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Abstract— This paper considers globally asymptotic stabi-
lization for a class of singular bilinear systems. By the system
matrices a sufficient condition for the globally asymptotic
stabilization is presented and under the condition continuous
static state feedback and dynamic output feedback controllers
are constructed, respectively. By means of LaSalle invariant
principle and the separation principle for singular nonlinear
systems the globally asymptotic stability of the closed loop
systems is verified.

I. INTRODUCTION

Many real-world systems can be adequately approxi-
mated by bilinear models rather than linear models [7],
[8]. Control of bilinear systems (BS) has been a topic of
recurring interest over the past decades since this special
family of nonlinear systems is of considerable interests in
both theory and applications, see for example [1]-[10], etc.
Since singular bilinear system (SBS) is a special singular
nonlinear system and it is also a special bilinear system, it
has been studied in the literature, see [11], [12], [13] for
many years. Stabilization is one of the fundamental issues
for singular nonlinear systems and has been investigated
in [18], [19], [20]. Locally asymptotic stabilization was
presented for general singular nonlinear systems in [19].
Robust stabilization design was obtained for a class of
singular systems with nonlinear perturbation in [18]. In [20],
stability and robust stabilization of nonlinear descriptor (sin-
gular) systems were considered. Lyapunov stability theory
for conventional systems is extended in a natural way to
nonlinear descriptor systems. The authors also discussed the
robust stabilization problem of a class of nonlinear descrip-
tor systems with uncertain perturbations, and proposed a
class of stabilizing state feedback controllers for this class
of uncertain descriptor systems. However, only few efforts
have been made for stabilization problem for SBS so far.
In particular, by our knowledge, the globally asymptotic
stability/stabilization for SBS has not been reported in the
existing literature.

The objective of this paper is to present continuous-
time globally asymptotic stabilization controller designs for
SBS. It should be mentioned that the sufficient conditions
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presented in this paper are dependent of the original system
matrices and independent of the partition (that is, state
transformation) of the original SBS. In this paper, the
static state feedback is constructed by using an extended
Lyapunov stability theory and LaSalle’s Lemma. Based
on this result and motivated by the Luenberger full-order
observers for singular linear system, the full-order dynamic
output feedback is constructed by means of the separation
principle. The developed approach extends the results for
BS in existing literature. In addition, the systems discussed
in [19], [20] contain SBS as a special case while SBS is
different from that in [18]. It is worthwhile to mention that
the approach developed in this paper is different from those
for singular nonlinear systems in [18], [19], [20].

This paper is organized as follows. Section II presents
some assumptions and preliminary results for the SBS.
Section III presents sufficient condition for continuous
static state feedback, by which we will further design a
dynamic output feedback controllers. Section IV develops
approaches to construct the full order dynamic output
controller. The linear matrix inequality is adopted in order
to obtain control gains. Section V is the conclusion of the
paper.

Notation:
WT : transpose of matrix W ∈ R

n×m; ‖W‖:
[λmax(W

TW )]
1

2 , i.e. the square root of the maximal eigen-
value of W TW ; X−T : transpose of matrix X−1; I (or Ir):
identity matrix of appropriate dimension(or r dimension);
‖x‖ =

√

(xTx), ‖x‖∞ = max{|xi|, 1 ≤ i ≤ n}, where
x = (x1 x2 · · · xn )

T ∈ R
n; Throughout this note, for

symmetric matrices X and Y , X > Y (X ≥ Y ) if X−Y is
positive positive definite (semi-definite); X < Y (X ≤ Y )
if X − Y is negative negative definite (semi-definite). In a
formula matrices are assumed to have compatible dimen-
sions if there is not explicit explanation. For convenience,
GAS is short for globally asymptotic stability, globally
asymptotically stable, or globally asymptotic stabilization.

II. PRELIMINARIES

Consider the following SBS

Eẋ = Ax+
∑m

i=1 Bixui = Ax+B(x)u

y = Cx

(1)

where x ∈ R
n, u = [u1, u2, · · ·um]

T ∈ R
m and y ∈ R

p

are the system state, control input and output, respectively.
The derivative matrix E ∈ R

n×n is singular, we shall
assume that 0 < rankE = r < n. A,Bi ∈ R

n×n for
1 ≤ i ≤ m and C ∈ R

p×n are constant matrices, and
B(x) = [B1x B2x · · · Bmx].



