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Abstract— A novel attitude control strategy for hydrofoil
catamaran throughout its operating range has been proposed
to overcome the drawback of the conventional linear quadratic
regulator (LQR) strategy, via fuzzy model-based system in
this paper. The Tagaki-Sugeno (T-S) fuzzy model equipped
with parallel distributed compensation (PDC) scheme is first
constructed. By means of Matlab LMI control toolbox, a
common positive definite matrix is found to guarantee the
global fuzzy system’s stability of hydrofoil catamaran. Second,
the nonlinear mathematical model for hydrofoil catamaran is
established. After Jacobian linearization, the state-space model
is proposed. Finally, based on hydrofoil catamaran “HB200B-
A1”, simulation researches demonstrate the reliability ofthe
established nonlinear mathematical model and the effective-
ness of our fuzzy controller.

I. INTRODUCTION

Past several decades have witnessed a rapid development
of fast, even super-fast passenger ships in marine trans-
portation market. Hydrofoil catamaran is a kind of high-
speed boat of excellent performance. Generally, from stop
to underway sailing, the decrease of the boat’s draft brings
out the deterioration of the boat’s self-stability, and the
sensitiveness to the environmental disturbances, such as
waves and winds. This ship type essentially needs attitude
stabilization because it does not have enough restoring
moment. A control system of a hydrofoil catamaran must
perform three functions [1]. The first is to assure stability
throughout its maneuvering envelope. The second is to
attenuate wave-induced motions. And the third is to ensure
the safety of the ship and its passengers all the time even
if there is any failure in the control system. A major
drawback of the conventional control strategies, such as
LQR and proportional-derivative (P-D) controller, is that
they are no longer efficient and feasible once out of the
small neighborhood of the operating point, i.e. design speed.

Takagi and Sugeno’s approach [2] makes it probable
to have feedback control covering the entire operating
envelope. In this approach, local dynamics in different state-
space regions are represented by linear models, and the
overall system is synthesized by the fuzzy interpolation of
these local linear models. The so-called parallel distributed
compensation (PDC) has been proposed and developed over
the last few years [3], [4]. There exists voluminous literature
on the subject of making use of various control techniques
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to ship motion control, from model based modern control
to fuzzy-based adaptive robust control. However, very few
papers are found that report the T-S fuzzy system and PDC
control structure, which can be used to control uncertain
nonlinear systems, for ship motion control. The objective
of this paper is to present the pipeline of developing
the attitude control strategy for hydrofoil catamaran over
its whole operating range, based on T-S fuzzy system.
Herein, we place our research emphasis on its attitude
control. The purpose of attitude control is to stabilize the
vessel to ensure passenger comfort by compensating wave-
induced disturbances, and to control the vessel attitude. The
most important control parameters that this paper concerns
includes flight height and pitch angle.

This paper is organized as follows. In Section II, we
combine the linear systems around several operating con-
ditions. On the basis of T-S fuzzy system, a fuzzy gain-
scheduling approach is developed for hydrofoil catamaran.
Mathematical model has been established for ship heave
and pitch motion in Section III. Then, linearization of the
nonlinear mathematic model yields state-space model In
Section IV. The results of simulation research are presented
in Section V. Finally, Section VI gives some conclusions.

II. FUZZY ATTITUDE CONTROLLER DESIGN

In recent years, engineers have successfully utilized fuzzy
logic in varieties of industrial control applications [3].
Among various fuzzy modelling themes, T-S model is one
of the most popular frameworks. A general T-S model
employs an affine model with a constant term in the
consequent part of each rule, based on a fuzzy partition of
input space. This is often referred to as an affine T-S model.
However, what we are mostly interested in is another type of
T-S fuzzy model, in which the consequent part for each rule
is represented by a linear model (without a constant term).
This type of T-S fuzzy model is called a linear T-S model.
The appeal of a linear T-S model is that it renders itself
naturally to Lyapunov based system analysis and design
techniques.

