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Abstract— The attitude control of a rigid spacecraft with  CMG singularities [10]. Also, an adaptive nonlinear cohtro
a cluster of N variable speed control moment gyroscopes is |aw for VSCMGs has been previously derived [14].
considered from a perspective of passivity. The dynamics are In addition, passivity properties of rigid spacecraft have

derived using a special form of Euler-Lagrange equations. . . .
The spacecraft dynamics and unit quaternion kinematics are been used to derive attitude controllers. Feedback interco

shown to be passive. A proportional-integral controller is Nections of passive and strictly passive systems are gjobal
proposed to make the feedback system passive, which closelyasymptotically stable [5][7]. An adaptive attitude cotigp

resembles previous co_ntroller designs using Lyapunov analysis. ysing passivity has been derived using a unit quaternion
Consequently, the atitude errors are shown to be globally  yacking error. [2]. By using passivity theorems, the atfi
asymptotically stable. A null space solution is used to provide ;
power tracking of the spacecraft. Numerical simulations are contrpllers have been extended to systems without angular
provided for validation. velocity measurements [6][11][12].
In this work, a rigid spacecraft with a cluster of VSCMGs
I. INTRODUCTION is considered. The system energy is used to derive the
complete set of nonlinear dynamical equations of motion.

Most spacecraft use chemical batteries to store ener@assivity theory, as opposed to Lyapunov analysis, is used
from solar panels for use during periods of eclipse fronfo derive the attitude control for the integrated power and
the sun. Chemical batteries often require consideration Httitude control problem. The simultaneous power tracking
the spacecraft design given that the batteries have maapd attitude control is discussed. Simulations are pravide
drawbacks such as weight, efficiency, limited operatingor validation.
conditions, and limited battery life. As an alternative,-fly
wheels offer a promising choice for energy storage given
such systems can be lighter, last longer, and provide the
capability to not only do power tracking but also attitude
control.

Flywheels can be considered as single-gimbal variable
speed control moment gyroscopes (VSCMGs) where the
varying wheel speeds provide an extra degree of freedom for
use in attitude control and power tracking. Energy storage i
achieved via converting electrical energy from solar asray
into rotational kinetic energy of the spinning wheels. Powe
tracking is accomplished by changing the wheel speeds as
required, but must be done as not to produce any torques
on the spacecraft.

The development of an integrated power and attitude
control system (IPACS) using flywheel technology is non-
trivial and has been subject of research for many years. The
nonlinear equations of motion for a VSCMG cluster in a
rigid spacecraft have been derived for different kinematic
descriptions of the spacecraft orientation [9][10][14heT
nonlinear equations of motion have been extended to flexi- Fig. 1. Variable Speed Control Moment Gyroscope
ble spacecraft [3]. By ignoring the gimbal acceleratiohs, t
gimbal rates and wheel spin rates can be taken as control
inputs to develop a velocity-based steering control law, Il. SYSTEM MODEL
which takes advantage of the torque- amplification property Consider a rigid body spacecraft with a cluster Nf
of control moment gyroscopes [9][10][14]. A singularity variable speed control moment gyroscopes (VSCMGS). Let
measure is used in defining a weighting matrix to avoid ang body-fixed reference frame associated with the spacecraft
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be denoted by#, and let a inertial frame be denoted byis a column vector of th&l VSCMGs’ wheel spin rates, and
#. The cluster is fixed inZ with the gimbal axes of JeR3<3is the inertia matrix of the spacecraft including the
each VSCMG fixed within the cluster. L&y, &5, and variable speed control moment gyroscopes,

