
 
 

 

  
Abstract— In hard disk drive (HDD) servo control systems, 
quantization noises due to the finite precision of the D/A 
converter (DAC) driving the VCM contribute a significant 
portion of the total track mis-registration (TMR). In this 
paper, a quantization error feedback (QEF) technique to 
reduce TMR due to DAC quantization noises is introduced). 
The QEF technique offers a simple method of reshaping the 
spectrum of this noise to minimize its contribution to TMR.  
Despite the name, QEF is an effectively feed-forward 
technique that means that it does not affect or degrade the 
servo loop response. In addition, the limitation and 
optimality of different QEF schemes are examined in detail. 
Simulations reveal that contribution to TMR on an HDD is 
reduced by more than a factor of ten. Tests have verified the 
improvement.  
 
I. INTRODUCTION 

n hard disk drives (HDD), the digital to analog 
converter (DAC) driving the voice coil motor (VCM) 
has limited accuracy.  Quantization noises (or roundoff 

errors) due to the finite precision of the DAC disturb the 
servo control loop and degrade servo control 
performance. The DAC quantization noises contribute a 
significant portion of the total track-misregistration 
(TMR) in HDD products. Furthermore, for fixed 
mechanics and servo control bandwidth in a HDD, the 
power spectrum of TMR due to DAC noises is fixed, and 
the TMR does not scale with the track density. Therefore, 
the DAC quantization noise will be a recurring problem 
as the track density goes higher; techniques to effectively 
reduce such TMR are desirable. 
This paper describes a numerical technique, which goes 
by the general name of “quantization error feedback” or 
QEF, to reduce the HDD TMR due to quantization noises 
arising from a DAC with fixed precision without 
degrading other desired servo properties. These QEF 
schemes are implemented entirely within the DSP. In the 
digital servo control loop, the internal precision of the 
digital signal processor (DSP) is typically higher (e.g., 16 
bits) than that of the DAC (e.g., 12 bits). The lower order 
bits have to be dropped when the calculated control 
signal is sent to DAC. In the QEF schemes, the truncated 
lower order bits, which are referred as the quantization 
errors, is monitored and accumulated in the DSP.  When 
sufficient error has accumulated, the bits feeding the 
DAC can be modified in such a way as to largely cancel 
the effects of the error. In the frequency domain, the 
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effect of the process is to reshape the spectrum of the 
quantizing noise. The noise seen at the DAC may 
increase at some frequencies, but its overall contribution 
to (the mean square value of) TMR is dramatically 
reduced. Simulations with real HDDs reveal that the 
contribution to TMR can be reduced by more than a 
factor of ten with optimal QEF schemes (see Fig. 25).  
Tests in real HDD products show the TMR improvement. 
A kind of QEF technique was also used in the data 
transmission systems to reduce low frequency content of 
quantizing errors [2,3]. The purpose and implementation 
of the QEF technique introduced here for HDDs are 
different. In this paper, we will examine the QEF 
schemes from control theoretical point of view in order 
that we fully understand the options available for 
reducing TMR due to DAC quantization noise. Despite 
the name, QEF is an effective feed-forward technique; 
therefore, it does not affect the servo loop performance. 
In addition, we will also examine the limitation and 
optimality of the QEF technique; an algorithm that gives 
optimal QEF schemes is developed. It should be pointed 
out that even though the QEF technique is proposed for 
dealing with quantization noise in HDD servo control 
system, the methodologies and results can be applied to 
general digital control systems to deal with noises in the 
control input. 
The structure of this paper is organized as follows: In 
Section 2, we will examine the basic properties of DAC 
quantization error, and motivate the use of quantization 
error reduction techniques. In Section 3, we will 
introduce the basic concepts of the QEF technique. In 
Section 4, we will give more detailed analysis about QEF 
technique with general structures, in particular, we will 
discuss the limitations of using the QEF technique to 
reduce the impact of quantization noises, and develop an 
algorithm to derive the optimal QEF filter resulting in 
maximal TMR reduction. In Section 5, we will give some 
test results of the QEF technique on real HDDs.  
 
 

II. DAC QUANTIZATION NOISE 
 
2.1. D/A Quantization Error 
A simplified block diagram of the HDD servo system is 
given in Fig.1. In HDD servo system, the DSP has higher 
precision than the A/C converter (DAC) does. Therefore, 
only the most significant bit (MSB) part of the calculated 
control signal is sent to the D/A converter, the least 
significant bit (LSB) part is truncated (rounded off). The 
error (LSB) due to the DAC truncation is referred as 
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DAC quantization error, denoted as QE in the following 
discussion.  

