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Stability Criteria for Interconnected iISS Systems and ISS Systems
Using Scaling of Supply Rates

Hiroshi Ito
. . . . . e—— I
Abstract— This paper deals with problems of stability analysis X1 210X = fa(t,Xg,Un,r1) Uy
of feedback and cascade interconnection of dissipative nonlinear [
systems. The purpose is to establish stability of systems having Uz S 50— ot X
more general and stronger nonlinearity than systems considered ry 22 =Tl Xz 12) 2
by classical small-gain theorems and modern stability criteria such Fig. 1. Feedback interconnected system

as the ISS small-gain theorem. This paper employs a unique idea
of “state-dependent scaling of supply rates” to achieve the goal. in analysis and design although the property of iISS by itself
Novel techniques to manipulate scaling functions are developed, has been investigated deeply[9]. The iISS captures a important
and they play a key role in establishing stability for broader classes characteristic essentially nonlinear systems often have[9], and
of systems. One of important results is a small-gain theorem for there are many practical systems which are ilSS, but not ISS. There
feedback interconnection of integral Input-to-State Stable(ilSS) are, however, still few tools of making full use of the iISS property
systems. The results not only demonstrate applicability to general in systems analysis and design. For instance, stability criteria
systems, but also substantiate the effectiveness and usefulness ofsimilar to the 1SS small-gain theorem have not been developed
the state-dependent scaling in obtaining solutions successfully for for interconnection involving iISS systems so far. Extension of
classes of systems broader than Input-to-State Stable(ISS) systems.the ISS small-gain condition to iISS systems is anticipated.

The purposes of this paper are

| INTRODUCTION « to demonstrate that the state-dependent scaling leads us to
stability conditions for various classes of nonlinear intercon-
nected systems;

« to propose small-gain theorems for interconnection involving
iISS systems;

« to provide new techniques to manipulate scaling functions in

Recently, a number of stability problems of interconnected
nonlinear dissipative systems have been formulated via state-
dependent scaling in [2], [3], [5]. Systems to which the state-
dependent scaling framework is applicable are not limited to
finite £-gain systems, passive systems, sector nonlinearities and state-dependent scaling criteria.

ISS(Input-to-State Stable) systems. The state-dependent SC&”‘P& the author’'s knowledge, the result of small-gain theorems

not o_nIy enables_ us 10 assess ?t.ab'hty.’ but also gives us I‘yapunlcr)l\\llolving iISS systems is the first of its kind. This paper addresses
functions establishing the stability of interconnected systems ex-

plicitly. Classical stability criteria for systems with mild nonlin- ISsues beyond universal formal applicability of the state-dependent

I . : . , scaling and unification of existing stability criteria. By deriving
earities such as finit&p-gain systems, passive systems and Lur'e o o .
everal new stability criteria for iISS systems from a general form
systems can be extracted exactly from a fundamental type of state- ) o .
state-dependent scaling criterion, this paper demonstrates that

dependent scaling criterion as special cases[5]. More importantlO . . . o
it has been shown in [4] that the state-dependent scaling criteric?ﬁe state-dependent scaling theory is truly effective in establishing

covers the ISS small-gain theorem[6], [10] for interconnection oﬂzblslilgil fggnﬂggg?esarst:ﬁ;e;?j lvg;cg Sz:;emsmuch broader than
ISS systems. The study has also revealed that state-dependence 5t Y Y '
scaling is vital to the establishment of stability for systems whose||. STATE-DEPENDENT SCALING CRITERION FOR STABILITY

nonllnearl_tr);] 'Sf strongerkth?n clazsmal :j:lasses I(')f m'Ld nonlllnear This section briefly reviews the state-dependent scaling criterion
systems. The framework of state-dependent scaling of supply ratﬁ)? stability proposed in [5]. Consider the interconnected system

is applicable to nonlinear systems whose nonlinearity disagregsgy .\ in Fig.1. Suppose that the subsystems are described by
with ISS. State-dependent scaling criteria prove interconnected

