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Reachability Analysis of Hybrid Control Systems Using
Reduced-Order Models

Zhi Han and Bruce Krogh

Abstract— Complexity of reachability computations for con-  the procedure is the estimation of the upper bound of the
tinuous and hybrid dynamic systems typically grows exponen- error for all trajectories, which guarantees the soundness of
tially with respect to the dimension of the continuous state verification results based reduced-order models.
space. Consequently, reduced-order models usually need to .
be constructed to make reachability analysis tractable. Use Pappqs and Tanner proposed the conceptootinuous
of reduced-order models makes reachability-based verifica- abstractionsfor LTI systems to construct reduced-order
tion unsound, however. This paper presents a method for models that preserve reachability properties [16], [13]. Their
incorporating bounds on errors due to model reduction into  approach differs from the model reduction method proposed
reachability analysis for a class of hybrid control systems so here in two ways. First, the output trajectory of a continuous
that the computed sets are guaranteed to be conservative (i.e., . ’ .
over-) approximations of the reachable sets for the original abstraction matches that of the full-order model e_xactly, a
system. We also present an efficient method for computing reduced-order model from standard model reduction algo-
error bounds due to model reduction for finite-time horizons  rithms usually introduces output error. Second, a continuous
that are less conservative than error bounds from the model- apstraction does not require the same input signal as the full-
reduction literature. The effectiveness of the approach is order model; the input to a standard reduced-order model is
illustrated with an example. . . Lo .y . .

identical to the input for the original system. At this point
I. INTRODUCTION continuous abstractions are more suitable for hierarchical

N o ) ) ~modelling of linear control systems than for reachability
Reachability analysis is a major approach used in Ve”f'énalysis and verification [14].

cation, controller synthesis and analysis of hybrid dynamical the paper is organized as follows. Section Il introduces
systems [17]. The main difficulty in reachability computahg ¢jass of hybrid control systems considered in this paper,
tion is the order of the system, i.e., the number of continlefines the reachability problem, and presents some results
ous state variables. As the order increases, the complex{ym the literature on projection-based model reduction
of computation grows exponentially. Consequently, curreniiqrithms. Section Il presents our approach to reachability
verification tools based on reachability analysis are limitedynntations that account for the error introduced by model
to systems with less than six to eight state variables. o4y ction. Details of the procedures for continuous-time and
To use existing verification tools for hybrid systemsgjscrete-time hybrid control systems are given in section
one usually has to construct a reduced-order model of thg |5 section V, we illustrate and evaluate the reachability
continuous dynamics with which reachability analysis iyrocedure for a model of an electrical throttle control (ETC)
performed. There are two problems with this approachyysiem, a hybrid control system with seven continuous

First, the reduced-order model is usually an approximatioRaie variables. The concluding section summarizes the
so its trajectories do not match the trajectories of the origin@lyntributions of this paper.

model exactly. This deviation, which is called the error

of model reduction, is usually not accounted for in the Il. BACKGROUND
verification procedure. Second, the reduced-order model ) Hyhrid Control Systems and The Reach Set
often tested using simulation to generate a finite set of
trajectories. There is no guarantee that other trajectories
are close approximations of the associated trajectories
the original system. These two problems make the verifica-
tion result unsound because reachable sets computed usﬁ)@tem .

reduced-order models are not guaranteed to be conservative z(t) = Az(t) + Bu(t), y = Cx(t)
approximations of the reachable sets for the original systergr 5 discrete-time LTI system

Properties verified for the reduced-order model might be

We consider the class of hybrid control systems com-
sed of a plant and a hybrid controller as shown in Fig. 1.
e plant is a continuous-time linear time-invariant (LTI)

violated by the original model. z(t + 1) = Az(t) + Bu(t), y = Cz(t)

To address the above problems, we develop a reachability . . Al B
approximation procedure in this paper that accounts for Following [19], we use the notatioS’ = | —=——
the error introduced by model reduction. The key point ofs a shorthand notation for an LTI system (the context will

) ) indicate whether it is a continuous- or discrete-time system).
Z. Han and B. Krogh are with Department of Electrical and

Computer Engineering, Carnegie Mellon University, PA 15213 A hybri_d controller ¢ = (QvQO7T’ [5G, I) consists of
zhih—krogh@ece.cmu.edu the following components:
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Plant (LTI) the set of initial states of the state variables of plant when
the controller is in mode; and leti/ denote the set of
u y closed-loop control signals. In the procedure we proposed,
we use existing tools to compute closed-loop reach set and
use the bound of admissible control signal to estimate the
error introduced by model reduction.

