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Abstract—In this paper we establish conditions to control
the Hopf bifurcation of nonlinear systems with two uncontrol-
lable modes on the imaginary axis. We use the center manifold
to reduce the system dynamics to dimension two, and find
expressions in terms of the original vector fields.

I. INTRODUCTION

There exists a great interest to analyze control systems
that can exhibit complex dynamics. An emerging research
field that has become very stimulating is the bifurcation
control which, for example, tries to modify the dynamical
behavior of a system around bifurcation points, generate a
new bifurcation in a desirable parameter value [3], delay
the onset of an inherent bifurcation [10], or stabilize a
bifurcated solution [1], [2]. In [6] an overview of this field
is included.
There are many works that study the bifurcation control
problem. In [1], [2], [11] this problem is analyzed using
state feedback control. In [9], [5], [8] the problem is
investigated using normal forms and invariant.
In this paper, we analyze control systems with two uncon-
trollable modes on the imaginary axes. We propose a state
feedback control u = u(z; µ, β1, β2) such that µ causes
the Hopf bifurcation, β1 determines the stability of the
equilibrium point, and β2 establishes the orientation and
stability of the periodic orbit. This analysis is based on the
Hopf bifurcation and center manifold theorems [7], [4].

II. STATEMENT OF THE PROBLEM

Consider the nonlinear system

ξ̇ = F (ξ) + G(ξ)u, (1)

where ξ ∈ R
n is the state and u ∈ R is the control

input. The vector fields F (ξ) and G(ξ) are assumed to be
sufficiently smooth, with F (0) = 0. Assume that

J = DF (0) =
(

JH 0
0 JS

)

with JH =
(

0 −ω0

ω0 0

)
2×2

, and JS ∈ R
(n−2)×(n−2) a

Hurwitz matrix. Suppose that F (ξ) =
(

F1(ξ)
F2(ξ)

)
, G(ξ) =(

G1(ξ)
G2(ξ)

)
, and ξ =

(
z
w

)
, with z ∈ R

2, w ∈ R
n−2,
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F1, G1 : R
2 × R

n−2 → R
2, and F2, G2 : R

2 × R
n−2 →

R
n−2 . Then, expanding system (1) around ξ = 0 yields

ż = JHz + F21(z, w) + F31(z, w) + · · · (2)

+(b1 + M1z + M2w + G21(z, w) + · · · )u,

ẇ = JSw + F22(z, w) + F32(z, w) + · · ·
+(b2 + M3z + M4w + G22(z, w) + · · · )u,

where G(0) = b =
(

b1

b2

)
, DG(0) =

(
M1 M2

M3 M4

)
,

with b1 ∈ R
2, b2 ∈ R

n−2, and

F2j(z, w) =
1
2
zT ∂2Fj

∂z2
(0, 0)z + zT ∂2Fj

∂z∂w
(0, 0)w

+
1
2
wT ∂2Fj

∂w2
(0, 0)w,

G2j(z, w) =
1
2
zT ∂2Gj

∂z2
(0, 0)z + zT ∂2Gj

∂z∂w
(0, 0)w

+
1
2
wT ∂2Gj

∂w2
(0, 0)w,

F3j(z, w) =
1
6

∂3Fj

∂z3
(0, 0)(z, z, z) + · · · ,

for j = 1, 2.
We wish to design a control law u = u(z, µ), with µ a

real parameter, such that the original system (1) undergoes
a Hopf bifurcation at ξ = 0 and µ = 0, and that we
could control it, i.e., that we could decide the stability and
direction of the emerging periodic solution.

We suppose that

H1 rank
(
b Jb · · · Jn−1b

)
= n − 2.

There are many ways to satisfy the condition H1; in this
paper we analyze the case where b1 = 0 and b2j �= 0
for j = 1, 2, . . . , n−2, where b2 = (b21, b22, . . . , b2,n−2)T .
This corresponds to the case where the linear approximation
of (1) has two uncontrollable modes, ±iω0, at ξ = 0.