systems stable when there exist scaling functions that fulfill certain 10 xg = fi(t,xq,u1,r1) (2)
requirements. I.n oerer to make the criteria more usefu.l in view To1 %o = falt,Xp, Up, ) )
of implementation, it is desirable to develop a systematic way to
find appropriate scaling functions explicitly for systems which ard hese two systems are connected each other thraughx, and
broader and more diverse than ISS systems. Uz = x;. For eachi = 1,2, assume thafi(t,0,0,0) = 0 holds for
The class of ISS systems has been extensively investigat@ll t € [to,), to € Ry := [0,), and fi(t, X, ui,ri) is piecewise
and has been playing a important role in the recent literature @ntinuous int, and locally Lipschitz in the other arguments.
nonlinear control theory[8], [7], [1]. For instance, the fact thatThe state vector of the interconnected systenis denoted by
cascades of ISS systems are ISS is widely used in stabilizatioh= [ﬁ 3]T € R". The exogenous input oF is denoted by
The ISS small-gain theorem is also a popular tool to establish=[r{,r3]" € R™. In this section, for each=1,2, it is supposed
stability of feedback interconnection of ISS systems. In contrasthat there exists &' function Vi(t,x) such that

the concept of integral ISS(ilSS) has not yet been fully exploited ai(x)) <Vi(tx) < @(xl), ¥x eRYVteR, (3)
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are satisfied witha;, 0j € %, and a continuous function is satisfied for a continuous functigm : R™ x R™ — R. If
pi (%, uj,ri) fulfilling p;(0,0,0) = 0. The functionVi(t,x;) is called M
the storage function, angi(x,u;,r;) is called the supply rate. Pe(x2,0) <0, vx € R\ {0} (16)
A system furnished with the pair ofi and p; is said to be holds, the equilibriumx, = 0 of the interconnected systei is
dissipative[11]. The next theorem is essentially the same as a resglpbally uniformly asymptotically stable. Furthermore, there exist

proposed in [5].
Theorem 1:Suppose that there exist continuous functidns
Ry — R, i=1,2 such that

Ai(s) >0 Vse (0,0) )
Jim x(s) <o, [ Ai(gds=er ®)

hold, and

A1(Va(t,X1))pa(xa, Uz, 1) +A2(Va(t, X2) ) P2 (X2, Uz, I2)
< pPe(X1), VXERM reR™ tcR, (7)
is satisfied for a continuous functigm : R" x R™ — R. If
pe(X, O) <0 ,VX € R" \ {O} (8)

holds, the equilibriumx = 0 of the interconnected systeld is

globally uniformly asymptotically stable. Furthermore, there exis

a C! function Vg (t, ) andag, dq € He such that

ag (X)) < Ve (t,x) Sacl(‘x‘)> vxe Rt e Ry 9
is satisfied and
% <pe(x,r), YXEeR"reR™ tcR, (10)

holds along the trajectories of the syst@m

Note thatlimg_ g+ Aj(S) < e in (6) is redundant mathematically

since eachh; is a continuous function oR = [0, ). The explicit
statement may be helpful to direct the readers’ attention to it.
we choosepe(x,r) = —|x|2 4 y?|r|2, the property (10) becomes

JE VAIrRde> [ [x2dt, YT € [to, )

for x(tp) = O, which represents tha#,-gain betweerr andx is
less than or equal tg.
We next suppose that; in Fig.1 is static and described by

21z =hy(t,ug,ry) (11)

Two systems; andX, are connected each other through= x>
andup = z. Assume thahy (t,0,0) = 0 holds for allt € R, and
hy(t,u1,ry) is piecewise continuous with respecttt@and locally
Lipschitz with respect ta; andr;. It is also assumed that

P1(z1,Uz,r1) >0, VupeR™ r;eR™ teR, (12)

holds for a continuous functionpi(z,us,r1) satisfying
p1(0,0,0) = 0. The state vector off is x = xp € R™. The
exogenous input oF is r = [r],r]]T € R™. The next theorem is
a slight extention of a result presented in [5].

aC? functionVg (t,x2) anda, ¢ € e such that (9) is satisfied
and (10) holds along the trajectories of the system

The functionsA; andé used in Theorem 1 and 2 are referred to
as the state-dependent scaling functions[5]. The scaling functions
are functions of state variables and they scale supply rates of
subsystems. The stability of the interconnection is deduced from
the sum of scaled supply rates of subsystems. The universality of
the state-dependent scaling in terms of relations with classical and
modern stability criteria are discussed in [4], [5].

