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Abstract-A new method for 2L  libration-point orbit 

stationkeeping is proposed in this paper using continuous 
thrust. The circular restricted three-body problem with Sun 
and Earth as the two primaries is considered. The unstable 
orbit about the 2L  libration-point requires stationkeeping 

maneuvers to maintain the nominal path. In this study, an 
approach, called the “ Dθ −  technique,” based on optimal 
control theory gives a closed-form suboptimal feedback 
solution to solve this nonlinear control problem. In this 
approach the Hamiltonian-Jacobi-Bellman (HJB) equation is 
solved approximately by adding some perturbations to the 
cost function. The controller is designed such that the actual 
trajectory tracks a predetermined reference orbit with good 
accuracy. Numerical results employing this method 
demonstrate the potential of this method. 
 

I. INTRODUTION 

There has been active interest in recent years in missions 
utilizing trajectories near libration points. Libration points 
or Lagrangian points are equilibrium points where in the 
restricted three-body problem the gravitational and 
centrifugal forces acting on the third body cancel. 
Spacecraft in orbits near libration points offer valuable 
opportunities for investigations concerning solar and 
heliospheric effects on planetary environments. Preliminary 
trajectory analysis and design are often carried out in the 
context of the circular restricted three-body problem 
(CR3BP) with the Sun and the Earth as the primary 
gravitational bodies. The framework allows the 
identification of mission-enabling trajectories such as halo 
orbits around the libration points. A number of missions 
have already incorporated Lissajous or halo orbits about the 

1L  libration point as part of the trajectory design such as 

ISEE-3 (1978), SOHO (1995) and ACE (1997).  
It is well-known [1] that the orbits about the collinear 
libration points are unstable. Spacecraft moving on these 
paths must use some form of trajectory control to remain 
close to their nominal orbit. A number of stationkeeping 
strategies have been proposed since the late 1960s [2]. In 
1970, Farquhar [2] presented several possible methods for 
libration point orbits. Breakwell [3] in 1974 published his 
approach for stationkeeping spacecraft on halo orbits 
around the Earth-Moon 2L  libration point.  Simo et al. in 

1986 [4] employed Floquet and invariant manifold theories 
to develop a loose control for halo-type orbits. In 1993, 
Howell and Pernicka [5], modified Dwivedi’s [6] method 
and successfully used it to control the spacecraft trajectory 
near the nominal path. In a 1996 paper, Cielaszyk and Wie 
[7] utilized a disturbance accommodating, linear state 

feedback controller based on LQR technique for the 
computation of a trajectory about the Earth-Moon 2L  

libration point that can be used as a fuel-efficient nominal 
path. Dunham and Roberts [8] in 2001 gave a detailed 
review of the stationkeeping strategies used on the three 
major libration-point orbit missions, ISEE-3, SOHO and 
ACE. A tight control technique was discussed for ISEE-3 
and an orbital energy balancing based loose control for 
SOHO and ACE demonstrate a significant improvement in 
expenditures of fuel.  In [9], Rahmani et al. used optimal 
control theory to develop a new stationkeeping method for 
active control of spacecraft on a reference trajectory. The 
variation of extremals, an iterative numerical technique, is 
used to calculate the optimal control acceleration. 
In this paper, we propose a new method, the “ Dθ −  
technique,” to design a stationkeeping strategy based upon 
optimal control theory. This strategy uses nonlinear 
equations of spacecraft in the scenario of the CR3BP. An 
approximately suboptimal closed-form feedback controller 
can be obtained using this approach. The nominal trajectory 
is first calculated using the method in [10]. The Dθ −  
controller is then applied to drive the spacecraft to this 
reference trajectory. Numerical results are presented to 
demonstrate the effectiveness of this method. 
 
