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Abstract— A method to estimate the maximum achievable
bandwidth of HDD actuators without closing the servo loop
is presented. The actuator dynamics are characterized by
the time delay created by the unstable zeros of the actuator
dynamics. The achievable bandwidth is a simple function of
the time delay and the sampling frequency. The feedback
controller, including a notch filter, can be designed simultane-
ously. Effects of dynamics variation of the actuator are also
considered, and a method to identify the time delay caused by
the variation is provided by using the recursive least square
method. By applying this method to a single-stage and a
dual-stage actuator system of HDDs, it is observed that the
variations of the high frequency modes play an important role
in the bandwidth improvement, especially of the dual-stage
actuator.

I. I NTRODUCTION

Higher-bandwidth servo/mechanical designs are required
to increase the track densities of hard disk drives (HDDs).
With a mechanical design approach, new types of actua-
tors [1], [2] and some modifications are pursued [3], [4].
With a servo controller design approach, anH∞ controller
design method [5] and a multi-rate sampling technique [6]
have been proposed. However, it is not clear how much
improvement can be obtained by these techniques before the
actuators are made and the servo loops are actually closed.
The servo controller design and the bandwidth estimation
were possible to achieve in the past by modeling the rigid
body mode and the butterfly mode of the actuator, but as the
target bandwidth and the sampling frequency increase, accu-
rate bandwidth estimation is not possible without modeling
the higher frequency modes. Even a dual-stage actuator will
not be an exception to this trend.

Integrated servo/mechanical design is an approach to
design the optimum actuator and servo controller at the
same time [7], [8]. It has been shown that the FFSPR
(Finite frequency strictly positive real) property determines
the actuator performance when the performance is evaluated
by the tracking error and the magnitude of the control input.
A new concept of an actuator based on the FFSPR property
has been proposed in [9]. However, for HDD applications, it
is desirable to increase the zero-crossover frequency of the
open loop transfer function without considering the limit of
the control input. This is because the control input for the
tracking case is much smaller than for the seeking case, so
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Fig. 1. Transfer functions ofH∞ design results for plants with stable
zeros (dotted line) and with unstable zeros (solid line)

control input amplitudes for the tracking case are typically
ignored.

This article discusses what characteristics are necessary
for the servo/mechanics to achieve higher bandwidth and
a technique to design the servo controller and the notch
filters to suppress high frequency modes. By using this
approach, the bandwidth of a particular actuator design
can be estimated before the actuator is actually made, and
efficient optimization of the servo and actuator design can
be done at the design phase. This approach also helps to
estimate how much the bandwidth is degraded when the
actuator modes vary. It enables the design of the optimum
servo controller and notch filters at the same time with
considerations of the tradeoff between the performance and
the filter complexity.

II. CHARACTERIZATION OF HDD ACTUATORS

H∞ control theory has been applied for HDD servo
controller design to achieve higher bandwidth [4]. Fig. 1
shows an example of transfer functions designed byH∞ for
the plant having a pole at 6 kHz and a zero at 4.4 kHz. The
solid line shows the case of an unstable zero and the dashed
line shows the case of a stable zero at 4.4 kHz. The plant
transfer function for the case with the stable zero is per-
fectly compensated to eliminate the modes by the pole/zero
cancellation. However for the case with the unstable zero, a
component remains uncancelled, because the unstable zero
cannot be cancelled by an unstable pole. The design results



of H∞ control tend to cancel stable modes and to shape
the sensitivity function close to a desired curve as much
as possible. Therefore, if a plant has only stable poles
and zeros and the robustness against dynamics variation
is not important, any servo bandwidth can be obtained by
the continuous-time domain approach. By the discrete-time
domain approach, the servo bandwidth is only limited by
the sampling frequency and the computational delay [10].
If a plant has unstable zeros, the resulting servo bandwidth
is limited by the sampling frequency and the unstable zeros
as shown in Fig. 1 [11].