Theorem 1 is applicable to dissipative systems admitting supply
rates in the very general form of (4). This section consider a subset
of the general dissipative systems. A sys@®mns said to be integral
input-to-state stable (iISS) with respect to ingut,ri) and state
¥ if the exists aC® functionV; : R x R — R, such that

| NTERCONNECTION OF ISSSYSTEMS

a;(Pal) <Vi(t,x) < ai(|xi)),

%+%fi(t.,xi,ui,ri)g—ai(lxi|)+ai(\Ui\)+an(|ri|) (18)

ot X
v €RM U eR™, rieR™, tcR,

v €eRMteR. 17)

are satisfied for a positive definite functiom, class.#” functions
o, andayi, and a pair of class#. functionsa; anda; [9]. In the
single input case, the second inpyts null, and the functioroy
vanishes. The functiol(t,x) is called theC! iISS Lyapunov
function. If aj is a class.%, function, the systen®; is said
ltfo be input-to-state stable(ISS) with respect to infwtri) and
statex; [8]. Trajectory-based definition of ISS and iISS may be
seen more often than the Lyapunov-based definition this paper
adopts. The two types of definition is equivalent in the sense that
the existence of ISS (iISS) Lyapunov functions is necessary and
sufficient for ISS (ilISS, respectively). It is clear from the definition
that ISS implies iISS. The converse is not true. Therefore, stability
of interconnection of iISS systems should requires more restrictive
conditions than that of ISS systems. In order to exclude some of
ISS systems from iISS systems, the following lemma is useful.
Lemma 1: Suppose thak; is iISS with respect to inpufu;,r;)
and statexj, and (17) and (18) are satisfied accordingly. If

Iisnligf ai(s)=o or "gjg}f ai(s) >SIiL120{q (9)+0vi ()} (19)

is satisfied, the syster®; is ISS with respect to inputu;,ri) and
statex;.

We now seek an explicit condition under which there exist
scaling functionsA1 and A; fulfilling (5)-(6) and (7) to establish
stability of the interconnected systebhin Fig.1. One of main

Theorem 2:Suppose that there exist continuous functiongegyits is obtained on the basis of Theorem 1 as follows.

A1,A2,A3,€1: Ry — R such that
A1(8) >0, A3(s) >0, &1(s) >0, VseRy (13)
Jo(s) > 0, Y€ 0,9, lim Aa(§ <o, [ Ap(gds—co (14)
s—0t 1
hold, and

A (|z1])é1(pr(za,u1,11))
+A2(Va(t, %2))A3(Va(t, X2)) P2(X2, U2, I2)
< A3(Vo(t,%2))pe(X2,r), VX2 €R™ reR™ tc R, (15)

Theorem 3:Suppose that the systerdg andX, are ilSS, and
(17) and (18) are satisfied accordingly. If there exist constants
C1,C2 > 0 andqg > 0 such that

[o2(a;t(9)] < craa(a;i(s), VseRy  (20)
C201(ay(9)) < [aa(ay 1(9))9, VseRy  (21)
€1 < Cy (22)

are satisfied, the interconnected systers iISS with respect to
input r and statex. Furthermore, ifa; and a, are additionally
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assumed to be clas#s functions, the interconnected systénis
ISS with respect to input and statex.

Proof: If there exists constantg,c, >0 and0< q<1such
that (20)-(22) hold, the inequalities

[o1(a5 1 (9))]d < &aaa(0, 1(9)), €102(a3(s) <[ax(ay X(s))]
62 < é]_
are satisfied witlfj=1/q > 1 and¢; = cfl/q > 0. Therefore, it suf-

fices to prove the two cases gf= 1 andqg > 1 in (20)-(22). First,
we consider the case of= 1. Pick A1 = (c1+¢p)/2 andAs = 1.