& represent thei-th VSCMG’s directional unit vectors

of the gimbal, spin, and transverse axes expressed in = lsict+AdsAS +AdA +Aglghg

as shown in Fig. 1. Define the matri&g € R3>*N such  The time derivative of] is given by

that i-th column of Ag is the directional unit vector of d d

the i-th VSCMG’s gimbal axes. The matrice8s € R3N J=A M (I —1g) Al +As {5} (lk—1g) AT

and A, € RN are defined similarly for the spin and

transverse directions [3][9][L0][14]. Given the initiahil \hereA (= —A [5]° andA = A[8]°. The total kinetic
vectors, the matrices are functions of the gimbal a”gleénergy can be writen in matrix form as

denoted byd € RN, and can expressed &g = Ag,, As =

As, [cosé]d — Ay [siné]d, andA = Ay, [cosé]d +As, [siné]d, T= }fTM(é)f (1)
Where[x}d € RN*N denotes a diagonal matrix with elements 2

x € RN. Givenx € R3, define the skew symmetric operatorWhere

x* € R®<3, which represents the cross-product operation, as lg 0 IgAl
0 —X3 X2 M(9) = 0 lws  TwsAs >0
X< = X3 0 —X1 Aglg Aslws J
X x 0 andr=[5 Q w] eR¥*N,

Next, the constant inertia matrices of the system are 2) Euler-Lagrange EquationsConsider a system using
defined. Iy € R¥3 is the total inertia matrix of the generalized coordinateg, possibly subject to either holo-
spacecraft including the contributions from the center ofiomic or non-holonomic constraints. Assuming no potential
mass of each VSCMG. The matricégy, € RNxN angq field, the Euler-Lagrange equations can be written as
lwe, € RN*N are diagonal matrices with elements being the dt /9T\ aT ;
inertias of the gimbal including the wheel and inertias of dat (d_q> - =Q+F'A

just the wheel of each VSCMG corresponding to the triad _ _ 9 _ _

of unit directions vectors, e.g. gimbal axeé € g), spin whereQ is _the generalized force momef,is \_Ja(_:ob|an of
axes (> = s), or transverse axe$ (= t). Consequently, the the constaint vector, andl are Lagrange mult|p_I|ers [4].
matrix lws € RN*N is a diagonal matrix with elements of The standard form of Euler-Lagrange equations use gen-

each VSCMG wheel inertia along the spin axis. The inertigralized coordinates where the generalized velocities are
matrix Iy = lguo + huo € RN*N s the sum of diagonal integrable with respect to time, e.dg.gi = gi. When the
matricesl g, and ly. velocities are not integrable, the standard form of Euler-

Lagrange equations do not apply. These velocities, known

A. Dynamics as quasi-velocities, are considered as time derivatives of
In general, the system’s equations of motion can bguasi-coordinates: Qqasi—coordinauesare goordinate; that

derived using either classical mechanics or Lagrangid®ly the time derivatives have any physical meaning [1].
mechanics. The former uses Newton's and Euler's laws tbh€ spacecrafts angular velocity is an example of a quasi-
provide some physical intuition into the system dynamics/€loCity since it is not integrable and can be considered
The latter approach uses the system’s energy and Eulée time derivatives of some quasi-coordinates [1][8] &@iv
Lagrange equations to derive the equations of motiofhe kmetlc energy 1s expressgd In terms .Of true and quasi-
The Lagrangian approach is considered using the Systenq,gordlnates, this leads to using a special form of Euler-

kinetic energy and a special form of the Euler-Lagrangk@drange equations. _
equations. 3) Boltzmann-Hamel EquationsThe Lagrange equa-

1) Kinetic Energy:The total kinetic energy of the space-tiO”S for quasi-coordinates are called Boltzmann-Hamel

craft includingN VSCMGs can be expressed as the sum dfquations [1][13]. Let the relationship between the quasi-
the kinetic energy of the spacecraft plus the kinetic energ‘f'ocl't'es_ and true velocities be given by-"§(q)d. Since

of the gimbals and wheel3, = Ty + Ty+ Ty. LetNeR be e kinetic energy does not depend on the true coordinates
arbitrary. By considering the inertia and angular velesiti @1d assuming no potential field, the usable form of the
w.rt. .7 expressed in%, the total kinetic energy of the Boltzmann-Hamel equations become

system is given by g d_T N 0 O d_T —S()‘l d_T I,
11 L. o1 . at\or) "o o |\ar) 3 \&q)7