Consider the control law

u(z, µ) = β1µ + β2(z2
1 + z2

2) = β1µ + β2z
T z, (3)

where β1, β2 ∈ R.
Now, using the control law (3) in system (2) we obtain

the closed-loop system

ż = JHz + F1(z, w, µ), (4)

ẇ = β1b2µ + JSw + F2(z, w, µ),



where

F1(z, w, µ) = β1µM1z + β1µM2w + F21(z, w)
+β1µG21(z, w) + β2z

T z (M1z + M2w)
+F31(z, w) + · · · ,

F2(z, w, µ) = β1µM3z + β1µM4w + F22(z, w)
+β2z

T z (b2 + M3z + M4w)
+β1µG22(z, w) + F32(z, w) + · · · .

Then, our goal is to find β1 and β2 such that system (4)
undergoes a Hopf bifurcation and can be controllable. For
this, we use the center manifold theory.

III. CENTER MANIFOLD

A. Quadratic terms

Equation (4) represents a µ-parameterized family of
systems, which we can write as an extended system

⎛
⎝ ż

µ̇
ẇ

⎞
⎠ =

⎛
⎝ JH 0 0

0 0 0
0 β1b2 JS

⎞
⎠
⎛
⎝ z

µ
w

⎞
⎠

+

⎛
⎝ F1(z, w, µ)

0
F2(z, w, µ)

⎞
⎠ .

In this form, the system has a three-dimensional center
manifold through the origin. To find this manifold, we need
to change coordinates to put the linear part in diagonal form.
Then, using the transformation matrix⎛

⎝ z
µ
w

⎞
⎠ = P

⎛
⎝ x

µ
y

⎞
⎠ ,

where

P =

⎛
⎝ JH 0 0

0 1 0
0 −β1J

−1
S b2 JS

⎞
⎠

and

P−1 =

⎛
⎝ J−1

H 0 0
0 1 0
0 β1J

−2
S b2 J−1

S

⎞
⎠ ,

we can put (4) into standard form⎛
⎝ ẋ

µ̇
ẏ

⎞
⎠ =

⎛
⎝ JH 0 0

0 0 0
0 0 JS

⎞
⎠
⎛
⎝ x

µ
y

⎞
⎠+

⎛
⎝ f(x, µ, y)

0
g(x, µ, y)

⎞
⎠ ,

or

ẋ = JHx + f(x, µ, y),
µ̇ = 0, (5)

ẏ = JSy + g(x, µ, y),

where

f(x, µ, y) = J−1
H F1(JHx, µ,−β1J

−1
S b2µ + JSy), (6)

g(x, µ, y) = J−1
S F2(JHx, µ,−β1J

−1
S b2µ + JSy). (7)

We seek a center manifold

y = h(x, µ) =
1
2
xT H1x + xT H2µ +

1
2
H3µ

2 + · · · (8)

such that h(0, 0) = 0, Dh(0, 0) = 0 and

hi(x, µ) =
1
2
xTH1ix + xT H2iµ +

1
2
H3iµ

2 + · · ·
for i = 1, 2, . . . , n − 2. Substituting (8) into (5) and using
the chain rule, we obtain

∂h(x, µ)
∂x

[JHx + f(x, µ, h(x, µ))]

−JSh(x, µ)− g(x, µ, h(x, µ)) ≡ 0. (9)

This partial differential equation for h will be solved in
the simplest case, that is, when JS is diagonal, i.e.,

JS =

⎛
⎜⎝

λ1 0
. . .

0 λn−2

⎞
⎟⎠ ,

with λj < 0 for each j. Besides, we are just interested
to calculate H1 because we will make µ = 0 when we
calculate the first Lyapunov coefficient a. Now, if

g2(x, µ) =
1
2
xT N1x + xT N2µ +

1
2
N3µ

2, (10)

with g2i(x, µ) = 1
2
xT N1ix + xTN2iµ + 1

2
N3iµ

2, for
i = 1, . . . , n − 2, represents the quadratic terms of
g(x, µ, h(x, µ)), then from (9) we obtain,

∂hi(x,µ)
∂x

JHx − λihi(x, µ) − g2i(x, µ) + h.o.t. ≡ 0 ⇔
(
xT H1i + HT

2iµ
)
JHx

−λi(1
2
xT H1ix + xT H2iµ + 1

2
H3iµ

2)
−1

2

(
xT N1ix + xTN2iµ + 1

2N3iµ
2
)

