Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004

WeM13.4

Hopf Bifurcation Control for Affine Systems

Fernando Verduzco and Joaquin Alvarez

Abstract—In this paper we establish conditions to control
the Hopf bifurcation of nonlinear systemswith two uncontrol-
lable modes on theimaginary axis. We use the center manifold
to reduce the system dynamics to dimension two, and find
expressionsin terms of the original vector fields.

. INTRODUCTION

There exists a great interest to analyze control systems
that can exhibit complex dynamics. An emerging research
field that has become very stimulating is the bifurcation
control which, for example, tries to modify the dynamical
behavior of a system around bifurcation points, generate a
new bifurcation in a desirable parameter value [3], delay
the onset of an inherent bifurcation [10], or stabilize a
bifurcated solution [1], [2]. In [6] an overview of this field
is included.

There are many works that study the bifurcation control
problem. In [1], [2], [11] this problem is analyzed using
state feedback control. In [9], [5], [8] the problem is
investigated using normal forms and invariant.

In this paper, we analyze control systems with two uncon-
trollable modes on the imaginary axes. We propose a state
feedback control v = wu(z;p, 81, 2) such that p causes
the Hopf bifurcation, 3, determines the stability of the
equilibrium point, and (5 establishes the orientation and
stability of the periodic orbit. This analysis is based on the
Hopf bifurcation and center manifold theorems [7], [4].

[I. STATEMENT OF THE PROBLEM
Consider the nonlinear system

£=F (&) +G(E)u, @

where ¢ € R" is the state and u € R is the control
input. The vector fields F'(¢) and G (&) are assumed to be
sufficiently smooth, with F'(0) = 0. Assume that

J=DF(0) = ( Jg’ JOS >

0 —wo

with Jy — ( o ) Cand Jg € RI-2x(1-2) g
2X2

Hurwitz matrix. Suppose that F'(£) = ( F(9) > G(¢) =

()

G z .
1) ,and € = , with z € R2, w € R"2,
G2(§) w
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Fl,Gl RZxR"2 - RQ, and FQ,GQ RZx R 2
R"~2 . Then, expanding system (1) around ¢ = 0 yields

Juz+ Fo1(z,w) + F31(z,w) + - - - 2
+(by + Myz + Mow + Go1(z,w) + - - - )u,

w = Jsw+ Fas(z,w) + Faa(z,w) + -
+(b2 + M3z + Myw + Gaz(z,w) + - - - )u,
s (M M,
where G(0) = b = ( by > DG(0) = ( M M, >

with b; € R?, by € R*2, and

Byw) = 20000 T8 0,0
+%wT8; (0,0)w,
Gay(2,w) = %zTaG( 0)z + ZT%(O,O)@U
+-w 5(0 0)w,
Py = 250,069+,
forj=1,2.

We wish to design a control law u = u(z, ), with ¢ a
real parameter, such that the original system (1) undergoes
a Hopf bifurcation at £ = 0 and p = 0, and that we
could control it, i.e., that we could decide the stability and
direction of the emerging periodic solution.

We suppose that

H1 rank(b Jb --- J" 1) =n — 2.

There are many ways to satisfy the condition H1; in this
paper we analyze the case where b, = 0 and by; # 0
forj =1, 27 ceey n—2, where by = (bgl, bQQ, cey bg’n_g)T.
This corresponds to the case where the linear approximation
of (1) has two uncontrollable modes, +iwg, a £ = 0.

Consider the control law

u(z, p) = Bip+ Bo(27 + 23) = Pip+ Bez" 2, (3)

where 1, B2 € R.