Assumption 2.1:
(1) The pair (E,A) is regular, that is, det(λE−A) is not

identical zero.
(2) The pair (E,A) is impulse free, that is, deg(det(λE−

A)) =rankE.
By Assumption 2.1 there exist two invertible matrices

M0 and N0 ∈ R
n×n satisfying

M0EN0 =

(

Ir 0
0 0

)

, M0AN0 =

(

A0 0
0 In−r

)

, (2)

where A0 ∈ R
r×r. If there exists an eigenvalue λ0 with

a positive real part for det(λE − A) = 0, then λ0 is also
an eigenvalue of A0. Suppose that control input u = u(x)
is continuous and u(0) = 0. Apply the state transformation
ξ = ( ξT1 ξT2 )

T
= N−1

0 x, where ξ1 ∈ R
r and ξ2 ∈ R

n−r.
Then SBS (1) is equivalent to

ξ̇1 = A0ξ1 + o(‖ξ‖),
0 = ξ2 + o(‖ξ‖),

(3)

where
lim
‖ξ‖→0

o(‖ξ‖)

‖ξ‖
= 0.

From the second equation of (3), there exists a positive
constant scalar ε with 0 < ε < 1 such that ‖ξ2‖‖ξ‖ < ε when

‖ξ‖ is sufficiently small, which implies ‖ξ2‖‖ξ1‖ ≤
ε√

1−ε2
when

‖ξ‖ is sufficiently small. From this, we obtain

lim
‖ξ1‖→0

o(‖ξ‖)

‖ξ1‖
= lim
‖ξ‖→0

o(‖ξ‖)

‖ξ‖

(

1 +
‖ξ2‖

2

‖ξ1‖2

)

1

2

= 0

Hence the original of the first equation of (3) is unstable.
In this case, SBS (1) can not be stabilized via a continuous
state feedback.

We sum up the above discussion and present the result
as follows.

Proposition 2.1: There is no continuous state feedback
u = u(x) with u(0) = 0 such that the closed loop system
is asymptotically stable for SBS (1) if one of the eigenvalues
has a positive real part for the pair (E,A).

In this paper, we only concentrate on continuous stabi-
lization feedback controller designs. To this end, it follows
from Proposition 2.1 that we have to assume that all the
eigenvalues for equation det(λE−A) = 0 satisfy Re(λ) ≤
0. For simplicity, we make an additional assumption for
SBS (1).

Assumption 2.2: The rth order equation det(λE−A) =
0 has r distinct eigenvalues λk with Re(λk) ≤ 0, k =
1, 2, · · · , r.

Assumption 2.2 implies that A0 has r distinct eigenvalues
λk. Hence there exist an invertible S0 ∈ R

r×r and block
diagonal matrix Λ ∈ R

r×r satisfying

A0S0 = S0Λ, Λ + ΛT ≤ 0. (4)

Let

P0 =MT
0

(

(S0S
T
0 )
−1 0

0 −In−r

)

N−1
0 , (5)

then from (2) and (5) we have

ETP0 = N−T
0

(

Ir 0
0 0

)

·

(

(S0S
T
0 )
−1 0

0 −In−r

)

N−1
0

= N−T
0

(

(S0S
T
0 )
−1 0

0 0

)

N−1
0

≥ 0.

(6)

Similarly,

PT
0 E = N−T

0

(

(S0S
T
0 )
−1 0

0 0

)

N−1
0 = ETP0 ≥ 0. (7)

In addition, (2)-(5) yield

PT
0 A+ATP0

= N−T
0

[(

(S0S
T
0 )
−1 0

0 −In−r

)(

A0 0
0 In−r

)

+

(

AT
0 0
0 In−r

)(

(S0S
T
0 )
−1 0

0 −In−r

)]

N−1
0

= N−T
0

(

Φ 0
0 −2In−r

)

N−1
0

(8)
where Φ = (S0S

T
0 )
−1A0 +AT

0 (S0S
T
0 )
−1.