+ h.o.t. ≡ 0 ⇔

xT
(
H1iJH − 1

2λiH1i − 1
2N1i

)
x

+xT
(
JT

HH2i − λiH2i − N2i

)
µ

−1
2 (λiH3i + N3i)µ2 + h.o.t. ≡ 0,

for i = 1, . . . , n− 2, where we consider only the quadratic
terms. Then

H1i =
1
2
N1i

(
JH − 1

2
λiI2

)−1

= N1iRi

where I2 =
(

1 0
0 1

)
and

Ri =
1
2

(
JH − 1

2
λiI2

)−1

=
−1

λ2
i + 4ω2

0

(
λi −2ω0

2ω0 λi

)
(11)

Now we are going to calculate N1. Observe that, from (7),

g(x, µ, h(x, µ))= J−1
S F2(JHx, µ,−β1J

−1
S b2µ + JSh(x, µ))

=
1
2
J−1

S

(
xT JT

HF2zz(0, 0)JHx
)

+β2ω
2
0x

T xJ−1
S b2 + · · · ,



but
1
2
J−1

S

(
xT JT

HF2zz(0, 0)JHx
)

=
1
2
xTAx

where A = A(ω0, λi,
∂2F2
∂z2 (0, 0)), and

β2ω
2
0x

T xJ−1
S b2 = β2ω

2
0x

T x

⎛
⎜⎜⎝

b21
λ1
...

b2,n−2
λn−2

⎞
⎟⎟⎠

= β2ω
2
0

⎛
⎜⎜⎝

b21
λ1

xT x
...

b2,n−2

λn−2
xT x

⎞
⎟⎟⎠

= β2ω
2
0

⎛
⎜⎜⎜⎝

xT
(

b21
λ1

I2

)
x

...

xT
(

b2,n−2
λn−2

I2

)
x

⎞
⎟⎟⎟⎠

= β2ω
2
0x

TBx

where Bi =
(

b2i

λi
I2

)
2×2

. Therefore,

g(x, µ, h(x, µ)) =
1
2
xTAx + β2ω

2
0x

TBx + · · ·

=
1
2
xT
(A + 2β2ω

2
0B
)
x + · · · ,

then, from (10), N1 = A + 2β2ω
2
0B. Now then, from (11),

we obtain

H1i = N1iRi

=
(Ai + 2β2ω

2
0Bi

)Ri

= Āi + 2β2ω
2
0B̄i,

where

B̄i = − b2i

λi (λ2
i + 4ω2

0)

(
λi −2ω0

2ω0 λi

)
. (12)

Finally, from (8),

h(x, µ =
1
2
xT H1x + · · · ,

where H1 = Ā + 2β2ω
2
0B̄.

B. Dynamics on the center manifold

On the center manifold the dynamics is given by

ẋ = JHx + f(x, µ, h(x, µ)), (13)

where, from (6),

f(x, µ, h(x, µ))=J−1
H F1(JHx, µ,−β1J

−1
S b2µ + JSh(x, µ))

=β1µJ−1
H

(
M1 − bT

2 (J−1
S )T F1wz(0, 0)

)
JHx

+
1
2
J−1

H

(
xTJT

HF1zz(0, 0)JHx
)

+J−1
H

(
xT JT

HF1zw(0, 0)JSh(x, µ)
)

+β2J
−1
H (xT JT

HJHx)M1JHx

+
1
6
J−1

H

(
xTJT

HF1zzz(0, 0)JHx
)
JHx + · · · ,

but, we define

β1µMx = β1µJ−1
H

(
M1 − bT

2 (J−1
S )T F1wz(0, 0)

)
JHx

where

M = J−1
H

(
M1 − bT

2

(
J−1

S

)T
F1wz(0, 0)

)
JH ; (14)

1
2
xTQx =

1
2
J−1

H

(
xT JT

HF1zz(0, 0)JHx
)

where Q = Q(ω0,
∂2F1
∂z2 (0, 0)), and

1
6
C(x, x, x)=J−1

H

(
xT JT

HF1zw(0, 0)JSh(x, µ)
)

+β2J
−1
H (xT JT

HJHx)M1JHx

+
1
6
J−1

H

(
xT JT

HF1zzz(0, 0)JHx
)
JHx. (15)

Observe that

1
6
J−1

H

(
xT JT

HF1zzz(0, 0)JHx
)
JHx =

1
6
C0(x, x, x)

with C0 = C0(ω0,
∂3F1
∂z3 (0, 0));