Now, using the control law (3) in system (2) we obtain
the closed-loop system

z = JHZ—|—]:1(Z,’U],M), (4)
61()2[44— JS’U] +~7:2(Z7wa:u)7

1061



where

Filz,w,p) = PipMiz+ frpMow + Foi(z, w)
+B11Go1 (z,w) + B2z 2 (Myz + Maw)
+F31(Z,’LU) —+ - 5

Folz,w,nu) = [ipuMsz+ frpMaw + Foo(z, w)

+8227 2 (be + M3z + Myw)
+61MG22(Z, ’LU) + FgQ(Z, ’LU) + -
Then, our god isto find 5; and (3> such that system (4)
undergoes a Hopf bifurcation and can be controllable. For
this, we use the center manifold theory.
[11. CENTER MANIFOLD
A. Quadratic terms

Equation (4) represents a pu-parameterized family of
systems, which we can write as an extended system

Jg 0 0 z
0 0 0 I
0 61172 .]5 w
]:1 (Za w, ,M)
+ 0 .
Folz,w, p)
In this form, the system has a three-dimensional center
manifold through the origin. To find this manifold, we need

to change coordinatesto put the linear part in diagonal form.
Then, using the transformation matrix

z T
(1) (2)
w Y
Ju 0 0
P=| 0 1 0
0 —Bidg'be Js

Jit 0 0
Pt = 0 1 0 ,
0 PBidg’be Jg!

we can put (4) into standard form

(o) (0 ) (2)-(e)
g ]l=( 0o 0 o po |+ 0 :
g 0 0 Js y 9(@, 1, y)

and

or
JHJ?"‘f(x,,U,y),
= 0, ®)
v = Jsy+g(,pmy),
where
f(xa,uay) = Jf_Ilfl(']Hxa,ua _61']51172,“_'_']5?/)) (6)

9(z, 1,y) = Jg' Fo(Juz, p, —BuJg bap + Jsy).  (7)

We seek a center manifold
1 1
y = h(z,p)= §xTH1x + 2T Hop + §H3M2 +--- (8)
such that 1(0,0) = 0, Dh(0,0) = 0 and

1 1
hi(x, p) = §xTHux + xTH%u + §H31N2 4.

fori=1,2,...,n — 2. Substituting (8) into (5) and using
the chain rule, we obtain
Oh(z, 1)

o JHT+ [l p h(z, 1))
—Jsh(z, p) — g(z, p, h(z,p)) = 0. (9
This partial differential equation for & will be solved in
the simplest case, that is, when Jg is diagond, i.e,
A1 0
Js = ;
0 An—2
with A; < 0 for each j. Besides, we are just interested

to calculate H; because we will make 1 = 0 when we
calculate the first Lyapunov coefficient a. Now, if

1 1
g2(w, p) = 52" Nz + 2" Nopu+ S Napi?, - (10)

2
with ggi(x,,u) = %xTNuJ? + xTNgm + %NMIMQ, for
i = 1,...,n — 2, represents the quadratic terms of
g(x, p, h(z, 1)), then from (9) we obtain,

Il
o

Ohilett) Jyre — N\ihy(w, ) — gai(, ) + h.ot. o
(«THyi+ Hip) Jux

—)\i(%xTHuJZ =+ xTHgl'lu -+ %HZ%,UQ)

—3 (2" Ny + 2T Nojpn + $N34%) + hoot.

Il
o

=

zT (HuJH — %)\iHli — %Nu‘) T
+2T (J;L;Hzi — NiHyi — Nm‘) i
—% ()\1H31 + Ngi) ,MQ + h.o.t. =0,

fori=1,...,n— 2, where we consider only the quadratic
terms. Then

1 1 -1

-1 )\1 —20)0
A2+ 4w2 \ 2wo Ad
Now we are going to calculate N;. Observe that, from (7),
g(x, s h(ﬂ?, ,u)): ']51]:2(']}13:) s _61']51172# =+ ']Sh(xa ,u))
1
= 5.];1 (2T JE Fs-.(0,0) T )

(11)

