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Abstract - Computer networks produce large amount of event-
based data that can be collected for network security and 
management analysis. Computer networks are dynamic 
systems and network events are the observable of their 
dynamic activities. Evidence of attacks against a network and 
its resources is often scattered among these distributed events. 
Therefore a critical challenge is to correlate these events 
across observation space and time to detect various attack 
scenarios. This paper analyzes how control and estimation 
methods can be applied to correlate distributed events for 
network security. Based on those methods, a Process Query 
System has been implemented which can scan and correlate 
distributed network events according to users’ high-level 
description of dynamic processes.           

I. INTRODUCTION 
Computer networks produce large amount of event-based 

data that can be collected for network security analysis. 
These data include alerts from firewalls and Intrusion 
Detection Systems (IDS), log files of various software 
systems, routing information from the Internet and so on. 
Network events are instantaneous occurrences of certain 
types of network activity at a point in time and location. If 
we regard computer networks as dynamic systems, network 
events are the observable of their dynamic state transitions. 
Given the distributed nature of networks, evidence of 
attacks against a network and its resources is often 
embedded within the totality of events of the distributed 
systems. Moreover, attacks against a network may also 
involve multiple steps so that evidence of attacks is also 
typically distributed over time as well. With large amount 
of event data originating from the distributed systems in a 
network, a critical challenge is how to correlate these 
events across observation space and time to detect and track 
various attack scenarios. 

Many traditional IDS only use single event as the 
signature to detect attacks, which leads to high false alarm 
rate. It’s essential to exploit more evidence from large 
number of network events to get better detection accuracy. 
In this paper, we discuss how control and estimation 

methods can be applied to correlate distributed events for 
network security. For example, Bayesian estimation can be 
used to correlate events across observation space while 
Kalman Filter can be used to correlate events along 
observation time. Based on these approaches, we have 
developed the notion of a Process Query System (PQS) and 
have implemented a PQS in software, which is able to scan 
and correlate distributed events according to users’ high-
level process description.        

II. SCENARIO SIGNATURE 
A computer network consists of many components such 

as routers, switches, web servers, mail servers, database 
servers, DNS servers, IDS and firewalls. A large network 
like the Internet can have millions of these components. 
Moreover, computer networks are dynamic systems and 
each time interval these components produce large amount 
of event-based data. All these events can, in principle, be 
collected by network data analysis centers. The trace of an 
attack is often scattered in these ad-hoc events. Without 
efficient correlation algorithms, identifying the trace of an 
attack in this large and noisy event space is essentially 
intractable. Like other pattern recognition problems, an 
attack scenario signature (or pattern) is needed to 
distinguish the attack from other attacks and normal 
network activities. The detection accuracy relies on the 
accuracy of scenario signature as well as the accuracy of 
collected events. Therefore, a critical challenge is how to 
characterize various attack scenarios.  

Figure 1 illustrates how the evidence of an attack is 
distributed over space and time. Based on cause-effect 
relationship, an attack could affect the events of multiple 
observation spaces at the same time t. For example, 
computer worms like CodeRed and Nimda generate and 
scan random IP numbers to search for vulnerable targets in 
the IP space. Since many IP numbers are not assigned to or 
used by a network, this active probing process could 
generate large volume of ICMP unreachable messages [1] 
in network routing. The intensive worm propagation 
process could also affect the latency of the Internet. 
Moreover, it is known that a worm breakout could also lead 
to unstable Internet Border Gateway Protocol (BGP) 
routing [2]. Based on causal relationship, here we have at 
least three independent observation spaces to sense the 
worm breakout: the volume of ICMP unreachable 
messages, network latency and BGP routing stability. 
Therefore, instead of using single event for worm detection, 
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we can use these three indicators as a combined signature to 
correlate events spatially and detect worm breakout.  
      

 
Figure 1: Temporal and spatial evidence  

distribution of an attack 
 

Furthermore, an attack affects events across time as well. 
For example, a computer worm propagates across the 
Internet following an epidemic model and goes through 
multiple stages during its lifetime: breakout; propagation; 
and eradication. During this dynamic process, the volume 
of ICMP unreachable message follows a temporal pattern, 
which can be used as a temporal signature to detect the 
worm. In fact each observation space discussed above 
could sense the worm’s breakout independently with its 
specific temporal pattern. Later in this paper, we will use a 
process model to characterize the temporal signature. 
Therefore temporal events in each observation space can be 
correlated with a process model to detect attacks.  