In addition, we have

Φ = (S0S
T
0 )
−1S0(Λ + Λ

T )ST
0 (S0S

T
0 )
−1 ≤ 0. (9)

Then, P T
0 A+ATP0 ≤ 0. Thus, (6)-(8) and rank(P0) = n

imply that the following matrix set is not empty. That is,

S := {P ∈ R
n×n : rank(P ) = n,

ETP = PTE ≥ 0 and P TA+ATP ≤ 0} 6= ∅
(10)

In order to construct a continuous GAS control law for
system (1), we make further assumption as follows.

Assumption 2.3: There exists a P ∈ S such that input
matrix B(·) satisfies

qTk PB(qk) 6= 0, k = 1, 2, · · · , r (11)

where qk is an eigenvector from (λkE − A)qk = 0, 1 ≤
k ≤ r.

In the proof of our main result, the following lemma will
be used, which can be regarded as an extension of the well-
known Lyapunov stability theorem.

Lemma 2.1: (LaSalle’s Lemma) Consider an n-th order
nonlinear system

ż = f(z) (12)

where f(·) : R
n → R

n is smooth vector field in R
n. If

there exists a Lyapunov function V (z) such that the non-
linear system (12) satisfies V̇ (z) ≤ 0, then any trajectory



of system (12) tends to the largest positive invariant set
included in set M = {z ∈ R

n |V̇ (z) = 0} when t→ +∞.

III. STATIC STATE FEEDBACK

We now present a sufficient condition of GAS for SBS
(1) by means of continuous state feedback. It should be
mentioned that the following theorem is independent to the
partition (or state transformation) of the original SBS (1).
In addition, the proof of the following theorem presents a
design of continuous state feedback controller.

Theorem 3.1: If Assumptions 2.1-2.3 hold, then there
exists a continuous static state feedback control which
globally asymptotically stabilizes SBS (1).
Proof: Assumption 2.1 implies that there exist two non-
singular matrices M,N ∈ R

n×n such that the following
standard decomposition holds.

MEN = diag{Ir, 0}, MAN = diag{A1, In−r}, (13)

where A1 ∈ R
r×r. Suppose that matrix P ∈ S satisfies

Assumption 2.3 and then constructing the following con-
tinuous state feedback controller

u = u(x) = −c−1(x)BT (x)Px (14)

where

c(x) = (c0 + 1)
[

1 +
∥

∥B
T (x)Px

∥

∥

]

,

c0 =

[

∑m
k=1

∥

∥

∥

∥

( 0 In−r )MBkN

(

0
In−r

)∥

∥

∥

∥

2
]

1

2

(15)
Now we show that controller (14) globally asymptotically
stabilizes system (1).

Choose the following Lyapunov function candidate

V = xTPTEx, (16)

then V is semi-positive definite. From the definition of
matrix P in (10), the derivative of V along the closed loop
system of (1) and (14) yields

V̇ = xT (PTA+ATP )x

−c−1(x)xTPT
B(x)BT (x)Px

≤ 0.

(17)

In order to show GAS for the closed loop system, decom-
pose SBS (1) into the following form.

ż1 = A1z1 + ( Ir 0 )MB(Nz)u,

0 = z2 + ( 0 In−r )MB(Nz)u
(18)

where N−1x = z =

(

z1

z2

)

, z ∈ R
n, z1 ∈ R

r, z2 ∈ R
n−r.

We first show GAS of substate z1. To this end, from
inequality (17), V̇ = 0 implies that u = 0, that is,

ż1 = A1z1, zTNTPT
B(Nz) = 0, z2 = 0 (19)

We now show that any solution z1 = z1(t) satisfying
(19) implies z1 = 0. If z1 = z1(t) satisfies (19), then for
any initial condition z1(0), we have z1 = eA1tz1(0). In
addition, from (λkE−A)qk = 0 there exists ξk ∈ C

r such
that

qk = N

(

ξk
0

)

, (λkIr −A1)ξk = 0. (20)

(20) implies that there exist ak ∈ C, 1 ≤ k ≤ r, such that

z1(0) =

r
∑

k=1

akλkξk. (21)

That is,

z1(t) = eA1tz1(0) =

r
∑

k=1

ake
λktξk. (22)