β2J
−1
H (xT JT

HJHx)M1JHx = β2ω
2
0x

T x
(
J−1

H M1JH

)
x

= β2ω
2
0CM (x, x, x),

with M1 =
(

m11 m12

m21 m22

)
and

CM =
(

m22I2 −m21I2

−m12I2 m11I2

)
, (16)

and

J−1
H

(
xT JT

HF1zw(0, 0)JSh(x, µ)
)

= J−1
H

(
xT JT

HF1zw(0, 0)JS

(
1
2xT

(Ā + 2β2ω
2
0B̄
)
x
))

= 1
2J−1

H

(
xT JT

HF1zw(0, 0)JS

(
xT Āx

))
+β2ω

2
0J

−1
H

(
xT JT

HF1zw(0, 0)JS

(
xT B̄x

))
= 1

2
CĀ(x, x, x) + β2ω

2
0CB̄(x, x, x)

with CĀ = CĀ(ω0, λi,
∂2F2
∂z2 (0, 0), ∂2F1

∂z∂w ) and

CB̄(x, x, x) = J−1
H

(
xT JT

HF1zw(0, 0)JS

(
xT B̄x

))
.

We are going to calculate CB̄ . Observe that

F1zw(0, 0) =
(

F 1
1zw(0, 0)

F 2
1zw(0, 0)

)
, (17)

where

F j
1zw(0, 0) =

(
F j

1z1w(0, 0)
F j

1z2w(0, 0)

)

=

⎛
⎝ ∂2F j

1 (0,0)
∂w1∂z1

, · · · ,
∂2F j

1 (0,0)
∂wn−2∂z1

∂2F j
1 (0,0)

∂w1∂z2
, · · · ,

∂2F j
1 (0,0)

∂wn−2∂z2

⎞
⎠ ,

and

JS

(
xT B̄x

)
=

⎛
⎜⎝

xT
(
λ1B̄1

)
x

...
xT
(
λn−2B̄n−2

)
x

⎞
⎟⎠ ,



then

F1zw(0, 0)JS

(
xT B̄x

)
=

(
F 1

1zw(0, 0)JS

(
xT B̄x

)
F 2

1zw(0, 0)JS

(
xT B̄x

) ) ,

where

F j
1zw(0, 0)JS

(
xT B̄x

)
=

⎛
⎝ xT

(∑n−2
k=1

∂2F j
1 (0,0)

∂wk∂z1
λkB̄k

)
x

xT
(∑n−2

k=1
∂2F j

1 (0,0)
∂wk∂z2

λkB̄k

)
x

⎞
⎠

=xTSjx,

with

Sj
i =

n−2∑
k=1

∂2F j
1 (0, 0)

∂wk∂zi
λkB̄k

= −
n−2∑
k=1

∂2F j
1 (0, 0)

∂wk∂zi

b2k

(λ2
k + 4ω2

0)

(
λk −2ω0

2ω0 λk

)

for i, j = 1, 2.
Now then, xT JT

H = ω0(−x2, x1), then,

xT JT
HF1zw(0, 0)JS

(
xT B̄x

)
= ω0

(
(−x2, x1)xTS1x
(−x2, x1)xTS2x

)

= ω0

( −x2

(
xTS1

1x
)

+ x1

(
xTS1

2x
)

−x2

(
xTS2

1x
)

+ x1

(
xTS2

2x
) ) ,

therefore,

J−1
H

(
xT JT

HF1zw(0, 0)JS

(
xT B̄x

))
=
(

0 1
−1 0

)( −x2

(
xTS1

1x
)

+ x1

(
xTS1

2x
)

−x2

(
xTS2

1x
)

+ x1

(
xTS2

2x
) )

=
( −x2

(
xTS2

1x
)

+ x1

(
xTS2

2x
)

x2

(
xTS1

1x
)− x1

(
xTS1

2x
) )

=
( S2

2 −S2
1

−S1
2 S1

1

)
(x, x, x),

then

CB̄ =
( S2

2 −S2
1

−S1
2 S1

1

)
(18)

Now, we re-write (15)

1
6
C =

1
6
C0 + β2ω

2
0CM +

1
2
CĀ + β2ω

2
0CB̄

=
1
6

(C0 + 3CĀ) +
1
6
(
6β2ω

2
0 (CM + CB̄)