II. CIRCULAR RESTRICTED THREE-BODY PROBLEM 
Figure 1 shows the geometry of the restricted three-body 
problem used in this study.  Two of the libration points, L1 
and L2 are shown.  A rotating reference frame is defined 
with origin at the libration point of interest and at the 
barycenter of the two-body system.  In both cases, the x̂  
unit vector is directed from the larger primary toward the 
smaller primary.  The ŷ  unit vector is defined normal to 

the x̂  vector, within the plane of the primaries’ orbit, and 
along the prograde rotational direction.  The ẑ  unit vector 
then completes the right-handed frame and is thus normal 
to the plane of the primaries’ orbit.  If the spacecraft is 
located by a position vector r with base point at the 
barycenter using coordinates x, y, and z with respect to the 
rotating frame, then the well-known equation of motion for 
Circular Restricted Three-Body Problem (CR3BP)  are 
given by 
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where 

1
ˆ ˆ ˆ( )x y zµ= + + +r x y z , 2

ˆ ˆ ˆ( (1 ))x y zµ= − − + +r x y z , ˆ ˆ ˆx y z= + +r x y z    (4) 

where µ is the ratio of the smaller primary mass to the sum 
of the masses of both primaries, and r1 and r2 are the 
distances from the larger and smaller primary to the 
spacecraft, respectively. 
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Fig. 1: Basic Geometry of the Restricted Three-Body Problem 

For the Sun-Earth/Moon system, -63.0404234945077 10µ = × . 

The above equations are expressed in nondimensional form. 
We define the distance between the two primaries as the 
unit of length and denote it as R and the time in units 1/n, 
where n is the mean motion. For the Sun-Earth system, we 
have 

8 -71.4959787066 10  km, 1.990986606 10R n= × = ×  rad/sec 
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     Fig. 2:  Nominal Lissajous Orbit about L2 Libration Point 
The nominal Lissajous trajectory used in this study was 
computed about the Sun-Earth/Moon L2 libration point and 
is shown in Fig. 2 in a three-view orthographic projection.  
This orbit has approximate amplitudes 300,000yA ≅  km 

and 200,000zA ≅ km.  The 533 day trajectory was 

numerically integrated in the circular restricted three-body 
problem using the method described in reference [10].   
In the next section, a new nonlinear optimal control 
technique is presented as a stationkeeping method. 
 

III. SUMMARY OF THE Dθ −  CONTROL METHOD 
In this paper the state feedback control problem is restricted 
for the class of nonlinear time-invariant systems described 
by  
                                  ( )= +gx f x u                           (5) 

with the cost function:                                                                                

                         
0

1
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where , , ,n n n m m×∈Ω⊂ ∈ ∈ ∈R R g R Rx f u , ,n n m m× ×∈ ∈Q R R R . 

Ω  is a compact set in nR ; ( )f x  is continuously 

differentiable in x  and g is a constant matrix; The 
condition ( ) =0 0f  is assumed in order to have the system 

at equilibrium when it is at the origin. Q is assumed to be a 
positive semi-definite constant matrix and R is assumed to 
be a positive-definite constant matrix.  
The optimal solution of the infinite-horizon nonlinear 
regulator problem can be obtained by solving the Hamilton-
Jacobi-Bellman (HJB) partial differential equation [11]: 
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where ( )V x  is the optimal cost , i.e.        
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It is assumed that ( )V x  is continuously differentiable and 

( ) 0V >x with ( ) 0V =0 . 

The necessary condition for optimality leads to 
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The HJB equation is extremely difficult to solve. The 
following approximations are made. 
Consider perturbations added to the cost function:  
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Rewrite the original state equation as: 
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where θ  is an intermediate variable; A0 is a constant 
coefficient matrix such that (A0,g) is a stabilizable pair and 
[ ]0A + A( ),gx  is pointwise controllable.         
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λ
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By using (12) in (7) and using the perturbed cost function, 
the HJB equation (7) becomes 
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Assume a power series expansion of λ  as 
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where iT  are to be determined and assumed to be 

symmetric. 



Substitute equation (14) into equation (13) and equate the 
coefficients of powers of θ  to zero to get the following 
equations: 
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Since the right hand side of equations (16)-(17) involve x  
and θ ,  iT  would be the function of x   and θ . Thus it is 

denoted as ( , )i θT x . 

Control can be obtained in terms of the power series for λ                                                                    
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Construct the following expression for iD  :      
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where ik  and 0, 1,il i n> =  are adjustable design 

parameters. iD  is chosen such that  
1
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where ( ) 1 il t
i it k eε −= −  is a small number and can be used 

to suppress the large value from propagating in equations 
(16) through (17) if initial large states result in large ( )A x  
[12]. ( )i tε  is chosen to satisfy some conditions required in 

the proof of convergence and stability of the above 
algorithm [12]. On the other hand, the exponential term 

il te−  with 0il >  is used to let the perturbation terms in the 

cost function and HJB equation diminish as time evolves. 
Another purpose of iD  is to allow flexibility to modulate 

the system transient performance by tuning the parameters 
of ik  and il  in the iD . 