Then (20) and (22) imply

Nz = N

(

z1

0

)

=
r
∑

k=1

ake
λktN

(

ξk
0

)

=
r
∑

k=1

ake
λktqk

(23)
Substituting (23) into zTNTPT

B(Nz) = 0 yields
(
∑r

k=0 ake
λktqk

)T
PT

B
(
∑r

k=1 ake
λktqk

)

= a2
rq

T
r PT

B
T (qr)e

2λrt + α(t) = 0,
(24)

where

α(t) = arq
T
r PB

(

∑r−1
k=0 ake

λktqk

)

eλrt

+ar

(

∑r−1
k=1 ake

λktqk

)T

PB(qr)e
λrt

+
(

∑r−1
k=1 ake

λktqk

)T

PB

(

∑r−1
k=1 ake

λktqk

)

.

(25)
Since λk, 1 ≤ k ≤ r are distinct eigenvalues, the exponen-
tial term e2λrt cannot be linearly represented by the terms
eλkteλlt with k ≤ r and l < r in the function α(t) of (25).
Thus zTNTPB(Nz) = 0 implies that a2

rq
T
r PB(qr) = 0 in

(24). Since qTr PB(qr) 6= 0 by Assumption 2.3. We obtain
ar = 0. With ar = 0, the solution (22) is rewritten as

z1(t) = eA1tz1(0) =

r−1
∑

k=1

ake
λktqk. (26)

We continue to substitute the solution (26) into
zTNTPB(Nz) = 0 to obtain ar−1 = 0 by using
the procedure for obtaining ar = 0. Further, ak = 0 for all
k = r − 2, r − 3, · · · , 1 can be obtained by consecutively
using this procedure.

Hence z1 ≡ 0 is the unique solution from the equations
in (19). It follows that z1 ≡ 0 is the unique solution for
V̇ = 0. In addition, from the definition of matrix P in
(10), there exists P1 ∈ R

r×r with P1 > 0 such that V =
xTETPx = zT1 P1z1. With this result, GAS of substate z1

is established by applying Lemma 2.1.



We next show that substate z2 is GAS. From the second
equation of (18), we have

‖z2‖ ≤

∥

∥

∥

∥

( 0 In−r )M
∑m

k=1 BkN

(

Ir
0

)

z1uk

∥

∥

∥

∥

+

∥

∥

∥

∥

( 0 In−r )M
∑m

k=1 BkN

(

0
In−r

)

z2uk

∥

∥

∥

∥

.

(27)
In addition, it follows from control input (14) and its
parameters (15) that the bound of the control input can be
given as follows.

‖u‖ = ‖u(x)‖ ≤ (1 + c0)
−1. (28)

Noticing bound (28), then in inequality (27),
∥

∥

∥

∥

( 0 In−r )M
∑m

k=1 BkN

(

0
In−r

)

z2uk

∥

∥

∥

∥

≤
∑m

k=1

∥

∥

∥

∥

( 0 In−r )MBkN

(

0
In−r

)∥

∥

∥

∥

|uk|‖z2‖

≤

[

∑m
k=1

∥

∥

∥

∥

( 0 In−r )MBkN

(

0
In−r

)
∥

∥

∥

∥

2
]

1

2

·‖u‖‖z2‖

≤ c0(1 + c0)
−1‖z2‖.

(29)
Similarly, we have

∥

∥

∥

∥

( 0 In−r )M
∑m

k=1 BkN

(

Ir
0

)

z1uk

∥

∥

∥

∥

≤ (c0 + 1)
−1

·

[

∑m

k=1

∥

∥

∥

∥

( 0 In−r )MBkN

(

Ir
0

)∥

∥

∥

∥

2
]

1

2

‖z1‖.

(30)
Thus, inequality (27) together with (29) and (30) implies

‖z2‖ ≤

[

m
∑

k=1

∥

∥

∥

∥

( 0 In−r )MBkN

(

Ir
0

)∥

∥

∥

∥

2
]

1

2

‖z1‖, (31)

which also implies GAS of z2 from the above result on
substate z1. Therefore the closed loop system of (1) and
(14) is GAS. This completes the proof.

Remark 3.1: The result in this section extends the main
result in [9] for nonsingular single input BS into multi-input
SBS.