)
=

1
6

(C1 + C2) , (19)

where C1 = C1(ω0, λi,
∂3F1(0,0)

∂z3 , ∂2F2(0,0)
∂z2 , ∂2F1(0,0)

∂z∂w ) and

C2 = 6β2ω
2
0

(
m22I2 + S2

2 −m21I2 − S2
1

−m12I2 − S1
2 m11I2 + S1

1

)
(20)

Finally, the dynamics on the center manifold is given by

ẋ = Jµx +
1
2
Q(x, x) +

1
6
C(x, x, x) + · · · , (21)

where Jµ = JH + β1µM, and M and C are given by
(14,19,20).

Remark Remember that we just consider those quadratic
and cubic terms in (21) that do not depend on µ because
we put µ = 0 to find the first Lyapunov coefficient. At the
same time, we have just found expressions for those terms
that depend on β2 and that are needed to find the mentioned
coefficient.

IV. CONTROL OF THE HOPF BIFURCATION

In this section we will find conditions to ensure that
system (21) undergoes a Hopf bifurcation that can be
controlled.

A. Hopf bifurcation theorem

Theorem 1: ([7]) Suppose that the system

ẋ = f(x, µ)

with x ∈ R
n, µ ∈ R has an equilibrium (x0, µ0) at which

the following properties are satisfied:

(A1) Dxf(x0 , µ0) has a simple pair of pure imaginary
eigenvalues and no other eigenvalues with zero real
parts.

(A2) Let λ(µ), λ̄(µ) be the eigenvalues of Dxf(x0 , µ0)
which are imaginary at µ = µ0, such that

d

dµ
(Re(λ(µ))) |µ=µ0 = d �= 0. (22)

Then there is a unique three-dimensional center manifold
passing through (x0, µ0) ∈ R

n×R and a smooth system of
coordinates for which the Taylor expansion of degree three
on the center manifold, in polar coordinates, is given by

ṙ = (dµ + ar2)r,
θ̇ = ω + cµ + br2.

If a �= 0, there is a surface of periodic solutions in the
center manifold which has quadratic tangency with the
eigenspace of λ(µ0), λ̄(µ0) agreeing to second order with
the paraboloid µ = − a

d r2. If a < 0, then these periodic
solutions are stable limit cycles, while if a > 0, are
repelling.

For bidimensional systems, there exists an expression to
find the called first Lyapunov coefficient a. Consider the
system

ẋ = Jx + F (x),

where J =
(

0 −ω
ω 0

)
, F (x) =

(
F1(x)
F2(x)

)
, F (0) = 0

and DF (0) = 0. Then

a =
1

16ω
(R1 + ωR2), (23)

where

R1 = F1x1x2(F1x1x1 + F1x2x2)
−F2x1x2(F2x1x1 + F2x2x2)
−F1x1x1F2x1x1 + F1x2x2F2x2x2

R2 = F1x1x1x1 + F1x1x2x2 + F2x1x1x2 + F2x2x2x2 .



There exists another way to express R2. If

F (x) =
1
2
Q(x, x) +

1
6
C(x, x, x) + · · ·

where Q =
(

Q1

Q2

)
, C =

(
C11 C12

C21 C22

)
with Qi, Cij ∈

R
2×2, then

R2 = tr(C11 + C22), (24)

with tr(·) = trace(·).

B. Control law design

In this section we are going to prove, using the theorem
1, that system (21) undergoes the Hopf bifurcation at x = 0
and µ = 0. First, we are going to prove that the eigenvalues
of Jµ cross the imaginary axes when µ = 0, and second, we
will show that the first Lyapunov coefficient a is different
of zero.

1) Eigenvalues of Jµ: The characteristic equation of the
linear part of (21) is given by

λ2 − tr(Jµ)λ + det(Jµ) = 0

where tr(Jµ) = β1µtr(M) and det(Jµ) = ω2
0 +

β1µω0(M21 − M12) + β2
1µ2det(M), with M = (Mij).

Then, for µ sufficiently small, the eigenvalues are given by

λ(µ) =
1
2
tr(Jµ) ± i

√
det(Jµ) −

(
1
2
tr(Jµ)

)2

.