 
Fig. 1. Digital Servo Systems for HDD 

 
According to Widrow, the quantization noise QE(t) can 
be modeled as a white random process having a uniform 
probability density in [-q/2, q/2], where q= cl2  with c 
being the quantization resolution in DSP, and l being the 
number of LSB bits [4]. In particular, its mean value is: 

E(QE(t))=0, 
and its variance satisfies  
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The autocorrelation function is given as follows,  
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2.2. Impact of the Quantization Noise on TMR 
The block diagram in Fig.1 can be redrawn as the block 
diagram in Fig.2. 

 
Fig. 2.  Equivalent Block Diagram for HDD Servo Systems 

 

Therefore, the TMR due to quantization error of D/A can 
be represented by  

PES(z)=H(z)⋅ QE(z), 
where H(z) is the transfer function from QE to PES: 
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P(z) is the transfer function of the plant, which is 
dominated by a double-integrator; in this section, we will 
assume it is a double integrator. The magnitude of TMR 
or position error signal (PES) is measured by its mean 
square value (or variance), which can be represented by  
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where nω  is the Nyquist frequency, which is normalized 
as π in this paper. Thus the mean square value of TMR is 
the average power of the signal, which is determined by 
its power spectrum density function: 
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As the quantization noise is represented as white noise as 
discussed in the previous subsection, the shape of power 
spectrum of TMR depend solely on the frequency 
response of the system: 
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The typical frequency response of the closed loop system 
from QE to PES  has a shape of a low pass filter, Fig. 3 
shows the typical frequency response from quantization 
error to TMR for a HDD.  
 
 
 
 
 
 
 
 

 
 

Fig.3. Frequency Response from Quantization Noise to 
TMR 

The power of TMR due to DAC quantization noise is 
concentrated at lower frequencies. Therefore, the 
reduction of the average power of PES can be achieved 
by reshaping the power spectrum density function of 
TMR. Since any alteration of the frequency response of 
the closed loop transfer function may change other 
desired properties of the servo systems, desirable 
techniques for TMR reduction should be those that are 
able to reshape the power spectrum of the input noise QE 
and reduce the average power of PES in the frequency 
range of interest. In the following, we will focus on such 
a technique: QEF. 
 
 

III. QUANTIZATION NOISE FEEDBACK 
 
3.1. What is QEF? 
The idea of QEF is illustrated with the block diagram in 
Fig. 4. With this technique, the quantization error is 
monitored and accumulated (integrated) in the DSP.  
When sufficient error has accumulated, i.e., an MSB is 
generated, it is added to the original MSB feeding the 
DAC.  
Note that in this QEF scheme, the QE signal is integrated 
once, we will call this scheme single-integrator QEF. It is 
also noted that a double integrator scheme also be used 
for reducing TMR [6]. 
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Fig. 4.  QEF Technique for TMR Reduction: Single 

Integrator 
 

Fig. 5 shows the ideal power spectrums of  TMR due to 
quantization error with single-integrator QEF (lower 
curve) and without any QEF (upper curve), respectively, 
for an HDD. The TMR reduction is significant.  

 
 
 
 
 
 
 
 
 

 
 

Fig.5. TMR due to Quantization Error with/without QEF 
 
3.2. QEF is a Feedforward Scheme 
To help explain the QEF technique, the QEF scheme 
discussed earlier (Fig.4) is equivalently represented as 
the block diagram in Fig.6.  

 
Fig. 6.  QEF: Equivalent Block Diagram 

 
In this block diagram, the double-integrator plant is 
decomposed into two integrators: P(z)=k )(2 zI , and 
K(z)=I(z),  where I(z) is a discrete-time integrator: 
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zI . 1QN  can also be interpreted as the 

truncation error (LSB) of QE after integration in the 
above block diagrams; as the internal signal driven the 
block kI(z) should be MSB.  Note that 1QN  is exactly the 
same signal as 1QN  in the diagram in Fig. 3. In the 
following analysis, 1QN  is white noise with the similar 

stochastic properties as QE under Widrow’s assumption, 
in particular,  

12
)()(

2

1

qSS QEQN == ωω . 