_ whereT=[ T5 Tq Tex ]T e R3N js column vector of
wherew € R3 is the spacecraft’'s angular velocitye RN is  the internal moments associated with the gimbals/wheels of
a column vector of thé&l VSCMGs' gimbal ratesQ ¢ RN the VSCMGs and the external moment on the spacecratft.
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By using Euler angles to represent the spacecraft ori-he error rotation matrix betweef-frame and#-frame
entation, the true coordinates become: [ O a n } € can be written afRe = (e02+a,Ta,) Is+2a0," — 2e0€; .
R3+2N wheren € R® is a vector of the Euler angles andDefine the angular velocity error as = w— wy.

a € RN is a vector of position angles of an arbitrary Using the error quaternion and angular velocity error, the
reference point on each VSCMG wheel. Considering Egpacecraft tracking error dynamics and kinematics can be
(1) and Eqg. (2), the dynamical equations of motion for thavritten as

system are given by I+ J6 = —w e+ 2 (6)

2
140 + 1gAT @ — B+ [Q] IweAT W = T, (3a) 1
g gAg [ ] WSA{ o eZEE(e)% (7)
lwsQ + s § -+ lweAd @ = Tg (3b)  where
Jw+Jd>+AgI95+As|st+A slwsQ+ T a2 %
x : (3c) E)=| ., = 2 22
(] (Jw+Ag|g5+As|st) = Text | eolaxzteEr | €3 € €
—€ € €

whereB = 3 [AT o] (I — 1) AT + 1 [AT ] (I — 1) AT

B. Kinematics

andz= —1J (w+ wy) — oy — wf Jw— w* Iy + Wy Iy —

; . .7d )

w* (Aglgé—l—Aslst) —Aglg8+A M lwsQ — AglysQ. Us-
The spacecraft orientation is represented by using ang the error dynamic and kinematic equations, passivity

unit quaternion, or Euler parameters, corresponding to thheory yields the following proposition

transformation fromy frame to the inertial reference frame, Proposition 1: (i.) The mappingz — w. is passive.

7. Define the unit quaternion ag= [ do Qv ]T € R* (ii.) The mappingw. — &, is passive.

where go € R and q, € R® are the scalar and vector Proof: (i) Define the functionv = %w;r\]ab >0 whereJ

components. The unit quaternion satisfies the holonomis the positive definite function defined previously. The

constraint derivative along the trajectories of Eq. (6) yields=

Lol Jae+ @] Joa = w] z. Hence, [y wlz=V(T)-V(0) >

—V(0) where T > 0. Thus, the system with input and

outputw is passive. (ii) [2][6]rGiven the following from Eq.

(7), & = —3wl . Hence, [y wle, = 2[e(0) —&(T)] >

—4, where|ey(0) —ey(T)| < 2. Thus, the system with input

3
T 2 T
qq=dot+aqay=7> qG=1
o+ O ;)l

The kinematic differential equation can be given as

4= 30w @
where the matrixQ(q) € R*3 is defined as
. 1 —02 —03
Qo) = [ qo|;fi o } B gg _qjg —qél ®)
B2 a1 G

we and outpute, is passivell

A. Feedback Passive System

From Proposition (1), Eg. (6) and Eq. (7) represent a
cascade interconnection of two passive systems. By using
feedback, the first subsystem can be made output strictly
passive. Then, closing the outer loop with the second
subsystems output can yield a feedback interconnection of a

Equations (3c) and (4) form the spacecraft’s equations @utput strictly passive and passive system. As an altemati

motion.

I1l. PASSIVITY-BASED ATTITUDE CONTROL

the system could be designed such that the first subsystem
is passive, and the system in feedback is any strictly passiv
system [6][11]. Passivity theorems state that a feedback

Let the desired spacecraft attitude be described by tf@terconnection of a passive and strictly passive system is
body-fixed frame Z, which gives a desired attitude quater-globally asymptotical stable [S][7][11].

nion, gq = [ Oog  Ovg }T, and an angular velocity o?

with respect to.# expressed inZ, ay. The desired ori-
entation of the spacecraft is represented by the rotati

Proposition 2: Consider the system in Eq. (6) with the
feedback control lave = —Ky s+ v, whereKy is a positive