According to the Bode Integral Theorem and its exten-
sions, the negative area of the sensitivity function is limited
by the positive area [12].

m∑
i=1

log |βi| =
1
π

∫ π

0

log |S(ejφ)|dφ, (1)

where βi are the open-loop unstable poles andS is the
sensitivity function of the system. In the case of the HDD
servo, since the disturbances to be suppressed are generally
located at low frequency, the negative area of the sensitivity
function needs to be increased to achieve higher track
density. However, if there is a negative area in the high
frequency region as shown by the solid line in Fig. 1 around
4.4 kHz, this will be a waste of limited servo capability. It
will also increase the positive area that amplifies the sensor
noise or decrease the negative area at the low frequency.
The desired sensitivity function is the case of stable zeros
(dashed line) in Fig. 1. It is inversely proportional to the
disturbance at low frequency, such ass2. The sensitivity
function at high frequencies slowly decays to zero as the
frequency increases. This characteristic is important to have
good robustness, because the modes at these frequencies
tend to vary.

Assuming the actuator dynamics are denoted byP (s),
the numerator ofP (s) is divided into the factors of unstable
zerosN+

p (s) and stable zerosN−
p (s). It is rewritten as

P (s) =
N+

p (s)N−
p (s)

Dp(s)
. (2)

When the plant is augmented by the poles that are symmet-
ric about the imaginary axis to the unstable zeros, the plant
consists of an all-pass filter and a stable factor.

P (s)
N+

p (−s)
=

N+
p (s)

N+
p (−s)

N−
p (s)

Dp(s)
(3)

The all-pass filterN+
p (s)/N+

p (−s) has 0 dB gain over
the entire frequency range with some phase change with
frequency. Since transfer functions of HDD actuators have
unstable zeros in the robustness margin range shown in
Fig. 1, the phase change at the low frequency where the
bandwidth is determined is approximated by the constant
time delayTd. Therefore,

P (s)
N+

p (−s)
≈ e−sTd

N−
p (s)

Dp(s)
. (4)

This implies that unstable pole/zero cancellation for arbi-
trary actuator dynamics can be avoided by the introduction
of Td, and the sensitivity function is freely manipulated
under the constraints ofTd. For example, arbitraryP (s)
can be converted to a double integrator with some time
delay by using a factorHc(s),

P ′(s) = P (s)Hc(s) (5)

≈ e−sTd

s2
, (6)

where

Hc(s) =
Dp(s)

N+
p (−s)N−

p (s)s2
(7)

and it has stable poles and zeros except ats = 0. Thus,
the open loop transfer function of an arbitrary system is
approximated by a double integrator, a time delay, and a
feedback controller.

The resulting performance is determined by the parameter
Td. In this approachHc(s) becomes a part of the feedback
controller. That is, if the controllerC′(s) is obtained for
the plant with time delayP ′(s), the controller for the
actual plantP (s) will be C(s) = Hc(s)C′(s). Since the
parameterTd is created by the unstable zeros of the actuator,
it is obvious that the optimization of the frequency and
the damping of these modes is very important to yield the
maximum performance of the actuator.

III. C ONTROLLER FOR A PLANT WITH TIME DELAY

The performance of the plant in the continuous time do-
main generalized by (6) is determined only byTd. However,
for the discrete-time domain, the performance is determined
by both Td and the sampling frequencyFs. By using the
H∞ design method, the feedback controllersC′(s) and the
open loop transfer functions are calculated for the plant
P ′(s) and shown in Fig. 2. An iterative gain adjustment of
the weighting functions is performed in theH∞ design to
satisfy the stability margins of 5 dB and 30◦. The maximum
achievable zero-crossover frequency of the open loop is a
simple function ofTd andFs. For Fs = 40 kHz, the zero-
crossover frequency is approximated by

Fbw =
1

6.0 × Td + 170 × 10−6
, (8)

and forFs = 80 kHz

Fbw =
1

6.3 × Td + 70 × 10−6
. (9)

The difference in the coefficients is due to the fact that the
poles can be located higher when the sampling frequency is
higher. It is notable that the plant with large time delay will
not have higher bandwidth even if the sampling frequency
is increased.

By using Fig. 2, the achievable bandwidth of particular
actuators can be easily estimated before the servo is closed.
The servo controller is designed at the same time by
C(s) = Hc(s)C′(s), where C′(s) is a function of Td
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Fig. 2. Maximum achievable zero-crossover frequency of the open loop as
a function of time delay and sampling frequency when the design criteria
is set to 5 dB and 30◦ margins.
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Fig. 3. Transfer functions of VCM actuator obtained by FEMP (s), the
shaping filterHc(s), and the shapedP ′(s) = P (s)Hc(s).

andFs. Fig. 3 shows the example of transfer functions for
the case of the VCM (Voice Coil Motor) actuator transfer
function obtained from a FEM (Finite-Element Method).
This actuator has unstable zeros at 8.6 kHz. The phase
change at this frequency is observed on the compensated
transfer functionP ′(s) in Fig. 3, because the unstable zero
was not fully canceled by the pole.