In this paper, only continuous fuzzy model-based fuzzy
systems are used to describe attitude controller design for
hydrofoil catamaran. In our fuzzy model-based system, the
premise of fuzzy rule is the boat’s sailing speed, since
the feedback gain is needed to cover the whole operating
range smoothly. Namely, the sailing speedÛ(t) is chosen
as scheduling variable. Thei-th rule of T-S fuzzy model is

IF Û(t) is about Ui,

THEN ẋe(t) = Aixe(t)+ Biue(t), i = 1,2, · · · ,r,



whereÛ(t) is the language variable of premise part, herein
the boat’s speed,Ui is the i-th operating point,r is the
number ofIF −THEN rules. We employ the fuzzy infer-
ence method with a singleton fuzzifier, product inference
and center average defuzzifiers. Then, the final output of
T-S fuzzy model is obtained as

ẋe(t) =
r

∑
i=1

hi(Û(t)){Aixe(t)+ Biue(t)}, (1)

where hi(Û(t)) = ωi(Û(t))
/

∑r
i=1 ωi(Û(t)), ωi(Û(t)) de-

notes the degree of membership ofÛ(t) on Ui. The
degree of membership satisfiesωi(Û(t)) > 0, where
i = 1, 2, · · · , r. Note that for all t, there exist
∑r

i=1 hi(Û(t)) = 1, wherehi(Û(t)) ≥ 0, i = 1,2, · · ·r, and
hi(Û(t)) can be taken as the weights of normalizedIF −
T HEN rules.

Regarding PDC approach, fuzzy controller and fuzzy
model-based model share the same premise. So thei-th
control rule is described as

IF Û(t) is about Ui,

THEN ue(t) = −Fixe(t), i = 1,2, · · · ,r.

At the consequent part, fuzzy control rule has linear state
feedback. We assume that all the states are observable in
this paper. The overall fuzzy controller can be represented
as follows

ue(t) = −
r

∑
i=1

hi(Û(t))Fixe(t). (2)

Synthesizing (1) and ( 2) yields the closed-loop system
as follows

ẋe(t) =
r

∑
i=1

r

∑
j=1

hi(Û(t))h j(Û(t))(Ai −BiFj)xe(t). (3)

A stability condition for continuous fuzzy system has
been well studied by [4].

Theorem 1 (Stability condition): The equilibrium of the
fuzzy control system (3) is asymptotically stable in the large
if there exists a common symmetric positive definite matrix
P such that the following two conditions are satisfied

GT
ii P+ PGii < 0 (4)

and

(

Gi j + G ji

2

)T

P+ P

(

Gi j + G ji

2

)

≤ 0 (5)

where 1≤ i < j ≤ r, i < j except the pairs(i, j) such that
hi(Û(t))h j(Û(t)) = 0 for ∀ t, whereGi j = Ai −BiFj.

Originally, the common positive definite matrixP can be
found via trial-and-error method, which becomes extremely

difficult when the number of the subsystems increases. Re-
cently, this problem can resort to some efficient numerical
method. In this approach, the stability conditions (4) and (5)
are formulated into an LMI problem. Convex optimization
techniques can be then applied to check the existence of
the commonP. Matlab LMI control toolbox can solve this
LMI problem swiftly.

III. MECHANICAL MODELLING FOR
HYDROFOIL CATAMARAN

In this part, we will establish nonlinear mathematical
model in waves, based on the motion model in calm
water [5]. This mathematical nonlinear model will act as
a platform for further research. Take into consideration the
effects of not only waves but also the trim of hull on the
motions of hydrofoil catamaran. Along Z-axis, by use of
Newton’s Second Law of Motion, the mathematical model
is obtained of heave motion and pitch motion for hydrofoil
catamaran as follows























m(ξ̈ +U θ̇) =
2
∑

i=1
(Ff i + Fpi)+ FH + mgcosθ

Iyyθ̈ = −
2
∑

i=1
(x f i − xg)(Ff i + Fpi)