Then, λ(0) = ±iω0 and

Re(λ(µ)) =
1
2
tr(Jµ) =

1
2
β1µtr(M)

but, from (14),

tr(M) = tr(M1 − bT
2

(
J−1

S

)T
F1wz(0, 0))

= tr(M1) − tr(bT
2

(
J−1

S

)T
F1wz(0, 0))

= tr(M1) − tr(bT
2

(
J−1

S

)T
F1wz(0, 0))T

= tr(M1) − tr(F T
1zw(0, 0)J−1

S b2),

and from (17),

F T
1zw(0, 0)J−1

S b2 =
(

F 1
1zwJ−1

S b2 F 2
1zwJ−1

S b2

)

where

F j
1zw(0, 0)J−1

S b2 =
(

F j
1z1w(0, 0)J−1

S b2

F j
1z2w(0, 0)J−1

S b2

)

=

( ∑n−2
k=1

∂2F j
1 (0,0)

∂wk∂z1

b2k

λk∑n−2
k=1

∂2F j
1 (0,0)

∂wk∂z2

b2k

λk

)
,

then

tr(F T
1zw(0, 0)J−1

S b2)

=
n−2∑
k=1

b2k

λk

∂2F 1
1 (0, 0)

∂wk∂z1
+

n−2∑
k=1

b2k

λk

∂2F 2
1 (0, 0)

∂wk∂z2

=
n−2∑
k=1

b2k

λk

(
∂2F 1

1 (0, 0)
∂wk∂z1

+
∂2F 2

1 (0, 0)
∂wk∂z2

)

=
n−2∑
k=1

b2k

λk

∂

∂wk

(
∂F 1

1

∂z1
(0, 0) +

∂F 2
1

∂z2
(0, 0)

)

=
n−2∑
k=1

b2k

λk

∂

∂wk
(divzF1) (0, 0),

therefore,

Re(λ(µ)) =
β1µ

2
K1,

where

K1 = tr(M1) −
n−2∑
k=1

b2k

λk

∂

∂wk
(divzF1) (0, 0), (25)

and from (22),

d =
d

dµ
Re(λ(µ))|µ=0

=
β1

2
K1 (26)

2) First Lyapunov coefficient: From (23-24),

a =
1

16ω0
(R1 + ω0R2)

where, for our system (21),

R2 = tr(C1 + C2)
= tr(C1) + tr(C2)
= δ1 + δ2

where

δ1 = δ1(ω0, λi, F2zz(0, 0), F1zzz(0, 0)) = tr(C1)

and

δ2 = tr(C2)

= tr

(
6β2ω

2
0

(
m22I2 + S2

2 −m21I2 − S2
1

−m12I2 − S1
2 m11I2 + S1

1

))
= 12β2ω

2
0K2,

where

K2 = tr(M1) −
n−2∑
k=1

b2kλk

λ2
k + 4ω2

0

∂

∂wk
(divzF1) (0, 0). (27)

Then,

a =
3
4
β2ω

2
0K2 + δ, (28)

We have then proved the next result.



Theorem 2: Consider the system

ξ̇ = F (ξ) + G(ξ)u,

with F (0) = 0 and DF (0) = J =
(

JH 0
0 JS

)
, with

JH =
(

0 −ω0

ω0 0

)
and JS = diag{λ1, . . . , λn−2}

Hurwitz. If K1 and K2, given by (25) and (27), respectively,

are different of zero, G(0) =
(

b1

b2

)
, with b1 = 0, and

rank
(
b Jb · · · Jn−1b

)
= n − 2, then there exists β1, β2

such that, with the control law

u = β1µ + β2(z2
1 + z2

2),

the system undergoes the Hopf bifurcation at µ = 0. More-
over, it is possible to control the stability and direction of
the emerging periodic solution near the origin, by selecting
the signs of d and a in (26) and (28), respectively.

For the case n = 2, K1 = K2 = tr(M1). This case was
reported in [11]

V. CONCLUSIONS

In this paper we have derived sufficient conditions to
ensure the control of the Hopf bifurcation in nonlinear
systems with two uncontrollable modes in the imaginary
axes. We have used the center manifold theorem to reduce
the analysis to dimension two; nevertheless, we have ob-
tained expressions in terms of the original vector fields. The
control law designed has a constant term, which establish
the stability of the equilibrium point, and a quadratic
term, which determines the orientation and stability of the
periodic solution near the origin.
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