IV. DYNAMIC OUTPUT FEEDBACK

In this section, we present the results on GAS of SBS
(1) via continuous dynamic output feedback controllers.

The following theorem presents the design of an nth
order continuous dynamic output feedback controller to
stabilize SBS (1).

Theorem 4.1: Under Assumptions 2.1, 2.2 and 2.3, if
there exist two matrices Q ∈ R

n×n and R ∈ R
p×n such

that the following matrix inequalities are solvable.

ETQ = QTE ≥ 0,

ATQ+QTA+ CTR+RTC + I < 0
(32)

then system (1) is GAS via an nth order continuous dynamic
output feedback.

Proof: Without loss of generality, assume that solution Q

from matrix inequalities (32) is nonsingular. Using nonsin-
gular matrices M,N in (13), that is, MEN = diag{Ir, 0},
it is easy to show that ETQ = QTE ≥ 0 implies that
matrix Q can be represented in the following form.

Q =MT

(

Q1 0
Q3 Q4

)

N−1, (33)

where Q1 ∈ R
r×r with Q1 ≥ 0, Q3 ∈ R

(n−r)×r and
Q4 ∈ R

(n−r)×(n−r). Partition (33) implies that there exists
a sufficient small scalar ε > 0 such that

Qε =MT

(

Q1 + εIr 0
Q3 Q4 + εIn−r

)

N−1

is nonsingular and also satisfies inequalities (32) at the same
time.

If R and nonsingular matrix Q are solutions of inequal-
ities (32), choosing L = Q−TRT , then

QT (A+ LC) + (A+ LC)TQ < −I. (34)

It follows from [17] that the pair (E,A + LC) is regular
and impulse free. Thus there exist two nonsingular matrices
M1, N1 ∈ R

n×n such that the following standard decom-
position holds.

M1EN1 = diag{Ir, 0},

M1(A+ LC)N1 = diag{Ac1, In−r},
(35)

where Ac1 ∈ R
r×r.

Supposing that matrix P ∈ S satisfying Assumption 2.3,
then we construct the continuous dynamic output feedback
controller based on the Luenberger-like observer as follows.

E ˙̂x = Ax̂+B(x̂)u(x̂)− L(y − Cx̂),

u = u(x̂) = −µ(x̂)Ω−1(x̂)BT (x̂)Px̂,

(36)

where matrices M,N ∈ R
n×n are defined by decomposi-



tion (13), and

µ(x̂) =
[

c‖Ω−1(x̂)B(x̂)Px̂‖+ 1
]−1

,

Ω(x̂) =
(

4
∑m

k=1 ‖B
T
k Px̂‖2 + 1

)

I

+4BT (x̂)PP T
B(x̂),

c > max {1, c0, c1,

8
[
∑m

k=1 ‖(P +Q)TBk‖
2
]

1

2

}

,

c0 =

[

∑m
k=1

∥

∥

∥

∥

( 0 In−r )MBkN

(

0
In−r

)∥

∥

∥

∥

2
]

1

2

,

c1 =

[

∑m

k=1

∥

∥

∥

∥

( 0 In−r )M1BkN1

(

0
In−r

)∥

∥

∥

∥

2
]

1

2

.

(37)
Let error state e = x − x̂, then the dynamics on error

state e can be described as follows.

Eė = (A+ LC)e+B(e)u(x̂). (38)

Consider the Lyapunov function candidate

V = xTETPx+ eTETQe, (39)

the derivative of V along the trajectory of x(t) and e(t) for
the closed loop system of (1) and (38) yields

V̇ = xT (PTA+ATP )x+ 2xTPT
B(x)u(x̂)

+eT
[

QT (A+ LC) + (A+ LC)TQ
]

e

+2eTQT
B(e)u(x̂)

≤ 2xTPT
B(x)u(x̂)− ‖e‖2 + 2eTQT

B(e)u(x̂).
(40)

Using the linearity of B(·), we have

V̇ ≤ 2x̂TPT
B(x̂)u(x̂) + 2eT (P +Q)TB(e)u(x̂)

+2eTPT
B(x̂)u(x̂) + 2x̂TPT

B(e)u(x̂)− ‖e‖2.
(41)

In inequality (41), by means of the constraint of (37) on
u = u(x̂), we get

2eT (P +Q)TB(e)u(x̂)

= 2
∑m

k=1 eT (P +Q)TBkeuk

≤ 2
{

∑m

k=1

[

eT (P +Q)TBke
]2
}

1

2

‖u(x̂)‖

≤ 2
[
∑m

k=1 ‖(P +Q)TBk‖
2
]

1

2 ‖u(x̂)‖‖e‖2

≤ 1
4‖e‖

2.