We define the reach set of the closed-loop control signals

Hybrid Controller

Fig. 1. A hybrid control system

« (Q a finite set of control modes; as follows.

« go an initial control mode; Definition 1 (Reach set at a time instan{given a con-

« G €2Y aset of guard conditions over the plant outputinuous time LTI control systerfi = é g the reach
spaceY C R™;

« I:q— 2Y aplant output invariant set associated withtshe; ';f;rta given set of controlg and initial setX, C R" is

each control mode;
T:G — (Q — Q) a set of transitions associated with Reach(S,U, Xo,t) = {z(t)|z(t) = ¢u (¢, o)
guard the conditions;

f:(QxY)— U a set of control laws. = f(q,y).

We note that the controller in the above model implementsThe output reach set is the set
an output feedback law and has only discrete-state dynam-
ics. Controllers with internal LTI continuous dynamics can
be converted into the above form if the continuous dynamics
are the same in all control modes (e.g., if there is a state Reach set for discrete-time systems are defined in the
observer in the controller). In this case, the continuousimilar way. In the rest of this paper, theachability
dynamics of the controller can be incorporated into the plagroblemwill refer to the output reachability problem. We
model. define the reach set for a time interval as follows.

We assume the control state makes a transition any timeDefinition 2 (Reach set for time intervallfhe reach set

a guard is enabled (i.e., we assummgent semantics for and output reach set for a time interyaj, ¢ ;] are defined
the discrete state transitions in the controller). The outputs

invariant set,/(q), indicatesa priori bounds on the value
of the output signal when the controller is in mogeWe
assume that for the reachable output values, if none of the
guards are satisfied by the outpyt) when the controller is
in modeg, theny € I(q). (This condition is easily satisfied
by making(q) the complement of the guards in mode
but further knowledge of the reachable output values for t
system may make it possible to makig) smaller.) We use
the invariants to construct the set of possible control values Model reduction for linear time-invariant (LTI) systems
for each control mode. For each mogethis set is given has been studied since the 1970’s [1], [11], [19], [12], [9].
as Model reduction methods apply only to stable systems. For
U(q) = {ulu = f(q,y),y € 1} unstable systems, the system is decomposed into the stable
and unstable pal8 = Ss;apie+Sunstabie @nd only the stable
art is reduced. See [19], [1], [11] for further discussion on
odel reduction techniques. We introduce the formulation
of projection and model reduction [1], [18]. It was pointed
t that most of the widely-used model reduction methods
can be formulated as projections [1].
A matrix 7 € R"*" is called a projection ifr = 72. If
m iS a projection, it can be written as = wy7r, Where

"t
= ety +/ AT By, (1)dr, w0 € Xo, $u(-) € U
0

Reach®(S,U, Xo,t) = {y(t, z0)|y(t, u,z0) = Cz, where
x € Reach(S,U, X, t}

Reach(o)(S,le,Xo7 [to,ts]) = U Reach(o)(S,U,Xo,t).
te[to,tf}
This definition of the reach set for a time interval
corresponds to the sets computed by reachability-based
verification algorithms [2], [15], [3].