Sgfinite constant gain matrix. The system with inpuand

matrix, Rg € SOs, where the current attitude is given by the@UPUt @ is output strictly passive.

rotation matrix,R € SG;. SO; defines the special orthogona

|Proof: Define the positive definite functiod = %wnge

group, which is the subset of 83 matrices that satisfy 'N€ derivative along the trajectories is given by=

R'TR= 1 anddet(R) = 1. Define the attitude error rotation

matrix, Re = RyR € SG;, and the error quaterniorg’ =
[ & & ]T from

SERHER

—wlKywe + wlv. Let Ky = kylzx3, Wherek, >0 is a
scalar. The integral of the supply réte] v, is [j wlv >
—V(0) +ky [y ||ax|[2 T > 0. Thus, the system with input
and outputwe is output strictly passive (OSP) [7]]
Considering the output strictly passive system as in
Fig. 2, the quaternion error is used to form a feedback
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z
Spacecraft Dynamics e where
B = Aglg

C = W Agt A 15 AL (@)’

Ky

oA 19) (AT (0+ )]~ Adus[@)
E = Aslus

The required control torque for attitude trackinhg, is given

Fig. 2. Output Strictly Passive System.

connection of an output strictly passive and passive systert?'y
This will globally asymptotically stabilize the system teet | _ ke + @y — Iy — 0 Joe— 0™ (Jey + AchwsQ) (8)
origin, e.g.w. = 0. See Fig. 3.

Theorem 1:The linear control lawz = —kywe — kpey, and closely follows the nonlinear control law from Lya-
wherek, > 0 andk, > 0, globally asymptotically stabilizes punov analysis [3][9][10][14]. In general, the feedbaclnga
the system about the origin given by the spacecraft trackirg, need not be scalar but a positive definite matrix.
error dynamics and kinematics. The gimbal acceleration term is considered small and is
Proof: The proof is similar to that used by Tsiotras [12]ignored with control inputs given by andQ. The control
with Rodrigues parameters. Consider a Lyapunov functicimputs are chosen to satisfy the following velocity-based
that is the sum of the individual storage functions for theteering law
spacecraft tracking error dynamics and kinematics. This CO+EQ=L, 9)
yields the positive definite function
or in matrix form as

1
V(aee) = swpdaetkp [(eo—1)2+a,TaJ} >0 o
wherek, > 0. The derivative along the trajectories is [E C] { 5 ] =L (10)
V(we,€) = Wi z+ Kol & = —ky[|a]|> <0 Given any required control torqud,,, the spacecraft

This gives Lyapunov stability. Le be the largest invariant Will rack the desired attitude given that Eq. (10) gives
set inW = {(e )|V =0} = {(e,ax) | = O}. SinceA 2 solution. Depending oM, the number of VSCMGs,

is invariant tI:1is implies thatw;: 0 on A. Erom the and the orientation of each VSCMG, the VSCMG cluster
linear control law and Eq. (6 =0 impliesk,e, =0 or M& not be able to produce the required torque vector.
e = 0. Hence,A = {(e as) |we = 0,8, = 0}. By LaSalle’s This constitutes a singularity. As long as the matdix>

Invariance principle, all trajectories converge to theaiiant [ E C ] has full rank anN > 2, the range space af will

set,A; thus, the linear control law asymptotically stabilizesSP2n 3 dimensions, and attitude tracking can be achieved.
the system in thée, ) space. In addition, Sincé(cws, e) The general solution to Eq. (10) can be expressed in terms

is radially unbounded, the closed-loop system trajectorié?f the particular g'?zaﬂsge) and homogeneous (Null) solutions
are globally asymptotically stable [5]. This is given by*?