As shown in Figure 1, instead of using single event as the 
signature, we can use a joint scenario signature combined 
with spatial and temporal patterns to characterize and 
distinguish various attacks. With more evidence exploited 
from the distributed events, we believe that this approach 
should result in better detection accuracy, especially in a 
noisy network environment. A challenging problem is how 
to get enough knowledge to build exact signatures for 
various attack scenarios. Mainly there are two approaches 
to address this issue: One is to use expert knowledge to 
build scenario signatures, based on causality analysis as 
discussed above. Another is to use data-mining technology 
[3] to extract signatures from large amount of training data. 
Though these technologies are both very important for data 
analysis, this issue is beyond the scope of this paper.
Instead, given a scenario signature, we analyze how 
distributed events can be correlated according to the 
signature.  

III. SPATIAL-BASED CORRELATION 
Correlation speed and accuracy are two important 

performance aspects of event correlation systems. A 
classical approach to event correlation is rule-based 
analysis. That is, a correlation system constantly uses a set 
of predefined rules to evaluate incoming observations until 
a conclusion is reached. Therefore the correlation ability 
depends solely on the depth and capability of the rule set. 
Large amount of expert knowledge are required to design 

correct rule sets. Following the rigid paths of rule sets, 
observations may have to be checked against numerous 
conditional logics so that rule-based systems usually do not 
scale well. Meanwhile, rule-based systems are inherently 
stateless and do not handle dynamic data correlation very 
well. In the following sections, we discuss how control and 
estimation methods can be applied to improve the speed 
and accuracy in event correlation. 

Spatial-based correlation correlates events from multiple 
observation spaces or sensors at the same time to detect 
attack scenarios. Denote an attack scenario as s  and 
assume we have a set of m  attack scenarios 

{ }ms,,s,sS �21= . Denote an observation space as O  and 
assume we have a set of n  observation spaces 

{ }nO,,O,OO �21= . Each observation space could be an 
independent indicator of attack scenarios. Spatial-based 
event correlation is about how to correlate n  indicators to 
detect and distinguish these m  attack scenarios.     

A. Deterministic Correlation 
The codebook approach [4] is a simple event correlation 

approach in network management. The principle of this 
correlation approach is based on the causal relationship of 
events. We believe that this approach can also be applied in 
network intrusion detection. Figure 2 illustrates a causality 
graph with three attack scenarios and four observation 
spaces. The directed edges in the figure represent causality. 
For example, if the attack 1s  occurs, it causes abnormal 
observations in 1O  and 3O . Conversely, this attack doesn’t 
affect observations in 2O  and 4O . Based on these causal 
relationships, we can build a codebook correlation matrix 
as shown in Table 1, where one and zero represent 
“abnormal” and “normal” observations classified with 
specific thresholds. Therefore we can compare events from 
multiple observation spaces with the correlation matrix to 
detect and distinguish these attacks. Every attack scenario 
must have a distinguishable scenario signature in this 
correlation matrix. Expert knowledge is needed to build the 
scenario signature and correlation matrix. The size of the 
correlation matrix could be reduced but scenario signatures 
have to be a minimum Hamming distance apart in order to 
be distinguishable [4].   

 

 
Figure 2: A causality graph 

 

 S1 S2 S3 
O1 1 0 0 
O2 0 1 0 
O3 1 1 0 
O4 0 0 1 
Table 1: Correlation matrix 



Define the correlation matrix as { }ijosOS =  and ijos  is 
an element of this matrix for ni ≤≤1 and mj ≤≤1 . In the 
codebook approach, 1=ijos  or 0, i.e. the observations are 
put into two categories: “abnormal” or “normal”. This 
binary representation doesn’t give much information on the 
intensity of “abnormal” observations. Instead, ijos  could be 
a real value, such as the volume of ICMP unreachable 
messages or the number of a specific system calls. In this 
case, we believe that the correlation problem can be 
formulated as the following Integer Programming problem: 

HOSOmin
H

∗−                        

Subject to: ,ni ≤≤∀1 ∑
=

≤⋅
m

j
ijij ohos

1
; 

     0≥jh  and integer.                         (1) 

Here H is the hypothesis vector, ( )T
mh,,h,hH �21= . 