h@. Model Reduction of LTI by Projection

These bounds on the plant control input will be used t
estimate bound of the error in the computed reachab
outputs for the closed-loop system. We ysg-) to denote
a closed-loop trajectory of the control signal. Suppose
time ¢ the controller is in modeg, then it is true that
¢u(t) € U(q). We usel{ to denote the set of trajectories of
closed-loop control signal{ is a subset of the admissible
control setd C {u(-)|u(t) € U(q) , t > 0}. m, € R ap o€ R oand rpmy = 1 where
For a hybrid control system, the reach set is typicall¥n _ mnk(%) < n. Projection-based moanel, reduction

defined |_n terms of the state_ yanables of_the plant. F%ethods construct the matrices for the reduced-order model
the continuous-state reachability computations, we foc%S follows [1], [18]:

on the reachable set while the controller is in a particular

mode. When the control mode switches, the reachability A, = nrAny, B, = nrB, C, = Cryp,
computations are resumed using the control input set de-

fined for the new mode. In the following we focus on. For a stater in the original state space, the corresponding
reachability computation for a given mode. LEt denote state in the projected state spacerjs= mrx
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In order to guarantee conservativeness, we need to datroduced by model reduction. Details of the procedures
termine a bound on the additive error between the originare given in the next section.
model and the reduced model, given by

‘ LTI model ‘ ‘ Hybrid controller ‘
er(t,u, o) = y(t,u, x9) — yr(t,u, TrETo).
The error trajectory is equivalent to the output tra- :Moddredljmn
jectory of the following augmented systerf,., =
A B A A A
A, | B, | for initial condition | *° and ‘ Reachability analysis with error estimate ‘
cC —C, |0 TR0
. T ‘ Fig. 2. Reachability analysis using reduced-order models.
input u(-).

The error bound computed from the augmented system Algorithms for rea_chability analysis compute r_each sets
is called a posteriori since it is computed after model In terms of state variables [2], [15], [7], [3]. In this paper,

reduction [8]. Thea priori error bounds, which can be we consider the reach sets in terms of the output variables.

computed before creating the reduced-order model, haJQGY can be easily computed using the Imegr transformation
matrix C : R* — R™. The conservativeness of the

been derived for several model-reduction methods §]. . . .
utput reach set is guaranteed by underlying algorithms,

riori error bounds can be computed from the solutio X
P P at is, Reach®(S, U, Xo) C Reach?,,, (S, U, Xo) where

of Lyapunov equations, which can be easily solved usin
yap g y each®,,.,(S,U, Xy) denotes the computed result. Our

existing efficient numerical packages. They are usually more™. t.wm? i duced-ord dels t e th
conservative tham posteriorierror bounds, however. objective 1S 1o Use reduced-order models to compute these

In this paper we apply one of the most commonly useapproximations. In order to be conservative, the reach sets

projection-based model reduction methods, the balanc&iE bloated to compensate for the error introduced by model

truncation [10], for which theoretical error bounds can béeductlon. N . S
obtained [5]. The result of bloating is a conservative approximation

Theorem 1 A priori error bound [11]): Assume  the of the reach set of original systes In the remainder of

original system is of orden and the reduced-order system:jhIS SeCtt'ﬁn V\;Pe1 focust_on th_e tshubrout:ne e;estlmate and
of order k is obtained using balanced truncation. Lt IScuss the other routineés in the next section.

_c;(ra]note the-th Hankel singular value of original systefh Reach6,S,,U, X0, Xo)
en Reach = reaclapprox@,.,U,X,);
_ n epsilon = errorestimatef,S,.,U, Xo, X,0);
20=0 ) ([[0,00) . ) A
e’ (00) < flu(-)]|ss™ (4 Z (2i = Doi) (1) R = bloat(Reach, epsilon);
=rd return(R)

wherei is the Iargest integer such th@t.H > 2\/§Mk and Fig. 3. A reachability analysis procedure using reduced-order models
My = Zizl Ok+i In the procedure in Fig. 3 we only compute the reach

set for the reduced-order model, thereby avoiding the more
expensive reachability algorithms for the full-order model.
However, the routineerror_estimate uses both the full-

In this section we present a procedure to use reducedrder and the reduced-order model. We show in the follow-
order models to compute conservative approximation ohg that an error bound can be computed from simulations of