These positive constants clearly satisfy (5)-(6). The inequalitie

in (20)-(22) guarantee thabe(x,r) = —0.5(cz — c1){on(|xa|) +
az(|x2])} +0.5(c1+C2) opa(|ra|) + ora(|r2|) satisfies (7)-(8). Next,
assumey > 1. Suppose thad,(s) is a non-decreasing continuous
function defined orR . Using Young's inequality

1 + } =1

P q

xy< 2%
~ PIH

which holds for anyu € R\ {0}, we obtain

A2(V2(t,%2)) {—az(|%2]) + g2(|xa]) + gra(|r2]) } .
< =Ao(Va(t,x0)) oz (|x2]) + ﬁf\z(vz(tvxz))p + %02(|X1|)q

1
+a“*ly|q aVX7y€R7

1 q
Fophalte)PHE Sanlln)t 23)

r
for any u, iy > 0. Define fi > 0 satisfying i < u as follows:
t1_1,1
pe P Ilrp
Let A; =d; > 0 be a constant, and defiqm(x,r) by
Pe(X,1) = —(1=9) [dha1(|xa]) + Az2(az([X2])) az(|x2])]

pr
+d10r1(\f1|)+30r2(|r2\)q

(24)

for 0 < 0 < 1. Then, a sufficient condition for (7) is

q
fd16a1<\x1|>+%oz<|xmq <0, ¥x €R™ (25)

1
WAz(Vz(sz))p—5/\2(V2(LX2))02(|X2\)
+0101(|%2]) <0, Vxo € R™ Vte R, (26)
If we setc; = d;8q/uY, the inequality (25) is identical to

(0299 < cr1(s), VsER,

which is ensured by (20). The inequality (21) guarantees th

existence of a class?” function &, which satisfies
aa(s) < az(s), cor(ay’(9) < [z2(ay(9))]%, VseRy (27)
Since &, is non-decreasing, the inequality (26) holds if

1

W)\z(s)p — 3M2(8)G2(05 1(5)) +dyo1 (a5 (s) <O

(28)

is satisfied. The left hand side of (28) takes the minimum value

over Ay € [0,) at

Mg = PPV [5a5(a, (s)M P (29)

which is an increasing continuous function ® R.. The mini-
mum is less than or equal to zero for ak R if and only if
(po)4

dior(ay(s) < q

[@2(ay H(9)]% VseRy

is satisfied. This inequality is identical to (21) with the choice
¢y =di1q/(df1)9. The inequality (21) also impliekms .. G2(s) >
Osinceo is a class# function. Therefore, if there exist constants
C1,C2 > 0 andq > 1 such that (20)-(22) hold, there exist constant
0<d<1 u u >0 andd; > 0 such that the scaling function
A2 given in (29) and the scaling constakt = c119/(q) fulfill
(5)-(6) and guarantee thak(x,r) satisfies (7)-(8). Finally, ifag
and o, are class”. functions, the definition ofe(x,r) yields
ISS with respect to input and statex. [ |
Remark 1:When the scaling functiong; and A, are limited
té) constants, the two conditions in (20) and (21) reduce to

Vse Ry (30)

Thus, state-dependence of the scaling is necessary for the intro-
duction of the free parametey> 0 which provides us with less
conservative and more useful conditions. Note that the property
(30) is the same as the pair of (20) and (21) witk- 1 except
the small amount of difference arising frosx gi‘loai(s) due
to (17). The slight discrepancy is inevitable as far as we derive
trajectory-based conditions from Lyapunov-based properties.
Now, we consider cascade connection of iISS and iISS systems.
We assume that, andu; disconnected in Fig.1. The following is
obtained from Theorem 3 directly.
Theorem 4:Suppose that the systeds andZ, are ilSS, and
(17) and (18) are satisfied accordingly. If there exist constants
c1 > 0 andqg > 0 such that

02(8) < c101(8), €201(s) < az(s),

a>1 (s <crai(s), VseR, (31)
or
q<1, [o2(a;}(9))9 < cran(a }(9), Vse R4 (32)

is satisfied, the cascade bf andZ; is iISS with respect to input

r and statex. Furthermore, ifa; and a, are additionally assumed
to be class’# functions, the cascade is ISS with respect to input
r and statex.