− (xb − xg)∇cosθ − (xH − xg)LH

(6)

In the model (6),m is boat’s mass,U is the along-
ship velocity supposed to be a constant,Ff i are the lift
forces arising from hydrofoil,Fpi are the lift forces from
flaps, g is gravitational acceleration, i.e. 9.8 m/s2, FH is
the force relevant to hull,LH is the lift force of the hull,
LH is hull’s lift force, ∇ is buoyant force from boat’s hull,
and Iyy is inertia of moment around Y-axis.θ is the hull’s
angular displacement of X-axis from initial position, and
ξ is the hull’s vertical displacement of X-axis from initial
position.

∣

∣x f i
∣

∣, |xG|, |xb| and |xH | are the distance between
amidships and the acting points of forces, i.e. hydrofoil’s
lift forces, gravitational forces, buoyant force and hull’s lift
force, respectively.

A. Forces Relevant to Twin Hydrofoil

Hydrofoil produces two forces, i.e. its dynamic lift force
L f i along Z-axis and the inertia forceFai of its added mass

Ff i = L f i + Fai. (7)

The drag force and its moment from hydrofoil both are
trivial relative to the lift force, so that they can be neglected
in modelling. Then the dynamic lift force of hydrofoil is
given by

L f i = −
1
2

ρU2SiCLi, (8)

whereρ is the density of water,Si is hydrofoil’s projection
area calculated bySi = li · bi, in which li is the span of
hydrofoil andbi is the chord of hydrofoil.



The lift coefficient decreases dramatically as hydrofoil
approaches to the free-water surface. Hence, in (8), Wadlin’s
method [6] is adopted to calculateCLi, the lift coefficient
of hydrofoil, as follows

CLi =
2K2iπλiαi

λi +2K2i +1
+

8
3
(1+

λi

10
)sin2 αi cosαi, (9)

where λi is the aspect ratio of hydrofoil,K2i is the 2-
dimensional depth correction factor of the lifting surface,
and the 3-dimensional depth correction factorK3i is omitted
in this paper.

In (8), αi is the attack angle of hydrofoil at the hydrody-
namic center of hydrofoil. In consideration of the vertical
resultant motions of hull at the hydrofoil, the attack angle
αi is expressed as

αi = αsi + θ +
ξ̇i − (x f i − xG)θ̇ − ζ̇

U
−α0i, (10)

where αsi is the set angle of hydrofoil,α0i is the zero-
lift angle of hydrofoil, and ξ̇ is the velocity of boat’s
heave motion at hydrofoil. In general body axes system,
the waveform model of sub-wave surface at hydrofoil is
described as

ζ (ti) = ζae−κdi cos(κ(x f i − xg)cosχ −ωet). (11)

where ζa is wave amplitude,κ is wave number,χ is
encountering angle,ωe is the angular freuency of the waves
andt is the time. The establishment of waveform model (11)
is based on the famous Froude-Krylov assumption that the
existence of the boat’s hull has no effect on the motions of
water particle nearby.

Moreover, there exists inertia forceFai, arising from
added mass of hydrofoil. Herein, the hydrofoil is regarded
as a rigid body. Therefore, the force from inertial of the
added mass of hydrofoil is given by

Fai = −m f i(ξ̈ +U θ̇ − (x f i − xG)θ̈ − ζ̈i), (12)

wherem f i is the added mass of hydrofoil and calculated by

m f i =
π
2
·

b2
i

4
· li ·ρ . (13)

B. Forces Relevant to the Boat’s Hull

The force arising from the hull consists of buoyant force
and the lift force of hull, i.e.

FH = ∇cosθ + LH . (14)

Buoyant force∇ is generated by the hydrostatic pressure.
The V-type hullLH can be seen as a foil of small aspect
ratio. Then the lift force from V-type hull is calculated,
similarly to hydrofoil, by

LH = −
1
2

ρU2AwCLH θ , (15)

whereCLH is the derivative of hull’s lift coefficient with
respect to the attack angle, i.e. trim angle.