IIl. REACHABILITY APPROXIMATION AND ERROR
ANALYSIS

the reach set for a hybrid control system. An outline of A B
the procedure is shown in Fig. 2. Given an LTI plant andhe augmented LTI systerfi,,, = A, | B,
a hybrid controller, first a reduced-order model for the c -C, \ 0

plant is created. Then it is composed with the controllefne computation time of simulations is negligible compared
to form a hybrid automaton [6], which is analyzed using &Vith the reachability computation.

slight modification of the procedures in the verification tool The routine from CheckMate computes the reach set
CheckMate [2]. A bound on the error introduced by modefegments for each discrete state. For a specific sgtate
reduction is computed, which is used by the reachabilité assume the controller outputt) € U(q) = {ulu =
analysis routine to provide a conservative result. A sketch(4,¥),y € I} is bounded. It is sufficient to have a method
of the reachability procedure using the error bounds i compute an error bound for an arbitrafy, bounded
shown in Fig. 3. We usé& and S, to denote the original control inputZ/. An upper bound of the Euclidean norm of
system and the reduced-order system, respectively. First ®&or over all possible initial conditions and input signals
compute the reach set of the reduced-order model usi§@n be formalized as the solution of the following optimal
approximation algorithm reachpprox. Then the error of control problem:

reduction is computed. The final step is to bloat the reach

set of the reduced-order model to compensate for the error e (t) = TL(.)EIE%GXO le(o, u. )]
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= max ly(zo,u,t) — y- (R0, u, t)|| (2) response. The first computation involves integration of the
u(")€U:zo€Xo norm of the impulse response of the augmented system,
The error bound is a function of time. We compute a morgvhich can be obtained from a simulation. The second
conservative error bound as the sum of two error boundsomputation involves simulating all the vertices of the initial
e20=Y is the error of the zero-state response, given by  set X, when X, is polyhedral.

CCQ:O — _—
e’ (1) = wCyeis lle(zo = 0, u,t)l| IV. REACHABILITY ALGORITHM - IMPLEMENTATIONS
= ur(nfg; ly(zo = 0,u,t) = yr(zro = 0, u, B There are various tools developed to compute reach set

0 in state space [2], [3], [7], [15]. Our descriptions are imple-
ande;=" is the error of the zero-input response, given bymentations of the algorithm in Fig. 3 for continuous-time

=0(t) = max lle(zo,u = 0,1)] and_dlscr(_ate -time LTIs. W|th the spec_|f|c |mplemgntat|on,
20€X0, Tr0E€EXr0 we investigate the underlying numeric computations and
= max lly(zo, v = 0,t) — y.-(TrTo, u = 0, 1) demonstrate the reduction of computation time by using

Zo 0

reduced-order models. It has been shown in [15] that ori-
The error bound for the system can be estimated. @3 < ented rectangular hull (ORH) representation can reduce the
ero=0(t) + €+=(t) since the two systems are linear. computation time compared with the convex hull routines,
We now consider methods to estimate bound of outpwispecially for higher-order models. In this paper we show
signal of a given LTI system at timefor the input set/  that with the ORH representation, reducing the model by
and initial statesX,. Given the input signal i, [0, ¢], the  several variables will further shorten the computation time
bound of the output signal at timtecan be estimated using significantly. This observation makes it attractive to use

the following theorem. reduced-order models in reachability analysis.

Theorem 2 ([19]): For LTI systemS = AlB , let

c|o A. Algorithm for Discrete-Time Systems
y and u denote the output and input signals, respectively.

Suppose the input is ifi,[0,¢] space, Then the norm of ~The computation of reach sets for a discrete-time con-

output of the system at timeis bounded by trol system can be performed using linear mapping and
. Minkowski sum operations [7]. Following [15], we im-

ly(®)] < ly(0)] + ”u(_)HL%t]/ |Ce™B||dt  (3) plement the algorithm in Fig. 4 to compute reach set at

0 time t¢. The first step is to compute the reachable states

] using the reduced-order model. This is done by successively

Considering the norm of a zero-input response, the uppe@mputing the next step reachable set. The ORH is succes-
bound can be computed directly as sively computed to avoid the rapid growth of faces. The

" second step is to estimate the error bound using (7) and (8).