+52w8xTxJ§1b2 + -

1062



but ) X
575" (xTJEIFsz(o, 0)Juz) = 5" Ar

where A = A(wo, A;, 822 2(0,0)), and

bay
A1
62w8xTxJ§1b2 = 62w8xTx
bon_2
An—2
boy . T
DV

2
= 620-)0

bon_2 T
—)\'n.—2 xr T

T ( b2y
(%r2)
T [ b2,n—2
T <—>\n_2 Ig) T

= 52603

= 62w§xTBx
where B, = (b; 12) . Therefore,
i7"/ 2x2
1
glx, p, h(z, 1)) = §xT.Ax + BowdazTBx + - -

= %xT (A+2BwiB)z+-- -,

then, from (10), Ny = A + 23w B. Now then, from (11),

we obtain
Hy = NiRy
= (Ai +20w3B;) R
= A + 2603 B,
where
> bo; Ai —2wo
= . 12
b i (A2 + 4wd) ( 2wo Ai > (12)
Finally, from (8),
1
h(z, p= §xTH1x—|— SRR
where H; = A + 25wl B.
B. Dynamics on the center manifold
On the center manifold the dynamics is given by

where, from (6),

f(xa Hy h(xa :u)):']}_[l]:l(']Hx M, 61']51172# + ']Sh'(xa :u))
=Bipd gt (My — b3 (Jg 1) F14,2(0,0)) Jga

1
+§J;11 (a7 T} F122(0,0) Jp2)

+J 5" (2T T F120(0,0) Jsh(z, 1))
+ o d gt (T T Tga) My Ty

1
+6J;11 (2T J§ F1222(0,0)Jgx) Jgx + -+,

but, we define
BruMaz = Bipd gt (My — b3 (Jg

where

YT F142(0,0)) Jua

_ _I\T
M= Tt (M =88 (75 Fre(0,0)) s (14)
1
§xTQx = J;,l (a;TJZ,FlzZ(o, 0)Juz)
where Q = Q(wo, o £1(0,0)), and

1
EC(x, z,1)=J5" (xTJgFlzw(O, 0)Jsh(z, 1))

+B2 05 (27 T Tux) My Ty

1
+EJ;,1 (2T JE F1222(0,0)Jyx) Jyz. (15)

Observe that

1 1
E.ng (2T JE F1222(0,0)Jyx) Jya = Eco(a;, T, )

with Co = Co(wo, 25 (0,0));

Body' (@ T Jua) My gz = fowia’w (J5'MyJy)x
= BuwiCu(z,z, ),
with M, = ( M > and
m21 M22
maaly  —maorls
Cm = 16
M ( —mizly  miil >’ (16)
and
Ji! (xTJf,Flw(o 0)Jsh(z,pu)) i
=i (@7 T Fizu(0, 0)Js (a " (A -+ 26,088) 7))

=177 (z TJHFW 0,0)Js (=7 Az)
+62w8.] ( TJHFlzw(O 0) 5( B ))
= 1Ca(z,x,2) + fowiCs(z, z, x)

with C 5 = C 4(wo. \i» 522 (0,0), 2221 ) and

Ca(z,z,2) = Jg' (xTJgFlzw(O,O)JS(xTBx)).

We are going to calculate Cz. Observe that

0 O)
F1.4,(0,0) = 1“”( 17
! ( ) ( 1zw(0 O) > ( )
where
(0,0)
1zw(0 O) = ( 121w
12211)(0 O)
B;Ff(ao,o) SQF-{(OB,O)
= aQF-f (0,10) o 82;1;(20,0; ’

Ow10z2 ’ Ownp 2029

and _
T ()\131) X
Js (xTBx) = : ,

xT ()\n_QBn_Q) X
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then

F1.5(0,0)Js (27 Bz) =

where
T n—2 02F1(0,0)\
> T wl z )\kB
1zw(0 O)JS( TBJ:): ( : 1238Fk(80 1)) )
(Zk OwyOza )\ B )
szSJx,
with
. 82FJ 0,0). 5
Jj
S = w0z )\ kB
- Z 82FJ 0 O ka )\k —20)0
N Owpdz; (A2 +4wd) \ 2wo Ak
fori,j =1,2.