O  is the observation vector from m observation spaces, 
( )T

mo,,o,oO �21= . The above Integer Programming 
problem is about how to combine attack scenarios so that 
the real observations can be interpreted. For example, 

( )T,,,,,H 00110 �=  means that attack scenarios 2s  and 3s  
occurred at the same time. The codebook approach cannot 
detect such combination of attack scenarios. If we regard an 
observation space as a signal channel, the observed events 
usually include both signal from attacks and noise from 
network environment. Our integer programming approach 
could detect multiple instances of attack scenarios at the 
same time and work in the environment where the 
Signal/Noise ratio of observations is strong. Nonetheless, 
expert knowledge is needed to get ijos  values and these 
values have to be normalized across various attack 
scenarios. Integer programming algorithm has been well 
analyzed in many literatures.     

     B. Probabilistic Correlation 
As we mentioned above, deterministic correlation 

approaches don’t work well in a noisy environment. 
Network noise originates from normal network activities. 
For example, a major router failure could generate many 
ICMP unreachable messages; an alert of multiple login 
failures could result from a forgotten password. The 
question is how to detect attack scenarios based on biased 
observations? Denote the observation value of the 
observation space O  as io  and Voi ∈  ( ni ≤≤1 ), where 
V  is the whole set of possible io  value. Based on expert 
knowledge and statistics, assume that we know the prior 
probabilities: 

( ) ( )jiji sSoOPrsop ===                               (2) 

for mj ≤≤1 and ni ≤≤1 . That is, the distribution of 
observation values caused by an attack is known. 
According to Bayesian theorem, we can compute the 
posterior distribution: 

( ) ( ) ( )
( )i

jji
ij op

spsop
osp

⋅
=                                   (3)       

Now the question is how to correlate observations from 
multiple observation spaces. Assume that we have 
observations from O  and Q , we can have the joint 
posterior probability:  

( ) ( ) ( )
( )ki

jjki
kij q,op

spsq,op
q,osp

⋅
=                       (4) 

If observation space O  and Q are independent, that is, 
events in one observation space don’t cause events in 
another and vise versa, Equation (4) can be written as: 

 ( )kij q,osp  = 
( ) ( )

( )j

kjij

sp
qsposp ⋅

                    (5) 

In fact, if we only want to identify the most likely attack 
that causes the current observations, we can use the right 
side of Equation (6) to compare the likelihood of different 
attack scenarios: 

( ) ( ) ( )
)s(p)s|q,o(p

spsq,op

)q,o|s(p
q,osp

llki

jjki

kil

kij

⋅

⋅
= .             (6) 

However, in most case, probabilities like )s(p j  and 

)s(p l  are unknown and we have to assume that they have 
the same distribution. Under this assumption, the ratio of 
the prior probabilities in Equation (6) can be evaluated 
against a selected threshold to determine the attack 
scenario. Based on this threshold, Neyman-Pearson 
detection theory [5] can be used to conclude the related 
false alarm rate and misdetection rate. Straightforwardly, if 
we increase the number of observation spaces, we can make 
the attack scenarios more distinguishable.  

Multi-level causal relationships of events can be 
expressed with Bayesian network [6]. A Bayesian network 
is a directed acyclic graph in which nodes are random 
variables and the edges indicate that the source exerts direct 
causal influence on the destination. In a Bayesian network, 
a joint probability is factored into a set of conditional 
probabilities, which can be computed sequentially along the 
causality path in the network. Abouzakhar et.al.[7] have 
used a model of Bayesian networks to detect Distributed 
Denial of Service (DDOS) attacks, for example. Another 
approach for spatial correlation is to use Dempster-Shafer 
theory, which can combine the beliefs from multiple 
observation spaces.     

Probabilistic correlation can work well in noisy 
environments. However, it is difficult to get the prior 
probabilities and conditional probabilities so that this 
approach is not as feasible as deterministic correlation 
methods in reality.  

IV. TEMPORAL-BASED CORRELATION 
In this section, we discuss how distributed events can be 

correlated over observation time to detect attack scenarios. 
Many attacks involve multiple steps and the evidence of 



attacks is often scattered over events in time. A computer 
network itself is a dynamic system and network events are 
observable of its dynamic activity. The temporal signature 
of an attack or a normal network behavior could be 
described as a dynamic process, deterministic or stochastic. 
A process model describes the state transitions of an object, 
which evolves with time according to specific known laws. 
For example, a process model can be described with a state 
transition equation, a Markov model, a finite state machine 
and so on. “State” is an important concept in temporal-
based correlation. 