I((SJ;lerO Iyl = T:‘épo [Ce™z(0)]] (4)  The third step is to compute the conservative reach set in

output space. First, we transform each vertex to the output
Using (3) and (4) for the augmented system, the error @fubspace. Then we compute an ORH. Sificés unitary,
zero-state response is given by the bloat_r routine bloats the ORH by pushing each face
. A using the error bound, (k), where
<O [Tie e[ ][5 ]l ® i _
0 " bloat_r{z|d< VTe< dy={z|d —VTe<VTa<d+V7Te}
The error of zero-input response is given by
The algorithm computes the reach set for a time instant
it can be easily extended to compute the reach set for a time
interval.
For discrete-time systems, the two error bounds can bewe analyze the computation time for algorithm in Fig. 4
computed as by counting the number of flops (floating point operations).
9=0(1) < ()L ZH[C e, ][ ] [ B ] | - Each it_erat_ion consists of f_our steps: linear trgnsform, axis
ALl Br determination and computing ORH. The required flops of

[Ai Al} [mm} | " all the operations are [4]

e < sw e —o [ L]l e

zp€Xg TRIO

=0t < sup [[C —Cr]
: - o 02" n}) + O(n72") + O(n) = O(n;2°")  (9)
Notice that the estimated error bounds vary with time

The first error bound clearly increases with time, whereabhe operations outside the for-loop consist of a linear
the second bound could either increase or decrease as titrensform, an error estimation and one ORH. Suppose the
increases. dimension of the output i&. The linear transform requires

In summary, the computation of,. involves comput- O(n,.k2"") operations. The error estimation consists of two
ing error bounds for zero-state response and zero-inpsimulations, which requir€®(isn?) flops. The computation
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given : Original system a$A, B, C], Reduced system
[Ay, By, C,], X0, X0, admissible control set/
and a hybrid Controlled C'

output : Conservative reach saf of the original

system.
Algorithm
i=0;
X = X0,
WHILE i <t.f);
Vitx = vertices(X);
Vtr = A,.* V + B* control_set(HC, X);
Vy = determine_azis(Vtx);
X = ORHy, (Vtx);
END

€ = estimate_error(A, B,C, A, B, Cy, X0, Xr0,U)
Vitx = vertices(X)

Vitx = C,. x Vix;

Vy, = determine_axis(Vitx);

Y = ORHy, (Vtx);

Y = bloat.r(Y,e)

END

Given : Original system as$A, B, C], reduced system
as[A,, B, C,], Xo, X0, t, §, admissible control
U and a hybrid controlled? C

Output : Reachable set Y foft, t + 4]

Algorithm

/IStep 1. Compute the reduced flow-pipe segment.

V = vertices(X,o0)

Vitz, = evolvevertices(A,., By, t, X0, HC)

Vitxiys = evolvevertices(Ar, Br,t + 6, Xr0, HC)

U = determine_azis(Vize|J Vizits)

X = ORHu(Vt U Vt+5)

X = bloat_hull(X, Ay, By, X0, t,8, HC)

/IStep 2. Compute output reach set.

€ = estimate_error(A, B,C, A,., B, Cy, X0, Xr0,U)

Vitx = vertices(X)

Vitx, = C*Vitx

Vy, = determin_axis(Vitx,)

Y = ORHy, (Viz,);

Y = bloatr(Y, €)

END

Fig. 6. Reachability Algorithm for Continuous-Time Systems

Fig. 4. Conservative Reachability Algorithm for Discrete-Time Systems

outside the for-loop can be estimated as

O(nek2™) +2 x O(iy(n +n,)?) + 02" k?)
~ O(kn, 2" +ig(n, +n)?)

From (9) and (10), the total flops can be estimated as

i;O(n222") + O(kn, 2" +ip(n, +n)?)