The steps of applying the Dθ −  method are summarized as 
follows: 
1) Solve the algebraic Riccati equation (15) to get 0T  

once 0A , g  , Q and R are determined. Note that the 

resulting 0T  is a positive-definite constant matrix. 

2) Solve the Lyapunov equation (16) to get 1 ( , )θT x . 

Note that it is a linear equation in terms of 1T  and an 

interesting property of this equation and Eq. (17) is that the 
coefficient matrices 1

0 0
T−−A gR g T  and 1
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T T−−A T R gg  

are constant matrices. Assume that 
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Through linear algebra, Eq. (16) can be brought into a form 
like [ ]0 1 1

ˆ ( ) ( , , )Vec Vec tθ=A T Q x  where 1( , , )tθQ x  is the 

right-hand side of the equation (16); ( )Vec M  denotes 

stacking the elements of matrix M  by rows in a vector 

form; 
0 00

ˆ T T
n c c n= ⊗ + ⊗A I A A I  is a constant matrix and the 

symbol ⊗  denotes the Kronecker product. The resulting 
solution of 1T  can be written as a closed-form expression 

[ ]1
1 0 1

ˆ( ) ( , , )Vec Vec tθ−=T A Q x . 

3) Solve the equations (17) by following the similar 
procedure to Step 2. For most of the problems, the first 
three terms, i.e. 0 1,T T  and 2T , in the control equation (18) 

are sufficient to achieve satisfactory performance. More 
terms could be added if needed. 
As can be seen, closed-form solutions for 2 , , nT T  can be 

obtained with just one matrix inverse operation. The 
expression of ( , , )i tθQ x  on the right hand side of the 

equations is already known and needs simple matrix 
multiplications and additions. 
Remark 3.1: θ  is just an intermediate variable. The 
introduction of θ  is for the convenience of writing λ  as a 
power series expansion. It gets cancelled when ( , )i θT x  

multiply iθ  in the final control calculations, i.e. Eq. (18).  
Remark 3.2: The selection of ik  and il  parameters can be 

done systematically [13] by applying the least square curve 
fitting to find ik  and il  such that the errors between 
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( )P x  is the solution of the state dependent Riccati equation: 
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In summary, the Dθ −  controller obtains a closed-form 
suboptimal feedback solution to the nonlinear optimal 
regulator problem if finite terms in control are taken.  
 
IV. Dθ −  CONTROLLER DESIGN FOR STATIONKEEPING 

OF AN 2L  LIBRATION POINT SATELLITE 

Write the CR3BP Eqs. (1)-(3) in the state space form with 
controls incorporated: 

1 2x x=                                                                              (23) 

[ ]11
2 4 1 13 3

1 2

(1 )(1 )( )
2

xx
x x x u

r r

µ µµ µ − −− +
= + − − +        (24) 

3 4x x=                                                                (25) 

3 3
4 2 3 23 3

1 2

(1 )
2

x x
x x x u

r r

µ µ−
= − + − − +                              (26) 

5 6x x=                                                                             (27) 

5 5
6 33 3

1 2

(1 )x x
x u

r r

µ µ−
= − − +                                              (28) 



where 1 2 3 4 5 6, , , , ,x x x x x y x y x z x z= = = = = =  

1 1 3 5
ˆ ˆ ˆ( )x x xµ= + + +r x y z , 2 1 3 5
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The cost function is chosen to be a quadratic function of the 
state and control 
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The weighting functions are chosen to be: 

11 22 33 44 55 66{ , , , , , }diag q q q q q q=Q , 11 22 33{ , , }diag r r r=R    

In order to employ the Dθ −  method, the condition 
( ) =0 0f  has to be satisfied. However, Eq. (24) has a bias 

term 
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1 2

(1 )(1 )( ) xx

r r

µ µµ µ − −− +
− −  which will not go to 

zero when the states are zero. Therefore, an additional state 
‘s’ with stable dynamics is added to the state space in order 
to absorb the biases. 
                                     ss sλ= −                                      (30) 

Note that this new variable will not alter the basic dynamics 
since we treat those bias terms by multiplying and dividing 
them by s. It is reset to its initial value at each integration 
step in the simulation. In the simulation, sλ  is set to unity. 