The control scheme shown in the block diagram is 
actually feedforward control which does not alter closed 
loop transfer function. As the prefilter K(z) in this case is 
a single discrete time integrator. 
In the following we refer the QEF technique in Fig.3 as 
single integrator QEF. In fact, the single integrator QEF 
is an optimal feedforword control scheme in the sense 
that the prefilter K(z)=I(z) in Fig. 4  is optimally chosen 
such that the resulting PES has minimal value [6].  

 
 

IV. LIMITATION AND OPTIMALITY OF QEF 
 
4.1. A General Structure of QEF 
In the previous section, we introduced a single integrator 
QEF scheme. A general structure for QEF schemes is 
shown in Fig.14. Note that the feedback loop in the error 
accumulation operation has at least one pure delay so that 
the operation is implementable.  

 
Fig. 14.  QEF Technique for TMR Reduction 

 
In this block diagram, QN is truncation error (LSB) of 
QE after filtering.  Note that QN is white noise with 
similar stochastic properties to QE under Widrow’s 
assumption, in particular,  
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4.2. Optimal QEF Filter and Approximations 
Consider the general QEF scheme in Fig. 14. In this 
structure, the feedback loop gain is )(1 zFz − , where 
F(z) is a filter whose transfer function is assumed to be a 
real rational function which is analytic and bounded in 

}1||||:{ ≥zz . To explore the limitation of the general 
QEF schemes, let’s look at the possible optimal choice of 
the filter F(z). With some block diagram manipulation, 
one can equivalently transform the block diagram in Fig. 
14 to the feedforward block diagram in Fig.15. 
It is noted that in the above figure, the quantization noise 
QN is reshaped by the general filter, )(1 1 zFz−− , 
resulting in disturbance GQE entering the system as 

)())(1()( 1 zQNzFzzGQE ⋅−= − . 
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Fig. 15.  General QEF: Equivalent Block Diagram 

 
Therefore, the TMR due to quantization error becomes 

)())(1()()(
)()(1

)()( 1 zQNzFzzHzGQE
zCzP

zPzPES ⋅−⋅=
−

−
= − , 

where H(z) is the transfer function from QE to PES in the 
original block diagram. QN is white noise with similar 
stochastic properties to QE and  
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the variance of PES is as follows: 
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One can see that  
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where the minimal is achieved (mathematically) with 
ωω jj eeF =)( , or F(z)=z. Therefore, the 

(mathematically) optimal filter F(z) is a forward shift 
operator. Thus, the “optimal” feedback loop gain is 
identity without any delay. However, it is not 
implementable, because the QEF feedback loop should 
contain at least a delay operator. In the following, we will 
examine how the optimal QEF filter can be approximated 
by an implementable filter. 
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In particular, the n-th order approximation F(z) to z 
yields: 
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If a=1, then the single and double integrator QEF 
schemes as discussed earlier are recovered with n=1, 2, 
respectively.  As n → ∞, the feedback loop gain 

)(1 1 zFz−−  is convergent to the optimal filter, 0, at the 
following frequencies: 
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In particular, if a=1, the convergent frequencies are [0, 
π/3). This interprets why the power at the lower 
frequencies (ω∈[0, π/3)) is reduced and enlarged at the 
higher frequencies (ω∈[π/3, π]) for both single integrator 

and double integrator QEF.  We also see that the larger a 
is, the bigger the convergent set; in particular, as a → ∞, 
the convergent frequency set approaches [0, π/2).  
 
4.3. Limitations of QEF Technique 
In the following, we will assume the filter F(z) used in 
the QEF filter has the following expansion: 

L+++= −− 2
3

1
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The reduction of the power of quantization error at some 
frequencies is at the cost of enlargement of the power at 
other frequencies. In fact, this is a fundamental limitation 
for implementable QEFs. This observation is stated in the 
following statement [6]. 
 
QEF Limitation (Spectrum Shaping)  
For all implementable QEF schemes, i.e., the filter F(z) in 
Fig. 12  is a real rational function analytical and bounded 
in {z : ||z|| ≥1}, the power spectrum )(ωGQES  of shaped 

noise, )())(1()( 1 zQNzFzzGQE −−=  with QN  being the 
white quantization noise, always satisfies: 