CLH =
1
2
·

π
2
·λH , λH =

B2
max

Aw
, (16)

whereλH is the aspect ratio,Aw is the area of waterplane,
andBmax is the maximum breadth of the waterplane.

IV. STATE-SPACE MODEL OF HYDROFOIL
CATAMARAN

Varying parameters and uncertainty from sensor noise,
and disturbances, ensure that the model is never perfect. It
seems that the most useful way of dealing with nonlinearity
of the model is to linearize it about some point in its
operating range. If the model is ”smooth”, the linearized
equation will accurately represent the true system in some
”sufficient small” region about the equilibrium point in the
parameter space.

Based on the nonlinear model (6), Jacobian lineariza-
tion around equilibrium point is implemented. LetFdi =
1
/

2ρU2SiCLi = C′
f iCLi, x f Gi = x f i − xG and U̇ri = (ξ̈ +

U θ̇)− x f Giθ̈ . Then, the nonlinear mathematical model can
be rewritten as



































Z(ξ̈ , ξ̇ ,ξ ; θ̈ , θ̇ ,θ ) = mξ̈ +
2
∑

i=1
C′

f iCLi +
2
∑

i=1
m f iU̇ri

−∇−mg−FH = 0

M(ξ̈ , ξ̇ ,ξ ; θ̈ , θ̇ ,θ ) = −
2
∑

i=1
C′

f iCLix f Gi −
2
∑

i=1
m f iU̇rix f Gi

− (xb − xg)∇cosθ − (xH − xg)LH + Iyyθ̈ = 0
(17)

Linearizing the formulae Z(ξ̈ , ξ̇ ,ξ ; θ̈ , θ̇ ,θ ) and
M(ξ̈ , ξ̇ ,ξ ; θ̈ , θ̇ ,θ ) at a certain operating point results
in the linear model of hydrofoil hydrofoil. Leẗξδ = ξ̈ − ξ̈d,
ξ̇δ = ξ̇ − ξ̇d , ξδ = ξ − ξd , θ̈δ = θ̈ − θ̈d , θ̇δ = θ̇ − θ̇d and
θδ = θ − θd , where ξ̈d , ξ̇d , ξd , θ̈d , θ̇d and θd are the
desired value ofξ̈ , ξ̇ , ξ , θ̈ , θ̇ and θ , respectively. Then,
we have























Zξ̈ ξ̈δ + Zξ̇ ξ̇δ + Zξ ξδ + Zθ̈ θ̈δ + Zθ̇ θ̇δ + Zθ θδ

= −Zα1α1δ −Zα2α2δ

Mξ̈ ξ̈δ + Mξ̇ ξ̇δ + Mξ ξδ + Mθ̈ θ̈δ + Mθ̇ θ̇δ + Mθ θδ

= −Mα1α1δ −Mα2α2δ
(18)

where α1δ and α2δ are the variations of fore and aft
controlled flap angle, respectively, i.e. control input. Then,
the local state-space equation after linearization is proposed
as follows

ẋe = E−1Ã(Û(t))xe + E−1(Û(t))B̃(Û(t))ue, (19)

wherexe = [ξ̇δ ,ξδ , θ̇δ ,θδ ], andue = [α1δ ,α2δ ]. The coeffi-
cient matrices for local state-space model (19), i.e.Ã(U(t)),
B̃(U(t)) andE(U(t)), are given by



E(U(t)) =









1 0 0 0
0 Zξ̈ 0 Zθ̈
0 0 1 0
0 Mξ̈ 0 Mθ̈









,

Ã(U(t)) =









0 1 0 0
−Zξ −Zξ̇ −Zθ Zθ̇

0 0 0 1
−Mξ −Mξ̇ −Mθ −Mθ̇









,

B̃(U(t)) =









0 0
−Zα1 −Zα2

0 0
−Mα1 −Mα2









.