IV. INTERCONNECTION OFISSAND ISSSYSTEMS

In this section, we assume that one of the systems in Fig.1 is
ISS. Consider the feedback interconnection defined with- x»
andu, = x; shown in Fig.1. For each= 1,2, we suppose tha;
admits aC? functionV; : R4 x R™ — R, satisfying (17) and (18)
with somea;,a; € %, and someq;,d; € #. We also assume
01 € Hw, SO thatX; is ISS while Z, may be only ilSS. The
purpose of this section is again to derive explicit conditions under
which there exist scaling functions and A, fulfilling (5)-(6) and
g) in Theorem 1. The following is one of main results.

Theorem 5:Suppose that the ISS syst@mand the iISS system
>, satisfy (17) and (18) accordingly. If there exist constdats0
andcy, ¢, > 1 such that

[020'2 OQI]‘ o El o aflo clal(w)]k

max
c1o1(w)

wel0,s]

[azoa, toay(s)

C101(s)
C20p0a 7 oaoa; tocio1(s) < a0, o ay(s), VSER (34)

(33)

, VseR,

are satisfied, then the interconnected syskeis ilSS with respect
to inputr and statex. Furthermore, ifa, is additionally assumed
to be a class’#s, function, the interconnected systeins ISS with
respect to input and statex.

Proof: Suppose thadi, A>: Ry — R, are non-decreasing
continuous functions which have yet to be determined. Using
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constantg > 1, 1, > 1 and T > 1 satisfying(1/7)+ (1/7;) = 1/T.  is satisfied with
we define class#” functions by

1 7 /g
_ _ V:5777(~7)
01(s) = droa; tot0oi(s), Ba(s)=aioa;tonon(s) (35) AN

. . S The inequality (43) becomes
Combining calculations for individual cases separated by q y (43)

-1_= -1 ~—1
ax(|xal) > toa(Pxel), as(xal) < tou(Peel), au(xal) = wopa(lral)  [C202003 "o ar0ay oc10u(8)]9 _ [az0a, "o d5(9)]

and a1 (|x1]) < tror1(|r1]), we obtain c101(9) - €101(S) ) VSER
M) (el +or(pel + oradrah) it we pick T>1ando>0as
_a_ ~ 1
(Va(t,x0))aa([a]) + A (81 (%)) 01 (e T, 8- (L) (;)
’ Cofl f-1)c
ha(Bra(lra)ora(lrs) e/ ATmhe) |
Note that the standing assumption< 1 is fulfilled if and only if
Using Young's inequality, we obtain (23) for arbitrapy, iy > 0 i\ d 7
and q > 1 satisfying (1/p) + (1/9) = 1. Define i > 0 satisfying (L“) > (44)
fi < u as in (24). Pickpe(x,r) as H (f-1)cy
- Let € be a constant satisfyingy > ¢ >1, and chooset, L, so that
-1
Pe(x.1) = —=(1=0) | —==M(as(xa]))a(xal)+ PONYP e
T
iy H>0, pr >0, <ﬁ) %
Az(az(Pxal))az((xal) | +Av(Bra(Ira)ora(lral) + = or2(Ir2))? HE Hr 2
q holds. For any giverf >1 andc;, ¢, >1, there existgj such that
with 0 < 8 < 1. Then, a sufficient condition for (7) is ~\q ~
~ Cou T
_ pe 4>1, (7> f—1)c
(9)an(a; (s) + £ [oa(a; ()] <0, VseRy(36) W/ o (t-he
q is satisfied. Defing = max{k,§} > 1. Clearly, (44) holds. Due to
p_ g1 _
(8)" —dAz(s)az(ay *(s)) max c;050 a3 Yoajoa;tocioi(w) <azod, toay(s)

we(0,s]
M6 (ay?t <0, R (37
+ha(Bu(az (9)oula, ( s)) vseR.(37) guaranteed by (34), the assumption (33) implies that (33) still

The inequality (36) holds if and only if holds even ifk is replaced byg. Thus, (43) is achieved. Indeed,
HIF[oz(ay t(w))]°
A1(S) = max — 45
, VSERy (38) 1(s) = max 3q(f—1)ay (g H(w)) (49)

satisfies (41) and (42). The functiok; : Ry — Ry is non-

uOt[oa(a; (s)))
3q(t-1)as(a; H(s))
The left hand side of (37) takes the minimum overe [0, ) at