IV. CONSIDERATION OF PLANT CHARACTERISTICS

VARIATION

A. Shaping filter

Since the actuator dynamics of an actual HDD are
not always constant, the optimumHc(s) designed for a
particular actuator is not always robust for another actuator.
For example, one HDD has several heads and the transfer
functions from the VCM to the various heads are not the
same. When the same controller is used for all heads,
the controller has to be robust enough for all of the
different transfer functions. This must also hold true when
the actuator dynamics change with temperature. The time
delay approach that has been previously described is also

applicable to dynamics that have variations. This relies upon
the fact that if the plant transfer function is shaped to be
lower than the1/s2 characteristics at the frequencies above
the bandwidthω ≥ ωbw, the robustness will be guaranteed
no matter what the phase at these frequencies is. (This is a
good assumption for a HDD actuator, but is not necessarily
true for any actuator.) That is, if

|Pn(ω)Hc(ω)| ≤ |1/ω2|, ω ≥ ωbw (10)

is satisfied for all plant dynamicsPn(ω), and the controller
calculated by theHc will stabilize all Pn.

The design process is as follows. First,

Pm(ω) = max{|P1(ω)|, · · · , |PN (ω)|} (11)

for each frequencyω is calculated andHc(ω) that satisfies

|Hc(ω)| ≤ |ω2Pm(ω)|−1 (12)

is obtained by using the frequency domain identification
method [13]. If the left hand and the right hand of the for-
mula are close to identical, the time delay ofHc is minimal.
Higher order modeling leads to better identification, but the
controller including notch filters will be more complex. The
tradeoff between the complexity of the feedback controller
and the performance is evident at this stage of the design.

B. Delay time identification in frequency domain

In order to calculate the time delay the model of the max-
imum envelope of the plant transfer functionPm(ω) is iden-
tified by the Recursive Least Square (RLS) method [13].
In conventional frequency domain identification method,
the parameters to be identified are complex numbers, thus
the number of parameters is large [14]. However in this
application, since the modelHc(s) is minimum phase, the
phase information is not necessary. Thus, the algorithm is
largely simplified and better accuracy is obtained.

Before the RLS method is applied, an initial model of the
transfer function has to be obtained, because in any method
of the recursive computation, initial values are important
to have good convergence as well as accuracy. The initial
model is formulated by the following

Pinit(s) =
N−1∑
l=0

kl

s2 − 2ζlωls + ω2
l

. (13)

Since the peaks ofPinit(s) roughly correspond to the gain
and the damping of each term, the initial values ofkl, ζl,
andωl are obtained by

1) Calculate maximum magnitudePm(ωj) around the
neighborhood ofωj − δω ≤ ω < ωj + δω to get the
maximum envelope and to eliminate the small change.

2) Look for peaks by checkingPm(ωj) ≥ Pm(ωj − δω)
andPm(ωj) > Pm(ωj + δω) for all frequenciesωj.

3) When there is a peak atωj, then ωl
∼= ωj and

the damping ratioζl can be approximately calculated
using the magnitude change in the neighborhood.



4) The residue gainkl is calculated by kl
∼=

2ωlζlPm(ωl).
Thus the intial modelPinit(s) is obtained. The order of the
model can be changed by modifyingδω. When it is smaller,
a higher order model can be obtained, but the computation
time becomes longer.

For the RLS method, a multiplicative plant model is used
because of the simplicity of the Jacobian matrix. The initial
model is also converted to the following form to define the
initial parameters

P (s) =

k

N−2∏
n=0

(s − an + jbn)(s − an − jbn)

N−1∏
n=0

(s − cn + jdn)(s − cn − jdn)

. (14)

Let f(s) = log |P (s)| and unknown parameters

θ = (log k, a0, ...aN−2, b0, ...bN−2, c0, ...cN−1, d0, ...dN−1)
T

(15)

then

f(ω) = log k

+
1
2

N−2∑
n=0

log
(
(a2

n + b2
n)2 + 2(a2

n − b2
n)ω2 + ω4

)

− 1
2

N−1∑
n=0

log
(
(c2

n + d2
n)2 + 2(c2

n − d2
n)ω2 + ω4

)
.