(42)

Similarly, we have

2eTPT
B(x̂)u(x̂)

≤ 1
4‖e‖

2 + 4uT (x̂)BT (x̂)PP T
B(x̂)u(x̂),

2x̂TPT
B(e)u(x̂)

≤ 1
4‖e‖

2 + 4‖u(x̂)‖2
∑m

k=1 ‖B
T
k Px̂‖2.

(43)

Hence it follows from (42) and (43) that (41) implies

V̇ ≤ 2x̂TPT
B(x̂)u(x̂) + uT (x̂)Ω(x̂)u(x̂)−

1

4
‖e‖2. (44)

Substituting the control input in (36) into the above (44)
yields

V̇ ≤ −µ(x̂)x̂TPT
B(x̂)Ω−1(x̂)BT (x̂)Px̂−

1

4
‖e‖2 ≤ 0.

(45)
Thus V̇ = 0 implies

e = x(t)− x̂(t) = 0, x̂TPT
B(x̂) = 0, (46)

and consequently

u = u(x̂) = 0, xTPT
B(x) = 0, Eẋ = Ax. (47)

In addition, let N−1
1 e = δ =

(

δ1
δ2

)

, where δ ∈ R
n, δ1 ∈

R
r, δ2 ∈ R

n−r, and using the same state transformation
as that in the proof of Theorem 3.1, that is, N−1x = z =
(

z1

z2

)

, then there exists a positive-definite matrix Q1 ∈

R
r×r such that matrix Lyapunov function (39) becomes

V = zT1 P1z1 + δT1 Q1δ1, (48)

which is positive-definite function with respect to substates
z1 and e1. Using the similar approach to the proof of
Theorem 3.1, we have that equation (47) yields to z1 = 0
and δ1 = 0. It follows from Lemma 2.1 that we obtain

lim
t→+∞

z1(t) = lim
t→+∞

δ1(t) = 0. (49)

Finally, by means of the state transformation x = N

(

z1

z2

)

and e = N1

(

δ1
δ2

)

, the slow system for the closed loop

system of (1) and (38) can be rewritten in the following
form.
z2 = − ( 0 In−r )MB(Nz −N1δ)u(Nz −N1δ),

δ2 = − ( 0 In−r )M1B(N1δ)u(Nz −N1δ).
(50)

Similarly to (27), (29) and (30) in the proof of Theorem 3.1,
it follows from the control input bound ‖u(x̂)‖ < c−1 that
the second equation of (50) implies

‖δ2‖ ≤ c−1

[

∑m

k=1

∥

∥

∥

∥

( 0 In−r )M1BkN1

(

Ir
0

)
∥

∥

∥

∥

2
]

1

2

· ‖δ1‖+ c−1c1‖δ2‖.
(51)



That is,

‖δ2‖ ≤ (c− c1)
−1

·

[

∑m

k=1

∥

∥

∥

∥

( 0 In−r )M1BkN1

(

Ir
0

)
∥

∥

∥

∥

2
]

1

2

‖δ1‖.

(52)
which implies that δ2(t) is GAS, and so is e = e(t).

Using GAS of state e(t), we have that z2(t) is GAS by
the first equation of (50), and so is x = Nz(t). Therefore,
the proof is completed.

V. CONCLUSION

This paper addresses GAS for MIMO SBS. Sufficient
condition for the global asymptotic stabilization via contin-
uous static state feedback is presented. Under an additional
matrix inequality assumption, the full-order and reduced
order dynamic output feedback controllers are constructed,
respectively, for global asymptotic stabilization for the sys-
tem. How to extend the existing global stabilization results
to more general class of SBS by means of discontinuous
controllers is under our investigation.
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