A1(s) >

decreasing, so that it fulfills (5)-(6). [ |
Ao = ,:,p/(Pfl>[50,2(52*1(3))]1/(#1) (39) Remark 2:The assumption (33) can be replaced by the exis-
tence of a constark > 0 achieving at least one of
which is an increasing continuous function ®& R fulfilling K
(5)-(6)- The minimum value is 7[020011 Gl non-decreasing (46)
p—1 aioq; L(s)
M(61(az(9)ar(az(9) — == P P [Sag(ay  (s) P P o0 a0, ()¢ _
p =2 " is non-decreasing (47)
This minimum value is less than or equal to zero forsadl R G100, (s)
if and only if A, satisfies In fact, it is easily verified that each of (46) and (47) implies (33)
under the assumption (34).

B9 [d0z(ar, (ay(s))]?

M(61((9) < . VseR, (40) Remark 3:If we replace|x| by Vi(x) in (18), the functiong;

q 01(8) and a;j vanish in all arguments of Theorem 5. For instance, the
iti 4 I
Defined = lims_.. 81(S) € (0, ]. Let 91‘1(~) :[0,d) — R denote conditions (33) and (34) are replaced by
a continuous function such thef 1(81(s)) = shold for alls€ R... max 1©292° a; tociog(w)k - [aa(s)] VseR
The pair of (38) and (40) holds if and only if we[0,s] C101(W) ~ coi(s)’ +
RGO ) s e " 202001 100101(9) < x(9), VSE R
00
3q(f—1)aq(ag X(s)) v ’ Here,a; anda; are eliminated. This argument is applicable to all
F[gy(a; ~1ig)yd 79 (a0 toa 08 q results in this paper.
H ~[ 2(a __1)] <A1(s) < Hi[oazoa, 6‘21 o) Remark 4:The conditions (20)-(22) implies (33) and (34). To
oq(T—Da(ay ~(s)) veeod) P (4 see this, suppose that (20)-(22) holds. The inequality (20) implies

1 = 1 =« q ~
There exists a continuous functidn such that (41) and (42) are (02001 0 aroa;0C10u(S" < C18101()

achieved if for arbitrary € > 0. Combining this with (21), we obtain
vozoa;toBi(s))9 _ [o20a; "0 a,(s))
0106171061(5) B TO']_(S)

1/q
. 1= 1 _ . c
,VSERL  (43)  Gopoarloaroarlodion(s)<azoastoay(s), &= (—%)



Under the assumption (22), there exigis> 1 such that€, > 1

iISs small-gair‘

i1SS-ISS small-gaiT _ |1ss small-gaij

holds. Thus, we arrive at (34). On the other hand, from (20) and| theorem theorem theorem
(21) it follows that, for arbitrary¢;, €, > 0, (a) fulfillment of conditions
€202 ogIl oqQpo al‘lo ¢101(w)]9 q interconnection of interconnection of interconnection of
X GaW) <G, VSERy iISS and iISS |« | iISSandISS | <| 1SS and ISS
‘ — 1 4 systems systems systems
G 0200y 003" g b) syst 1
& = 101(9) ) + (b) system properties