The JacobianJ is

Jij =
∂fj(θ)

∂θi
, (16)

and

∂f(ω)
∂ log k

= 1

∂f(ω)
∂an

=
2a(a2

n + b2
n + ω2)

(a2
n + b2

n)2 + 2(a2
n − b2

n)ω2 + ω4

∂f(ω)
∂bn

=
2b(a2

n + b2
n − ω2)

(a2
n + b2

n)2 + 2(a2
n − b2

n)ω2 + ω4

∂f(ω)
∂cn

=
−2c(c2

n + d2
n + ω2)

(c2
n + d2

n)2 + 2(c2
n − d2

n)ω2 + ω4

∂f(ω)
∂dn

=
−2d(c2

n + d2
n − ω2)

(c2
n + d2

n)2 + 2(c2
n − d2

n)ω2 + ω4
.

The parameter offset for the update is

∆θ = (JT J + λI)−1JT (y − f(θ)) , (17)

wherey = log |Pm(ω)| is the set the measured maximum
envelope of the transfer function. (See the appendix for
details.) The parameter update (17) is repeated byθ +
∆θ → θ until the result converges. During the iteration
λ is adjusted based on the error. When the initial model is
far from the actual,λ is set to be larger and convergence
is faster. When the error becomes smaller,λ is set to be
smaller to achieve better accuracy.
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Fig. 4. Plant transfer functions (dotted lines) and identified transfer
function of maximum envelope (solid line).

The resulting shaping filter is

Hc(s) =
1

s2P (θ)
. (18)

When the resultingHc(s) is non-minimum phase, the pole
and zeros have to be converted to have the minimum phase
property. The approximated time delayTd can be obtained
by

Td
∼= −d∠P (ω)

dω
|ω→0

∼=
N−1∑
j=0

2cj

c2
j + d2

j

−
N−2∑
j=0

2aj

a2
j + b2

j

.

According to this equation, when the mode frequency is
lower, the bandwidth tends to become lower, because the
time delay becomes larger. This explains the empirical rule
that the butterfly mode frequency of an actuator needs to
be increased for higher servo bandwidth.

V. DESIGN RESULTS

Fig. 4 shows the measured transfer functions for the 12
heads of the VCM with±3 dB and±300 Hz mode variation
Pn(s), (n = 1, · · · , 12) and the identified transfer function
P (θ) from their maximum envelope. Fig. 5 shows the plant
transfer functions with the shaping filterPn(s)Hc(s) (dotted
lines) and the1/s2 characteristics (solid line). The envelope
of the maximum transfer function matches the1/s2 curve
and some phase delay is introduced by the shaping filter.

The shaping filterHc and the time delayTd are cal-
culated for a VCM actuator with 12 heads and a moving-
suspension-type dual-stage actuator. The dynamics variation
is assumed for 12 heads with±3 dB gain and±300 Hz
frequency variations for all modes. Fig. 6 shows the open
loop transfer functionsPn(s)C(s), the sensitivity functions
Sn(s) = (1 + Pn(s)C(s))−1, and the controller including
the notch filter C(s)Hc(s) for the VCM actuator. Fig.



TABLE I

TIME DELAY AND MAXIMUM OPEN LOOP BANDWIDTH OF ACTUATORS WITH AND WITHOUT DYNAMICS VARIATION .

Actuator Dynamics Delay Bandwidth [Hz] Bandwidth [Hz]
Variation Td [µs] (Fs =40kHz) (Fs =80kHz)

Single-stage VCM of one head (calculated by FEM) 0 dB, 0 Hz 32 2760 (2550) 3680 (3300)
Single-stage VCM of 12 heads (measured by LDV) 0 dB, 0 Hz 56 1980 (1870) 2370 (2200)

±3 dB, ±300 Hz 61 1870 (1770) 2200 (2060)
Dual-stage of one head (calculated by FEM) 0 dB, 0 Hz 4.5 5080 (4410) 10000 (7700)

±3 dB, ±300 Hz 32 2760 (2550) 3680 (3300)

Numbers in brackets are the bandwidth assuming the computational delay of 5µs.
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Fig. 5. Plant transfer functions with shaping filter (dotted lines) and the
1/s2 characteristics (solid line).

