lyapunov ensures stability. a

{Py™'}, € U,eqn.. iy U' since the associated
control law will never be applied. The proof stretches the classic definition of stability,

The indexiter corresponds to the number of stepssince the Lyapunov function is discontinuous and
in which a state trajectory will enter the terminal setassumes only discrete values for? X;,,. However,
Xin, if @ RHC policy is applied. If the algorithm this is not a problem, since Lyapunov functions do not
terminates in finite time, the union of all controlled setg1eed to be continuous for discrete time systems.

iter i H PWA
U is the maximum controllable s&t.;™(Xin,) as V. CONTROLLER WITH REDUCED NUMBER OF
given in Definition 2. Note however, that Algorithm SWITCHES

4.1 may not terminate in finite time (e.g. if states

are unbounded). It is therefore advisable to specif}/ IE{ 'S pOSS'b,ltetf[o otl_atam le;ven s(ljmp_ler Z?ntr(iltlwersdfa?d
a maximum step distance which can be used as gster computation imes by mo ifying Algorithm 4.1.

termination criterion in step 5 of Algorithm 4.1. Instead.of computing a minimum time .controller, an
alternative scheme which aims at reducing the number

B. On-Line Application of switches can be applied. A change in the active

In the minimum time algorithm presented inSystem dynami@®; — D;, (i # j) is referred to as a
this paper, we can take advantage of some of thawitch. The proposed procedure does not guarantee the
a|gorithm features to Speed up the on-line regio[ﬁninimum number of SWitChes, though Straightforward
identification procedure. We propose a three-tierefnodifications to the algorithm would yield such a
search tree structure which serves to significantigolution. The “minimum number of switches” solution
speed up the region identification. Unlike the searci/as not pursued in this paper since computation time
tree proposed in [14], the tree structure proposed hel¥as the primary objective.
is computed automatically by Algorithm 4.1, i.e., no The proposed reduced switch controller will avoid

post-processing is necessary. The three levels of tisvitching the active dynamics for as long as possible.
search tree are as follows: We will here introduce the following operator

lacrith ) licati ¢ Mini Pre;(X)={zeX | Juel,
Tirﬁgcggniroﬁéf. On-Line Application of Minimum 2 €D, A+ Biu+t f; € X).
1) Identify active dynamicg, such thatz € D;,. Once thej — th controller setht”’i associated to
2) Identify controller setX}t‘”’ associated with dy- dynamici and obtained at iteratioiter is computed,
namici which is ‘closest’ to the target set, i.e., the set is subsequently used as a target set for as
milse, ; iter, S.t.ax € X;t”. long as the controllable set of states can be enlarged.
3) Extract the controller partitioPi*"} £, with ~ With this scheme, the total number of convex sets
the corresponding feedback lawsG and iden- needed to describe the controlled $¢t" remains
tify the regionr which contains the state € constant while the size d@f"*" increases. Therefore,
{P]iter}r_ this scheme generally results in fewer sets during
4) Apply the control inputt = F,z 4+ G,.. Goto 1. the dynamic programming iterations compared to
Algorithm 4.1. The proposed scheme is guaranteed to
Note that the association of controller partitiotig’e” ~ work at least as well as Algorithm 4.1 with respect
to active dynamics in step 2 is trivially implementedto controller complexity. Specifically, the algorithm
by building an appropriate lookup-table during the off-works as follows:
line computation in Algorithm 4.1.
Theorem 2:The controller obtained with Algorithm  Algorithm 5.1: Computation: Controller with Re-
4.1 and applied to a PWA system (4) in a recedingluced Number of Switches
horizon control fashion according to Algorithm 4.2, 1) Compute the invariant set;,,, around the ori-
guarantees stability and feasibility of the closed loop gin and an associated Lyapunov function as

system, provided:(0) € KEWA(X;,,,). described in Section III.
Proof: Assume the initial state(0) is contained 2) Initialize the set list/® = X, = Ujero Xy
in the set/***" with a step distance t&,,, of iter. and initialize the iteration countéter = 0.
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2
x| X x;

U' = Pret") u ut
set (b) Set of state¢/! which (C) The transition partition (d) The transition controller

enterl/Y in one time step. does not expand the con- expands the controllable set
trolled set of states. of states.

(@ Tnvariant
Xinv-

target
Fig. 1.

Description of Algorithm 4.1.