Fig. 2. Relation between small-gain theorems
hold. Takingé; = & and &, = &, we obtain (33).
Remark 5:The inequality (34) is the same as the ISS small-
gain condition derived in [6], [10]. It is known that the feedback Consider the static system described by
interconnection of “ISS systems” are ISS if the ISS small-gain %1z =h(tu,r) (50)
condition is met[6], [10]. The ISS small-gain condition has been
also explained through the existence of state-dependent scali@gsume thathj(t,0,0) = 0 holds for allt € Ry. The function
functions[4]. Theorem 5 demonstrates that the ISS small-gaffi(t,Ui,ri) is supposed to be piecewise continuous with respect
condition can lead us to stability of the feedback interconnectiofp t on R, and locally Lipschitz with respect ta; on R™ and
“even if one of the systems is only iISS” under an additionafi on R™. For the static system, a property analogous to ilSS is
condition (33). . . ai(|z]) < ai(Ju]) +ori(Jri]), Yu €R™ 1 e R™ te R, (51)
The author refers to Theorem 3 as the iISS small-gain theorem
since it deals with the interconnection of iISS systems and th&ith some positive definite function; and some pair of clas#”
conditions are given in terms of gain functions. In a similafunctionso; and oyi. We can assume
manner, the author calls Theorem 5 the iISS-ISS small-gain liminf ai(s) > lim {oi(s) + 01 (3)} (52)
theorem. According to Remark 4 and Remark 5, we have a S0 S0
reasonable relationship between the iISS small-gain theorem, tivdthout loss of generality. To see this, suppose that the sys-
iISS-ISS small-gain theorem and the ISS small-gain theorem &sm Z; does not admita;, i and gy satisfying (52). Due to
illustrated in Fig.2(a). liminfs_.. i (S) < j(0) + 0i () and (51), the boundedness of
We next consider the cascade of ISS and iISS systems. Suppdie inputsu;(t) andr;(t) does not guarantee the boundedness of
thatx, andu, disconnected in Fig.1. The ilSS systéis driven  the outputz(t). The size ofu;(t) andri(t) needs to be sufficiently
by the ISS systeni;. small to obtain boundeg(t). This fact contradicts the assumption
Theorem 6:Suppose that the ISS systémand the iISS system thathi(t,u;,ri) is locally Lipschitz with respect to; on R™ and
¥, satisfy (17) and (18) accordingly. If there exists a conskanD i onR™ . Hence, (52) is justified. The inequality (52) also allows

V. INTERCONNECTION OFAISSAND STATIC SYSTEMS

such that us to assume; € ¥ in the following sense.
1k Lemma 2: Suppose that the static systeinsatisfies (51) and
lim (02007 ()] cw 48) (52) accordingly. Then, there exist a class, function & and
s—0+ aloﬁl‘l(s) class.# functions g, Gyj such that

holds, the cascade & ands, is ilSS with respect to inputand ~ Gi(|z]) < Gi(Jui]) + Gri(Jri]), Yui e R™ rieR™ teR,  (53)
statex. Furthermore, ifa, is additionally assumed to be a classiS satisfied

Jw, the cascade is lSS_W'th respec.t to |npqu state. . The inequality (53) implies that there exi8t, 3 € # satisfy-
Each of (31)_and (32) implies (48) if we admit small gap arisingp g 12| < Bi(|ui])+ Bi (|ri]). Therefore, the magnitude of outpzt
from a;(s) < ai(s). This relationship reflects the fact that ISSs honjinearly bounded by the magnitude of the inpytandr;.
implies iISS forZ;. Consider the interconnected system shown in Fig.1. We suppose
Remark 6:1t is known that the cascade of “ISS systems” arqpat s, is a static system described by (50). The veatois fed
ISS. Theorem 6 demonstrates that the stability of the casca@igck to the inputi, of 55, so thatx, in Fig.1 is replaced by;.
connection is ensured “even if one of the systems is only iISSthe systens, is supposed to be dynamic and iISS. We are able
under an additional condition (48). to obtain the following corollary based on Theorem 2.
Remark 7:According to Lemma 1, there are ISS systems Corollary 1: Suppose that the static systémsatisfies (51) for
whose initial functiona; € #° does not meelims . 01(S) =®.  a class.%, function a; and class# functionsay, and o1, and
In fact, a systenk, is ISS if the ilSS dynamic systers, satisfies (17) and (18) accordingly. If
) ) there exist constants,,c, > 1 such that
0> |lim ay(s) > lim {01(s) + or1(9)} (49)
s s C20z007 0c101(s) < (), VsER: (54)
ig satisfied. It is possiblg to.write the. iISS-ISS small-gain theorerpS satisfied, then the interconnected systiis iISS with respect
directly for oy € /¢ satisfying (49) instead ofiy € #e. More to inputr and statex. Furthermore, ifay is additionally assumed

preu_sely, Theorem 5 remains the same except thatcy 'S to be a class#a function, the interconnected systexis ISS with
required for some constamt> 1. The numberl can be easily respect to input and statex

calculated. It becomes = 1 when the exogenous signa] is Proof: Forn €. andZ >0, we obtain

absent. The explicit formula of is, however, omitted due to

the space limitation. In the cascade case, Theorem 6 remains 1 (|uz|) Snoal’l(al(|x2|)+0,1(|r1\))