Now then, 7 J% = wo(—z2,z1), then,
2T JEF1,,(0,0)Js (xTBx)
_ (—x9,21)2TS 2
= o (—x9,21)2TS?%2
_ —Zo (xTSllx) + 1 (xTSzlx)
U (278tx) + x1 (27 S3x) )°
therefore,
it (27 JHF120(0,0)Js (27 Bz))
_ 0 1 —Zo xTSllx + 1
L\ -1 0 —z9 (27827) + 11

I ( TS%x) + 1 (xTSQQx)
o 2TS8tx) — x1 (27 S}x)

@2 (
_( S8 =St
AN

then
Cr = 822 _812
5o s s

Now, we re-write (15)

278l
2782z

> (x,z,x),

(18)
1 2 1 2

EC = =Co+ 52w061y[ + 56/1 + 520)065

1

E (6520)8 (CM + Cg))

(19)

= —(Co—|—3CA)+

(Cl + CQ) ,

D =D =D =

A, 8%F1(0,0) 8%F,(0,0) 8%Fi(0, o)) and

wo, 923 9z2 ' 0z0w
Cy = 602wp ( ) (20)

Mmoo ls + 82
Finally, the dynamics on the center manifold is given by

where Ci=C1

—~

2
—m21]2 — Sl

—m12]2 — 821 m11]2 + 811

1 1
x'=J,Lx—|—§Q(x,x)—|—EC(x,x,x)—F--- , (21)

where J, = Jyg + fipM, and M and C are given by
(14,19,20).

Remark Remember that we just consider those quadratic
and cubic terms in (21) that do not depend on p because
we put u = 0 to find the first Lyapunov coefficient. At the
same time, we have just found expressions for those terms
that depend on 3, and that are needed to find the mentioned
coefficient.

IV. CONTROL OF THE HOPF BIFURCATION

In this section we will find conditions to ensure that
system (21) undergoes a Hopf bifurcation that can be
controlled.

A. Hopf bifurcation theorem
Theorem 1: ([7]) Suppose that the system

x.:f(xa:u)

with z € R", u € R has an equilibrium (x, po) a which

the following properties are satisfied:

(A1) D, f(xo,po) has a smple pair of pure imaginary
eigenvalues and no other eigenvalues with zero real
parts.

(A2) Let \(u), (i) be the eigenvalues of D, f(zo, o)
which are imaginary at = pg, such that

d

7 (BeQA)) lu=po = d # 0.
m

Then there is a unique three-dimensional center manifold
passing through (x¢, 1o) € R™ xR and a smooth system of
coordinates for which the Taylor expansion of degree three
on the center manifold, in polar coordinates, is given by

(22)

o= (dp+ ar®)r,
) = wHcp+brd

If a # 0, there is a surface of periodic solutions in the
center manifold which has quadratic tangency with the
eigenspace of A(uo), 7(;40) agreeing to second order with
the paraboloid 1 = —4r2. If a < 0, then these periodic
solutions are stable limit cycles, while if a > 0, are
repelling.

For bidimensional systems, there exists an expression to
find the called first Lyapunov coefficient a. Consider the
system

_ (0 —w o = ( Fil2) ) _
s P U

a= M(Rl + wRy), (23)
where
R = Fioe,(Fleie, + Fiasa,)
—Fozyay (Fozyey + Fozozs)
—Figy0, Fozyzy + Flases Foaors
Ry = Figeiz + Flaieses + Forieizs + Fouozszs-
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There exists another way to express Rs. If

1 1
F(z) = §Q(x,x) + EC(x,x,x) + -
[ @ Cn Chi2 - o~
where © 0, > C= ( Oyt Con >Wlth Qi,Cij €
R2*2, then

(24)

with ¢r(-) = trace(-).

B. Control law design

In this section we are going to prove, using the theorem
1, that system (21) undergoes the Hopf bifurcation at x = 0
and . = 0. First, we are going to prove that the eigenvalues
of .J,, cross the imaginary axes when p = 0, and second, we
will show that the first Lyapunov coefficient o is different
of zero.