The number of flops is super exponential in the dimensi
n,.. Therefore, using reduced-order models can decrease

first proposed in [2] and later adapted in [15] to use ORH
representation. The second part of the algorithm is the error
estimation and the transformation of the reach set in state
space to the output space.

There are two types of computations in the procedure:
the computation of polytopes and the bloating of polytopes.
From the discussion of the discrete-time algorithm, the
time for polytope computation grows exponentially with

OWe order. The bloating procedure involves solving the
R%timization problem [15]

computation effort exponentially. A comparison of com-

putation times for the models of different orders for the

example in section V is shown in Fig. 5.

20
o *
e}
c
3 15f
Q
K
£
= 10 *
5
i * *
3 L
g 5*‘ *
o
o

O4 5 6 7 8 9

Order of the model

Fig. 5. Computation times for the discrete-time reachability procedure.

B. Algorithm for Continuous-Time Systems

i vl i=1
maw|mznxr0€XT0Yfe[t,ﬂ_,;],u(_)eu Tae(r)i=1,---n

s.t. xp(t) = xro + /T Ax(s) + Bu(s)ds
Jo

in order to guarantee the conservativeness of the computed
ORH set. Experiments show that the time of solving the
optimization problem does not vary much with the order.
However the number of optimization problems increases
linearly as the order grows. A comparison of the computa-
tion time is shown in Fig. 7 for the example in section V,
wheret; denotes the time of polytope computation and
denotes the time of bloating routines.

180

To compute the reach set for a time interval iy,
existing tools like CheckMate [2] and/dt [3] partition
time into small intervals and compute polyhedral over-
approximations of reach sets for each interval. Following
the discussion in [2], [15], we implement the reachability
algorithm for continuous-time systems shown in Fig. 6. We
give the algorithm for a flow-pipe segmefitt + 4]. The
algorithms to compute reach set ffir,¢f] can be easily

the range.

*
160 ot 1
/ “total
1400 i
Q
S _120
[SFS r
5%
5100 ot
28 . !
g 801 7
8] ~ ;
L e /. v
60 e I S
v - / 2
a0t o - %
_—°
200 o
<<~~e’/
i .
0
4 5 6 7

Order Of The Model

Fig. 7. Computation time for continuous-time reachbility.

. . V. CASE STUDY: ELECTRICAL THROTTLE CONTROL
constructed by successively computing each segment over

SYSTEM

The algorithm in Fig. 6 has two parts. The first part is In this section we demonstrate the reachability procedure
to compute the reach set @f ¢ + 6]. The algorithm was for a model of the electrical throttle control (ETC) system
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from the DARPA MoBIES Open Experimental Platfor. o 1120

The plant is a continuous time LTI system with seven state o
variables. / os

The block diagram of the model is shown in Fig. 8(a). o % o %
The subsystem inside dashed box of Fig. 8(a) is modelled as v

4 e}
€
2 05

0 0.05 Uil 0.15 0.2 0 0.05 Gil 0.15 02
B Egntroller»Actuator (a) Error bounds for the fourttb) Error bounds for the sixth-
Controller and [ order reduced model. order reduced model.
Software I Plant Fig. 9. Error bounds for different reduced-order models.
Input I Filter Throttle angle

using discrete-time reachability analysis: for the given initial
set, the conservative result of the reduced-order model does
not have more discrete transitions than the full-order model.
This is verified by computing the reach set for both models
at the sampling time.

Part of the reach set for the full-order model and the
fifth-order reduced model are shown in Fig. 10. The sliding

(b) Switch Controller mode controller satisfies;(i + 1) = sgn(y1(¢)). It can

Fig. 8. Hybrid model of the sliding mode controller for the ETC system.:ﬁ?)r:]/etrr?le?e;t?e;hirzgr nc:zld;f Itshiorr?;g?er?'[ef/vﬁ?]nt]ﬁgt?lﬂl-
order model. Thus, the fifth-order model is a reasonable
approximation of the original one.