3) Execute the following for ali € Z and j € will demonstrate efficiency of Algorithms 4.1 and 5.1

Liter: onEthe fOI|IOVXinc? ex%mpl?]s. o i onal b _
ot - e _ xample 1:Consider the 2-dimensional piece-wise
3) I)?ltlahze counterc = iter and setC* = linear sy%temc(k+1) = A;x(k)+ Biu(k), su[():h that:
b) Cjompu'[ec“rl = Pre;(C°) by using multi- L if 21(k) >0 & @2(k) >0
parametric programming and store the as- i= g :; E%Z; E 8 ﬁ ?;283 § 8
sociated controller partition. Thus, a feed- 4: if 21(k) > 0 & xo(k) < 0
back controller partitio{ P+ }E_ is 1 )
obtained. Ai=1| 4 1 ] , Bi= { 0.5 } )
c) If cc C Ccetl, setc = ¢+ 1 and goto step (11 L
3b. Ad=1 1]’32:{—0.5}’
d) If ¢ = iter setyfiter+l = yyiter+l ycetl, - 1 1 1
e|Seuiter+1 — uiterJrl U Ce. As = 0 _1 :l , B; = [ 65 } ,
4) If yiter+1 L yier | setiter = iter + 1 an goto 1 1 .
3 As= 01}’&:{45y

5) For all k € {1,...,iter — 1}, ¢ € N and
r € N* discard all controller regionSP;?’k“}T . .
for which {p;,k-&-l}r CUicpn U’ since the .One can obserye, that thg system s a doublg integrator
associated control law will never be applied. N the discrete time domain, with different orientation
The on-line computation is identical to the schem®f the vector field in the different quadrants. The state
described in Section IV-B. and input constraints, respectively, arel < z(t) <
Remark 1:If we always havece ¢ ¢+l in step 3¢ 9 —2 < 22(f) <5, —1 < u(k) < 1, and the weight
of Algorithm 5.1, then Algorithm 5.1 is identical to Matrices for the optimization problem ag= I, and

H ifrc c+1 i i i =1.
Algorithm 4.1. However ifC® € C**', It. is possible RExampIe 2:Consider the following 3-dimensional
to perform a large part of the computations on convejya system [11]:
sets, which makes Algorithm 5.1 significantly more
efficient than Algorithm 4.1. w(k+1) = Aiz(k) + Bou(k) + fi, i= {

Theorem 3:A controller computed according to

1, if z2(k) <1
2, else

Algorithm 5.1 and applied to a PWA system (4) 105 0.3 0 0
according to Algorithm 4.2, guarantees stability and™ = 8 (1) } » Bi= (1) , fi= 8
feasibility of the closed loop system, provide)
,CPWA(X, ). 1 02 03 0
RN A,=|0 05 1 |, Bo=|0
Proof: Follows from Theorem 2. O o 0 1 1

Subject to constraints-10 < zy(k) < 10, —5
x2(k) <5, =10 < z3(k) < 10, and—1 < u(k) <
V1. NUMERICAL EXAMPLES Again, weights in the cost function a@ = I, R
As was shown in [8] and will also be illustrated 0.1.
in this section, computing minimum time controllersTo initialize the algorithm described in Section IV,
instead of optimal controllers may serve to signifi-one first needs to compute a control invariantgf,
cantly reduce computation time, since in general, fewaround the origin. Once the sét;,, is computed,
regions are obtained than with the algorithm in [6]. WeAlgorithms 4.1 and 5.1 are applied to Examples

0.3

, fa= 05
<

1.
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Algorithm 4.1 Algorithm 5.1 Dynamic Programming [6]
Run time | # regions || Run time | # regions|| Run time # regions
Example 1 71 sec. 174 39 sec. 138 91 hours 3904
Example 2 791 sec. 642 151 sec. 293 * *
TABLE |

COMPARISON OF THECPU-TIME AND THE NUMBER OF REGIONS FOR DIFFERENT SYSTEMSx DENOTES THAT THE COMPUTATION FOR

THE PARTICULAR PROBLEM HAD NOT CONVERGED AFTER/ DAYS.

1-2. A comparison of both Algorithms 4.1 and 5.1loptimal feedback law is automatically constructed by
with the approach in [6] is given in Table I. In [6], both algorithms.

the authors solve an optimal control problem in a The presented algorithms as well as a more detailed
dynamic programming fashion for a fixed horizon. Inreport can be downloaded frohi t p: // control .
order to guarantee a fair comparison, the algorithm a=e. et hz. ch.

presented in [6] was slightly modified to include an
additional check for convergence. This addition was
necessary to guarantee termination of the algorithm aftl M. Baotic, F.J. Christophersen, and M. Morari.

soon as the controller covet§?"A(X;,,.,). Note that

the influence of this additional check on the run-times
given in Table | is negligible. As can be seen from [2]
the results in Table |, the methods proposed in thisg
paper are superior to the approach of [6] regarding
complexity. The reason for the drastic decrease in
runtime is the reduced number of target sets. However[,
neither Algorithm 4.1 nor 5.1 guarantee optimal closed
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