1) Eigenvalues of J,,: The characteristic equation of the
linear part of (21) is given by

N —tr(J )N+ det(J,) =0
where tr(J,) = p[iutr(M) and det(J,) = wi +

Brpwo(Mar — Miz) + (7 pdet(M), with M = (M,;).
Then, for p sufficiently small, the eigenvalues are given by

M) = 2tr(J,) iﬁ det(s,) - (000 -
Then, A\(0) = +iwo and
Re(\p)) = 50r(J,) = 30utr (M)

but, from (14),

tr(M) = tr(M; —bT J‘l)TFM,Z(O 0))

(
= tr Ml) — tT(bg ( ) Flwz(o 0))
Ml) - tT(bg ( ) Flwz(o O))
= tr Ml) - tr(Flzw(O O)JS 1b2)

and from (17),

1zw(0 O)JS 1b2 = ( Flzw'] 1b2 Flzw'] 1b2 )
where
0,0)Jg by )
0.0)J= 1b _ 1zlw( S
1zw( ) S 2 ( 12211}(0 O)JS 1b2

Zn 2 92F{ (0,0) by,

k=1 Owgdz1 Mg

( n—2 8%F7 (0,0) poy )’
Zk 1 Owrpdza Ak

then

tr(Fl,Z;w(Oa O)J,;le)

Zb%a F10,0) ZbngQFl (0,0)
)\k 8wk82’1 )\k awk822
Z 2 bor (O2FL(0,0) N 82F1 (0,0)

Ak w0z, Owy 029

Jbor O OF} OF?
Z )\k 8’wk (82’1 (0 0)+ 8—2(0 O)>

n—2
B bor, O
= Z N, Jur (div,Fy) (0,0),

k=1
therefore, 5
Re(A(u)) = 75K,
where
o O
Ky = tr(My) — ZTka—k(diszl)(0,0>, (25)
k=1
and from (22),
d
d = @Re( (1) p=0
_ é;cl (26)

2) First Lyapunov coefficient: From (23-24),
1

a= 1600 (R1 4+ woRz2)
where, for our system (21),
Ry, = tT(Cl + CQ)
= tT(Cl) + tT(CQ)
= 01+ 62

where

51 = 51 (WO; )\i; FQZZ(O; O)a Flzzz(oa 0)) = tT(Cl)

and
by = tr(CQ)
B ) maoole +82  —mai I — S}
= tr (6620)0 ( —mioly — 821 my1ls + 811
= 12620)8’C2;
where
n—2
bor Ak .
Na ,0). (27
Z)\2—|—4w88w (div-F2) (0, 0). (21)
k=1
Then, 3
0 = i 45, @)

We have then proved the next result.
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Theorem 2: Consider the system
£=F(&)+G()u,

with F(0) = 0 and DF(0) = J

_ Jg 0 .
= ( 0 Js > with
0 —Wwo

Ju w 0 and Jg diag{)\l, .. .,)\n_g}
0
Hurwitz. If 1C; and /Co, given by (25) and (27), respectively,

are different of zero, G(0) = Zl > with b; = 0, and
2

rank(b Jb --- J"'b) = n — 2, then there exists 31, 2
such that, with the control law

u=Pip+ Ba(2f +23),

the system undergoes the Hopf bifurcation at . = 0. More-
over, it is possible to control the stability and direction of
the emerging periodic solution near the origin, by selecting
the signs of d and a in (26) and (28), respectively.

For the case n = 2, K1 = Ko = tr(M;). This case was
reported in [11]

V. CONCLUSIONS

In this paper we have derived sufficient conditions to
ensure the control of the Hopf bifurcation in nonlinear
systems with two uncontrollable modes in the imaginary
axes. We have used the center manifold theorem to reduce
the analysis to dimension two; nevertheless, we have ob-
tained expressions in terms of the original vector fields. The
control law designed has a constant term, which establish
the stability of the equilibrium point, and a quadratic
term, which determines the orientation and stability of the
periodic solution near the origin.
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