Linear Time Invariant (L TI)
system

(a) System diagram

the plant. The output of the plant are the throttle angiend
angular velocityw. The control inputs are; (y) = sgn(y2)
and angle command,.,. The sliding mode controller is a

discrete-time controller with sampling period of 20ms. 0.03
A series of reduced-order models were created using bal- 0.025 . Tth-order model
anced truncation [10]. We performed reachability analysis 5002 /
to verify the rise-time requirement. The initial set is chosen
to be{x|—0.005 < z; < 0.005,i = 1---7}N{z|—0.001 < 0015/ :
y; < 0.001,7 = 1,2}. The combined errok(¢) bound 0.01} Siorderredueed mode!
will be used for reachability analysis. Since the absolute 0.005!
value of y; and y, differ in magnitude, we estimate the /
reduction error for them separately to get more reasonable o

error bounds. As the order of the model decreases, the error 0.5 0.6 0.7 0.8 0.9
bounds of the zero-state response become dominant in the Fig. 10. Reach sets using the reduced-order models.

total error. The error bounds of model reduction increase in 114 reach set of the 4th-order model is shown in Fig. 11
magnitude as the or_der decreases. alpeiori error b_ounds The value ofy, in setY (4) has both positive and negative
of barl1anced trluncatu:]n for thi model are shown in table ;5 es. Thus in the next step, the next location of the system
For the model and the time horizon theposteriorierror  gn, 14 he positive or negative depending on the value of
bounds are much smaller than taepriori error bounds. y2(4). The reduced-order model could make a transition,

Order of the Lnoded' 80069 31116 37478 while the original model does not. We say that this reduced
a priori error boun . . . . . . -
a posterion error | 4.3396-07, | 0.00318, 0.0478. order model is not a good approximation of the original
bounds foryi, ya 4.49e-07 0.000302 0.00534 one.
TABLE | The purpose of reachability analysis for the continuous
ERROR BOUNDS OF THE REDUCEBORDER MODELS time ETC system is to verify the rise-time and overshoot

requirements. The rise-time requirement says all the trajec-

_To use a reduced-order hybrid model to perform reachgs jog enter the region95 < y» < 1.05 within 0.2 seconds.
bility analysis, we need to first verify that the reduced-ordeﬁ-he overshoot requirement says that no trajectories enter

model is a good approximation. For this model, our criteri%e regiony, > 1.05 during the time period. To verify this
for a good approximation is that reduced order model havl%quirment the reach set ovér, 0.2] is computed using

the same discrete transition sequence as the the original, algorithm in Fig. 6 with time step — 0.004s. The
system for the given initial set. This property is Veriﬁedreach set computed using the full-order model and fifth-

1A description of the DARPA MoBIES Automotive Open Experimental OFd€r r_educeq model are _ShOWﬂ in Fig. V. The reff\Chab"'ty
Platforms can be found at http://vehicle.me.berkeley.edu/mobies/ analysis verifies the rise-time and overshoot requirements.
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(2]

(3]
(4]
(5]

yZ

-0.01r
-0.021
-0.03F

-0.041

(6]

-0.0!

(7]

Reach set of the 4th-order reduced model

Fig. 11.

(8]
(9]

(20]

(11]

(a) Reach set for the 7th-order fulb) Reach set for the 5th-order re- [12]
model. duced model.
Fig. 12. Reach sets computed by the continuous-time algorithm.
[13]
[14]
VI.
This paper considers the use of reduced-order models [
reachability analysis for a class of hybrid control systems.
We present algorithms to estimate the error bounds of
model reduction. Combining these bounds with reachabijsg
ity algorithms, we demonstrate that the algorithm using
reduced-order models is efficient in time compared with th
algorithms using full-order models. To use reduced-order
models in verification, the appropriate reduced-order should
be chosen to achieve a trade-off between the approximatigﬁ
error and dimension of the model. This problem is demorjig
strated with the ETC example. The experiment data show
that the less the order of the model, the less the computation
time. However, as the dimension of the model decreases,
the additive error introduced by model reduction is larger.
Future work will focus on methods for verifying properties
of more general classes of hybrid systems using reduced-
order models.
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