=∫⋅ π ωω
π 0 ))(ln(1 dSGQE

constant, 

where the constant is independent of the choice of the 
filter F(z). The proof of the above statement is given in 
the [6]. 
In the following, we will examine the limitation of the 
TMR reduction. The PES with the general structure of 
the QEF filter is represented as follows: 
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where )(zH  is the transfer function from QE to PES in 
the original block diagram. The power spectrum of  PES 
is 
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the variance of PES can be obtained by the following 
formulation: 
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If the transfer function Θ(z) from QE to PES is 
represented as: L+++=Θ −− 2
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i.e., its impulse response is ∞
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Let the closed loop transfer function H(z) satisfies 
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for some nonnegative integer m; i.e., there are m pure 
delays in the closed loop transfer function. Thus, 
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for some ∞
=1}{ iih . One immediately conclude  

QEF Limitation (TMR Reduction)  
For the QEF schemes considered in this section, the mean 
square value of PES always satisfies 

2
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The proof of the statement is given in [6]. It gives a TMR 
lower bound using the QEF techniques.  
 
4.4. Optimal TMR Reduction via QEF 
In this section, we will examine with given QEF 
structure, what is the best QEF filter in the sense the 
TMR due to quantization noise is reduced. In the 
following, we will consider the case where the QEF filter 
F(z) is an FIR filter: 
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an optimal vector f, such that 
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To find out the optimal solutions, we first show how to 
compute the mean square value of PES in terms of the 
Parseval’s identity from transfer function. We first need 
to derive the time domain equation for the transfer 
function: 
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where the transfer function of the closed loop system 
H(z) has m pure delays as given in the previous 
subsection: 
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Therefore, the (n+k)-th order state space realization of 
the transfer function )())(1()( 0

1
0 zHzFzz ⋅−=Θ −  is: 
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Now with the state space equation, one can calculate the 
impulse response of the system; i.e., for the input {u(t)} 
with u(0)=1, and u(t)=0 for t >0, the output response 
{y(t)} can be calculated interms of A, B, and C. 
Therefore,  
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Ti ABBAL  satisfies Lyapunov equation: 

0=+− TT BBLALA . 
Notice that in the state space equation, the matrices A, B, 
and D are known, so L can be solved in the Lyapunov 
equation; part of the matrix C depends on the unknown,  
f,  in fact, 
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Then the optimal solution  *f  satisfies: 
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which again confirms the QEF TMR Limitation 
statement. 
 
Optimal QEF Algorithm:  
1. Construct state space matrices 22, DB , A, and  B.  
2. Solve the following Lyapunov equation: 
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to get the solution 
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3. Find the optimal filter coefficients: 
1
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4. The optimal solution is given by: 
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The above algorithm is used to calculate the optimal QEF schemes for 
Sailfin HDD products. The reduction of TMR v.s. the order of 
optimal filter is illustrated in figure 25. 
 
 
 
 
 
 
 
 
 
 

Fig. 25. TMR Reduction v.s. Order of QEF Filter 
 
 
 

V. TEST WITH REAL HDDS 
 
In this section, we will present some test results of QEF 
techniques on Mako HDD. Several first order QEF 
schemes are implemented. All of the data are taken at OD 
of the Mako file. The PES (TMR) signals are total 
NRROs, including TMR due to quantization noise. QEF 
schemes only reduce TMR due to quantization noises. 
Therefore, the reduction of the total NRROs is solely due 
to the reduction of the TMR due to quantization errors. 
Fig. 27 shows the power spectra of  NRROs with QEF 
(a=1) and without any QEF, respectively.  
 
 
 
 
 
 
 
 
 
 

 
Fig. 27. Power Spectra of NRROs:  

Red Curve: a=1, Blue Curve: No QEF 
 

For a changing from 4 to 1, the reduction on root of 
mean square value (RMS) of the NRRO can be shown in 
the following diagram in Fig. 29. One can see that the 
total NRRO RMS is reduced about 3.28% using the 
single integrator QEF scheme (a=1). In fact, the optimal 
parameter a in the first order QEF is 0358.1* =a . 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 29. The NRRO (RMS) Reduction vs. 1/a 
 
 

VI. CONCLUSIONS 
In this report, we have introduced a QEF technique to 
reduce the TMR of HDD due to DAC quantization noise 
without altering or degrading the other desired servo 
performances. We have examined the limitations of QEF 
techniques, and give a lower bound for the mean square 
value of TMR using QEF schemes. We have also derived 
the optimal QEF filter which minimizes the mean square 
value of TMR, and an algorithm is provided. From 
simulation on Sailfin HDD simulation model, the TMR 
has a RMS reduction by a factor of more than 10 with the 
optimal QEF schemes. Tests on Mako HDD have 
verified the improvement (more than 3% reduction on the 
total NRRO with first order QEF scheme).  
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