The items contained in those coefficient matrices are
formulated as follows

Zξ̈ = m+
2
∑

i=1
m f i, Zξ̇ =

2
∑

i=1
C′

f i
∂CLi

∂ ξ̇
,

Zξ =
2
∑

i=1
C′

f i
∂CLi
∂ξ , Zθ̈ = −

2
∑

i=1
m f ix f Gi,

Zθ̇ =
2
∑

i=1
C′

f i
∂CLi
∂ θ̇ +

2
∑

i=1
m f iU ,

Zθ =
2
∑

i=1
C′

f i
∂CLi
∂θ , Zα i = C′

f i
∂CLi
∂αi

;

Mξ̈ =
2
∑

i=1
m f ix f Gi, Mξ̇ = −

2
∑

i=1
C′

f i
∂CLi
∂ ξ̇

x f Gi,

Mξ = −
2
∑

i=1
C′

f i
∂CLi
∂ξ x f Gi, Mθ̈ = Iyy +

2
∑

i=1
m f ix2

f Gi,

Mθ̇ =
2
∑

i=1
C′

f i
∂CLi
∂ θ̇ x f Gi −

2
∑

i=1
m f iUx f Gi,

Mθ = −
2
∑

i=1
C′

f i
∂CLi
∂θ x f Gi, Mα i = −C′

f i
∂CLi
∂αi

x f Gi.

So far, the local linear model for hydrofoil catamaran can
be represented by

{

ẋe = A(U(t))xe + B(U(t))ue

ye = Cxe
(20)

where A(U(t)) = E−1(U(t))Ã(U(t)), B(U(t)) =
E−1(U(t))B̃(U(t)), C = I4×4, input ue ∈ R2, statexe ∈ R4,
and outputye ∈ R4.

V. HYDROFOIL CATAMARAN EXAMPLE

Based on a hydrofoil catamaran, HC200B-A1, the sim-
ulation researches are implemented. The principal partic-
ulars of HC200B-A1 are listed in Table I [7]. Foils with
adjustable flap like airplanes can regulate boat’s attitude
in accordance with speed and sea condition. Provided that
HC200B-A1 is equipped with flap on the fore and aft
hydrofoil. The span and chord of the either flap are 0.33
meter and 4.53 meters, respectively.

Assuming no effect of waves, i.e. in calm water, Fig. 1
presents hydrofoil load i.e.L f = L f 1 + L f 2, and the boat’s
attitude from simulation results and experimental data. Fig.
1 has also exposed that the boat’s attitude varies from its
stop mode to foil-borne mode.L f

/

(1000·∆ ·g) denotes the
ratio of the total lift forces to boat’s weight. It can also be
concluded that more than 80 percent of the boat’s weight is

TABLE I

HC200B-A1’S PRINCIPAL PARTICULARS

L.O.A (m) L.B.P (m) breadth(m) d0 (m) ∆ (ton)

38.08 35.84 11.584 3.84 200

speed (kn) chord (m) span (m) α1 (o) α2 (o)

40 0.96 8.32 2 2

supported by hydrofoils at the underway speed. According
to 6 groups of wave conditions in [8], the simulation results
of heave and pitch motion in ahead sea is presented in Fig.
2, at the design speed, 40 knots1. The experimental data are
also presented, accordingly. In Fig. 2, the large amplitudes
of heave and pitch motion have also proved that the boat is
severely subject to the influences of external waves.