The augmented state space can be written in a linear-like 
form: 
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In the Dθ −  formulation, we choose the factorization of 
the nonlinear equation (11) in the following form:    
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The advantage of choosing this factorization is that in the 
Dθ −  formulation 0T  is solved from 0A  and g in (15). If 

we select 0 0( )=A F x , we would have a good starting point 

for 0T  because 0( )A x  retains much more system 

information than an arbitrary choice of 0A  would. 

Once 0A , g, Q and R are determined, we can follow the 

algorithm in Section III to get the closed-form solution for 

0T , 1T  and 2T . In this simulation, first three terms, i.e. 

0 1,T T  and 2T , in the control equation (18) are used to 

compute the necessary control. The simulation results show 
that they are sufficient to achieve satisfactory performance. 
The final feedback controller takes the form of  
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V. NUMERICAL RESULTS AND ANALYSIS 

The initial conditions of the reference trajectory computed 
in Section II are given by 

0 0 087028.508409273 km, y -24739.512629980 km, z -229951.974656271 kmx = = =

0 0 0-8.985877859 m/s, y -121.605674977 m/s, z 9.457952755 m/sx = = =
The above data are measured with respect to the 2L  

libration point. 
Q and R are also tuned to give a satisfactory performance. 
The values of Q and R are chosen to be 

15 15 15{10 ,0,10 ,0,10 ,0,0}diag=Q , {1,1,1}diag=R         (35) 

1D  and 2D  in (16) and (17) are chosen according to 
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Figures 3-6 show the tracking trajectory when the 
spacecraft enters the orbit at the same initial conditions as 
the reference orbit.  As can be seen, the actual trajectory 
matches the reference orbit very well. The errors of the X-
Y-Z position and velocity between the reference and the 
achieved are given in Fig. 7. The maximum error lies 
within 8 km. The three control responses are presented in 
Fig. 8 and they are physically reasonable. To demonstrate 
the capability of the Dθ −  controller to bring spacecraft 
deviated from its nominal path back on the reference orbit, 
a 10% deviation from the initial X-Y-Z position is assumed 
in the simulation. Fig. 9 compares the achieved trajectory 
and the reference. The plot shows the trajectory for only 16 
days to provide clearer illustration. We can see the Dθ −  
optimal controller drives the spacecraft back to the 
reference orbit very quickly. The errors and control history 
are given in Fig. 10 and Fig. 11 respectively. They are 
shown in one day time intervals for easier observation. 
Both decay very quickly. To see the final error and control, 
the trajectory from day 1 to day 533, which is the last day 
of the computed reference orbit, is presented in Fig. 12 and 
Fig. 13. As can be seen, they still remain at the same level 
as in Fig. 7 and Fig. 8. 
 

VI. CONCLUSIONS 
A new suboptimal nonlinear control method, called Dθ −  
technique, was presented to stationkeep a spacecraft on a 
reference Lissajous trajectory about the 2L  libration point 

using continuous thrusting.  The nonlinear equation of 
motion of the CR3BP was used without linearization in this 
study. This approach gives an approximately closed-form 



suboptimal feedback controller and consequently is easy to 
implement. Numerical results demonstrate the potential of 
this method for stationkeeping spacecraft with good 
accuracy. Further studies will be performed by adding 
disturbances such as solar radiation pressure and 
measurement noises. More realistic models using 
ephemerides to locate the Moon, Sun, and Earth will be 
adopted. Also more results will be presented at the 
conference by comparing this nonlinear control method 
with traditional linearization based methods.  
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Fig. 3: Tracking trajectory in X-Y plane 

 
Fig. 4: Tracking trajectory in X-Z plane 

 
Fig. 5: Tracking trajectory in Y-Z plane 

Fig. 6: Tracking trajectory in X-Y-Z view 



 
Fig. 7: Tracking error of positions and velocities 

 
Fig. 8: Control usage 

 
               Fig. 9: Tracking trajectory with 10% initial deviations 

 
Fig. 10: Tracking error with 10% initial deviation 

 
Fig. 11: Control with 10% initial deviation 

 
Fig. 12: Tracking error with 10% initial deviation (1-533 days) 

 
Fig. 13: Control with 10% initial deviation (1-533 days) 
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