[ g ] —WD' (DWD') 1Lr+{ %: ] (11)
The weighting matrixW € R®N*2N is a diagonal matrix
defined asV = diag|Ws, W], whereWy = diag[Wg] has el-
ements that are constant weights for maximizing the torque-
ko 2 IE(e) amplification property of the CMGs, amik = diag|Ws | has

2 weighting elements that are important for use near a CMG
singularity and are given by

OSP System e

Passive fro to
Mo to & Ws =Wsge ¢, i=1,...,N (12)
Fig. 3. Feedback Interconnection of an Output Strictly RasSystem Wsg andp are constant design parameters [9]. The variable
and Passive System. Z is the minimum singular value @ and is used to describe
proximity to a CMG singularity [3][10].
B. Required Control Torque
The control lawz = —kyw. —kpe, and Eq. (6) give the
equation ; _ . The kinetic energy of the VSCMGSs’ wheels is given by
BO+CO+EQ=L, Tw=2QTIwsQ = 1 3N, 145 Q2. By taking the derivative of
1022
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Tw and using the null space solution of Eq. (11), the ideal
power generated by the wheels is given by

: [ Parameter] Value
: Q N 4
w(0) [0 0 0] radisec
The homogeneous solution of Egn. 11 is q(0) [05 05 05 05|
o 6(03 [’z’ -3 1 | 7 | rad
h T T\ —1 Uarp o(0 0 O O O] rad/sec
{ 5 ] = (' ~WD' (DwD') D) B::b (14) Q(0) | [ 50000 45000 40000 37000 rpm
lw; diag| 0.7 02 02 | Kg
My lw diagl 01 01 01 |Kg n?
where da, € RN and Bap € RN are arbitrary vectors. By E'V) 73050
substituting Eq. (14) into Eq. (13), the power output can be u 1e4
written as W 40
W, 1

P=Qly®Paam — QT lwsW Barb (15)

Sincea,, and B, can be chosen arbitrarily, this motivates
the following definition.

TABLE |

SIMULATION PARAMETERS

satellite. Specifically, the symmetric axis of the spackcra

Definition: Given Eg. (15), gpower singularityis defined must track Albuquerque, New Mexico, while rotating about

when the axes configuration and wheel speeds satisfy batie symmetric axis to keep the solar panels perpendicular
of the following conditions: to the sun. In addition, the spacecraft must follow a given

i QT <|N><N —WET (E\NSET +CV\@CT)71 E) -0 power profile. Table 1. contains the configuration data. The

[}
ii. QTIWWET (EWET +CWCT) "C=0
W

When a power singularity is encountered, the VSCMGs
can not achieve the required power output. It is suffi-
cient thatC have rank 3, or equivalently, not being at
a CMG singularity. In this case, no power singularity
is encountered via the following argumemtssume not:
C has rank 3 and the system is at a power singular-
ity. Then QTlys = QT MEET (EWLET +CWCT) E #
0 for all non-zero wheel speeds. This implies that
QTlwWET (EWLET +CW,CT) * # 0 is a non-zero 3x1
column vector, so (ii.) is never satisfied sin€eis rank
3. ThereforeC having rank 3 is a sufficient condition for
power singularity avoidance.

The open loop solution to the power tracking problem in
the null space of Eq. (10) is given by

[ ]n ] (o o0 [ 50])
(16)

whereP,=P—[ QTlys 0 ]-WD' (DWD') 'L € R.

Equations (11) and (16) complete the simultaneous at-
titude and power tracking solution of the velocity-based
steering equation, Eq. (10).

V. NUMERICAL EXAMPLES
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results show the spacecraft is tracking the desired t@ject
while maintaining the required power profile.
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Fig. 4. Spacecraft Output Power

VI. CONCLUSIONS

In this paper, the attitude control problem using variable
speed control moment gyroscopes was developed using the

system energy and passivity. The resulting control algorit

Numerical simulations were performed using the deelosely follows previous results using Lyapunov analysis.
scribed control algorithms for simultaneous attitude oaint By using the null space and avoiding singularities, power
and power tracking. The gimbal axes of four VSCMGs aréracking can be achieved without exerting any torques on the
aligned to create a pyramid configuration with respect tepacecraft. A numerical simulation is given to illustrate t
the body. The reference trajectory used in the numericabntrol method validity. Future work will extend the ideal
simulation is a near-polar LEO that provides both requiregower tracking approach to a closed form methodology that
sun and ground tracking, similar to that of an Iridium 2577&ompensates for power losses and system disturbances.
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Fig. 5. Spacecraft Attitude Error.
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