From Fig. 1 and Fig. 2, it’s shown that simulation results
and experimental data agree with each other well. Hence,
the nonlinear mathematical model in Section III is fully
competent in the further research. Jocobian linearization
work is carried out on the nonlinear model of HB200B-
A1 in Section III at 5 operating points all contained by the
working envelope, which is shown in Fig. 1. In this way,
the state-space model for HC200B-A1 is obtained. Next,
Because LMI-based local feedback gain design introduces
too much conservativeness, we prefer to employ LQR
control strategy to design the local controllers. Feedback
control gain at 5 operating points are obtained. Because
of the space limit, these matrices are omitted. In this
illustrative example, 5 fuzzy inference rules, equipped with
triangular membership function, are employed to construct

11 knot = 1.852 km/h
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Fig. 1. Comparison of HC200B-A1’s attitude between simulation results
and experimental data in calm sea
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Fig. 2. Comparison of the amplitudes of heave motion and pitch motion
between simulation results and experimental data in ahead sea

model-based system at 5 operating points. The membership
functions are shown in Fig. 3.

To meet the requirement of seaworthiness throughout
the working envelope, the interpolated fuzzy model-based
system must be of global stability. According to the stability
criterion in Section II, total 16 (for this fuzzy system,r = 5)
LMIs should be solved to obtain the common matrixP.
It almost seems impossible to solve such a large lump of
matrices inequalities via trial-and-error method. Fortunately,
this problem can be reduced to a series of LMIs. Matlab
LMI toolbox can givesP conveniently as follows

P =









0.1822 0.0120 0.0227 −0.0347
0.0120 0.0103 −0.0055 −0.0137
0.0227 −0.0055 0.4730 0.1107
−0.0347 −0.0137 0.1107 0.1536









.

The existence of matrixP makes the stability of global
system guaranteed. So far, the whole fuzzy system has been
constructed. To testify our proposed fuzzy system, a speed
point 28 knots, (not one of the above 5 operating points)
is selected, arbitrarily. Simulation research is implemented,
by use of Matlab Simulink toolbox. Fig. 4 presents time
response of HB200B-A1’s attitude without control. And
Fig. 5 exhibits time response of HB200B-A1’s attitude and
control efforts with controller on. During simulation study,
wave parameters are that, wavelength is 120 meters, wave
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Fig. 4. Time response of HC200B-A1’s attitude, i.e. elevation height (ξ )
and pitch angle (θ ) with controller off

period 8.77 seconds, and wave amplitude 0.6250 meter. Fig.
5 manifests that, at the arbitrary speed, the wave-induced
heave and pitch motion can also be attenuated greatly, which
means that the feedback gain obtained from our T-S fuzzy
system is efficient.

To show further the effectiveness of our T-S fuzzy
controller for hydrofoil catamaran, Fig. 6 compares the
attitude control performance between traditional approach
and the algorithm in this paper. It is shown that the latter’s
performance is much better than that of the former’s. Hence,
the drawback of traditional LQR method is successfully
overcome, which is confined only in the vicinity of a limited
number of operating points.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper has proposed a novel approach to meet the
special requirement of attitude control for a type of fully-
submerged hydrofoil catamaran, through fuzzy interpolation
of a series of linear system. An integrated pipeline of
developing such a control system is presented. The math-
ematical model of heaving motion and pitching motion is
established, acting as simulation model for further research.
This nonlinear model shows good performance both in calm
water and in heavy seas. Through the above pipeline, a
control strategy which satisfies many requirements for stabi-
lization, maneuverability, and comfort for a fully submerged
hydrofoil catamaran has been developed. At the end of the
paper, numerical simulations illustrate our whole research
procedures. The simulation results have shown that at any
speed point over the working range, the obtained feedback
gain can reject wave-induced harmful motion greatly. By
use of our method, the main drawback of conventional LQR
approach is eliminated. Simulation researches also have
revealed the effectiveness and reliability of the established
simulation model.
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Fig. 5. Time response of HC200B-A1’s attitude, i.e. elevation height (ξ )
and pitch angle (θ ), and control efforts, i.e. fore (α f p1) and aft (α f p2) flap
control angles
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Fig. 6. Comparison of control performance between our method and
traditional method

B. Future Works

However, there is still a lot of further work left to deal
with in the future. E.g., the modelling of six degrees of
freedom, how to suppress the roll motion of hydrofoil
catamaran in rough seas, and so on, are needed.
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