7 shows the case for the moving-suspension-type dual-
stage actuator system. These transfer functions are stabilized
by the controller obtained by the method in the previous
section, and the achievable bandwidth is estimated by Fig.
2. The only necessary parameter is the time delayTd based
on Hc(s).

Table I summarizes the time delay and the achievable
bandwidth of various situations for the VCM actuator and
a moving-suspension-type dual-stage actuator. In the case
of the VCM, the variation does not affect the bandwidth
very much, because the time delay without the variation
is already large. However, for the dual-stage actuator, the
bandwidth varies by 2-3 times compared to the case without
the dynamics variation. This is because the time delay of
the dual-stage actuator is more dominated by the dynamics
variation than the unstable zeros. This implies that the
performance of a moving-suspension-type actuator heavily
depends on the high frequency mode characteristics. In
order to achieve much higher bandwidth of HDD servo, a
clean transfer function without dynamics variation at high
frequency is necessary even for a dual-stage actuator.
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for the 12 heads of the VCM with±3 dB and±300 Hz mode variation.

VI. CONCLUSIONS

A method to estimate the maximum achievable band-
width of a HDD actuator is presented. A time delay
is introduced when the plant transfer function is shaped
to match double integrator characteristics using a stable,
minimum-phase compensator. This delay is created by the
unstable zeros of the actuator dynamics. The performance of
the actuator without dynamics variations can be determined
by this factor. A mechanical design for a high-bandwidth ac-
tuator can be achieved when the time delay is minimal. The
feedback controller, including the notch filter, is designed by
this method. The performance with dynamics variations can
be also evaluated, which demonstrates the tradeoff between
the performance and the controller complexity. This method
was applied to a servo design for a conventional actuator
as well as a moving-suspension-type dual-stage actuator.
This design showed that the variations of the high frequency
modes played an important role for the improvement of the
bandwidth of the dual-stage system.
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APPENDIX

Parameter identification by RLS Method [13]

The cost function to be minimized is the squared error
between the magnitude of the measured datay(ωj) and the

model outputfj

K(θ) =
m∑

j=1

(y(ωj) − fj(θ))2 , (A.1)

wherefj(θ) is the data calculated by the model parameters
θ at each frequencyωj . Sincefj(θ) is a nonlinear function
of θ, the cost function is minimized by the recursive least
square (RLS) method. The 2nd-order partial derivative of
the cost function is

∂2K

∂θ2 = 2
m∑

j=1

((
∂fj

∂θ

)T (
∂fj

∂θ

)
− (y(ωj) − fj)

∂2fj

∂θ2

)
.

(A.2)

Since the 2nd term of the right side is smaller than the 1st
term,

∂2K

∂θ2
∼= 2

m∑
j=1

(
∂fj

∂θ

)T (
∂fj

∂θ

)
= 2JT J , (A.3)

where

J =
∂f

∂θ
. (A.4)

When the parameter isθ at some point of iteration, a new
cost function when the parameterθ is shifted by∆θ can
be expressed by the Taylor’s expansion.

K(θ + ∆θ) = K(θ) +
∂K

∂θ
∆θ +

1
2
∆θT ∂2K

∂θ2 ∆θ + ...

(A.5)

A necessary condition for having an extreme forK in θ +
∆θ is that the derivative with respect to∆θ in θ + ∆θ
should be equal to zero, so(

∂K(θ + ∆θ)
∂∆θ

)T

|∆θ

=
∂K(θ)

∂θ

T

|θ
+

∂2K(θ)
∂θ2 |θ

∆θ.

(A.6)

The solution of this linear equations gives the value of∆θ

∆θ = −
(

∂2K

∂θ2

)−1(
∂K

∂θ

)T

. (A.7)

The 1st-order derivative in this equation is obtained from
(A.1) (

∂K

∂θ

)T

= −2JT (y − f(θ)) . (A.8)

The results of the Gauss-Newton method is from (A.3),
(A.7), and (A.8)

∆θ = (JT J)−1JT (y − f(θ)) . (A.9)

The parameter is updated byθ + ∆θ → θ and (A.9)
is repeated until it converges. The method of Levenberg-
Marquardt is used to improve the convergence of the
recursive algorithm. The modified update equation is

∆θ = (JT J + λI)−1JT (y − f(θ)) . (A.10)

By changingλ during iteration, faster and better conver-
gence is obtained.
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