unchanged exactly even for, € 2"\ 5 if (49) holds. <n oal‘lo (1+1/2)o1(|%2|) + 1 0011_10((+1)0r1(\r1|)
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from (51). The condition (54) witley >1 and c; >1 guarantees which fulfill both (46) and (47) fokk = 1. Thanks to Theorem 5,

the existence of) € ¢ and { > 0 achieving (15) withé(s)=  Remark 2 and 7, the fulfillment of the small-gain condition (34)

no al‘l(s) andA1=A>=A3=1. m proves that the origix =0 is globally asymptotically stable.
Consider the cascade of a static systejmand an iISS dynamic Consider the following interconnected system.

systemZ,. The connection betweer, and u; is cut in Fig.l. X 2 X 2

It is expected that the cascade is iISS since the static system is Z1: X =— ( 1 ) 3( 2 ) . X1(0) e R4 (61)

nonlinearly bounded. The next corollary ensures the fact based on 4))((1+ 1 o x2+1

Theorem 2. Sol Xo=— % +21 % +11 +6r, x1(0) Ry (62)

Corollary 2: Suppose that the static systémsatisfies (51) for
a class%. function a1 and class’# functionso; and g1, and It is defined onx = [x1,%]" € Ri for rp e Ry. Both Z; and X,
the iISS dynamic systems, satisfies (17) and (18) accordingly. are not ISS, but iISS. Far;(x1) = x; andV,(xp) = X2, we obtain

Then, the cascade &4 andZ; is iISS with respect to input and dv;

statex. Moreover, ifay is a class# function, the cascade is 1SS ot =—a1(|xa|) + o1([%2),

with respect to input and statex. s \2 s \2
Remark 8:1t can be shown that; > 1 is allowed in Corollary au(s)= (ﬁ) , 01(5)=3 (m) (63)

1 if g;1(s) =0 holds. Corollary 1 is also applicable ty € ¢ dVs

satisfying (52) directly instead af; € %4 if | < c; is satisfied for ot = 92(Pel) +o2(xaf) +ora(]ral),

an approprlate_ const§h1> 1. In the casca_de_z case, due to Lemma az(s):i, 02(5):757 Or2(s) =65 (64)

2, Corollary 2 is applicable tor; € ¢ as it is. s+1 s+1

LetA;=1 Ao = 1) f . Th h
V1. EXAMPLES et A andA; = bxp/(x2+ 1) for b > 0. Then, we have

— : dvi . dw b\ ¢ (2b—3)x5
Suppose thak; and ¥, in Fig.1 are given b Mt A=< —(1-2 1 2 1 6br, (65
pp 1 sz g g y 1 Pregr S ( 2) D2 Ogri? T oer (65)
. X
21 X = X +11+ x +1)?x ) x1(0) e R4(55) Hence, withb € (3/2,2) we can prove that the interconnected
12x ! 2 system is iISS by using Theorem 1.
2l X = 24y, x2(0) € Ry (56) The iISS small-gain theorem developed in Section Il also leads

x+1 us to the iISS property successfully without calculating scaling

Note thatx = [X1,X2}T c Ri holds for allt € R, . This example is functionsA; andA; explicitly. For (61)-(62), the inequalities (20)
for a compact illustration of the theoretical developments in thignd (21) are obtained as

paper. It is, however, motivated by models of biological processes s \d s \2 s \2 s \d
hich usually involve Monod nonlinearities and exhibit the non- 29 { — 1| — 2| /= I —) , VseRy
W s+1) — s+1/ "’ s+1) — s+1) ’

negative property. The choidé (x;) = x; yields ) - /

v 5 These two inequalities an@ < ¢; < ¢, are achieved byg =
1(x1) < —aq(x1) + 01(%), 0a(S) = S ,ou(s) = S (57) 2 =4 aqd c2 € (4,16/3]. Hence, the iISS property of the
dt s+1 s+1 interconnection follows from Theorem 3. It is worth mentioning

Lemma 1 proves thai; is ISS. The syster®; is not ISS since we that the inequalities are never achieved dg¥ 2.

havex, — o ast — o for x1(t) = 3. The systen®; is, however,
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