Temporal-based correlation strives to correlate observed 
events in time to detect attacks and it can be formalized as a 
target-tracking problem. Target tracking algorithms from 
radar and sonar signal processing can be applied to 
temporal-based event correlation. If the dynamic process of 
an attack is known, temporal-based correlation could detect 
this attack by tracking whether the events follow the 
process of the attack. Otherwise, if the process of normal 
network behavior is known, temporal-based correlation 
could detect unknown attacks by tracking whether the 
events follow the process of the normal network behavior. 
This second approach is named “anomaly detection” in the 
network security literature.     

A. Deterministic Correlation 
Much previous work uses a finite state machine to 

describe the deterministic process of an attack or a software 
behavior. Events are evaluated against the sequence of state 
transitions to detect attacks. Ilgun, Kemmerer and Porras 
[8] used state transition diagrams to identify precisely the 
stages of a penetration and present only the critical events 
that must occur for the successful completion of the 
penetration. Kumar and Spafford [9] used Colored Petri-
Nets to describe the temporal signatures of attacks. All 
these approaches modeled temporal signatures or 
penetration processes of attacks.   

Conversely, much “anomaly detection” works have 
modeled the process of normal software behavior or 
network behavior to detect unknown attacks. Hofmeyr, 
Forrest and Somayaji [10] used a short sequences of system 
calls executed by running programs as a temporal signature 
to detect abnormal software behavior.  Ko [11] used audit 
logs to capture the behavior of a program, and used that 
specification as an oracle against which the behavior is 
checked. It is known that eighty percent of a program’s 
execution usually occurs in only 20 percent of its code. The 
hot paths in a program usually represent the major behavior 
of that program. 

The first approach needs expert knowledge of attacks to 
build the temporal signature. The second approach could 
build the temporal signature of software behavior 
automatically based on a training process. However, the 
“anomaly detection” approach cannot detect the type of 
attacks.  

B. Probabilistic Correlation  

In deterministic correlation, the states of a dynamic 
process are observed and tracked without noise. In a noisy 
environment, observations are often tainted by network 
noise. Denote the state of a dynamic process as X  and the 
observation as O . Denote the state X  up to time t  as 

tt: x,,x,xx �211 =  and the related observation O  as 

tt: o,,o,oo �211 = . Since several states in a dynamic 
process could lead to a same observation and there is noise, 
the state itself is unobservable and we can only estimate the 
state based on observations. At time t , one task of 
temporal-based correlation is to correlate the observations 
up to time t  to estimate the current state tx , i.e. 

( )t:t o|xPr 1 . We can compute this posterior probability 
recursively with the Bayesian filter [12],   

1111111 −−−−− ∫= tt:tttt:t dx)o|x(p)x|x(p)o|x(p , 

∫ −− = tt:tttt:t dx)o|x(p)x|o(p)o|o(p 1111 , 

)o|o(p
)o|x(p)x|o(p

)o|x(p
t:t

t:ttt
t:t

11

11
1

−

−= ,                         (7) 

if the following assumptions about the process hold:  1. the 
state transition of the process model has the Markovian 
property, i.e., the current state tS  is only dependent on 
previous state 1−tS  but not any earlier states; 2. The 
observation tO  is only dependent on the current state tS  
but not any earlier states and observations.  

Linear Kalman Filter [13] models and Hidden Markov 
Models (HMM) [14] are two powerful models that satisfy 
these two assumptions. Efficient correlation algorithms 
such as Kalman Filter and Viterbi algorithm [14] can be 
derived from Equation (7) for these specific models. The 
linear model used in the Kalman Filter can be described by 
the following equations: 

wxDx tt +⋅=+1                                                (8) 
 vxHo tt +⋅=                                                   (9)  

where w and v are Gaussian noise, D  and H are constant 
matrices. Kalman filter uses observed t:o1  to estimate the 
underlying unknown tx . In discrete case, hidden Markov 
model uses a state transition matrix and an emission matrix 
to replace Equation (8) and (9), respectively.   

Denote an attack scenario as s  and assume we have a set 
of m  attack process models { }ms,,s,sS �21= . The 
detection problem here is to determine which attack is 
generating these observations tt: o,,o,oo �211 = .  Based on 
our early analysis on the Equation (6), we can compare the 
likelihood ( )jt: s|op 1  of various attack scenarios and 
identify the attack with the following inequalities:  

A
)s|o(p
)s|o(p

rB
kt:

jt:t <=<
1

1 ,                                                 (10) 

where A  and B  are two thresholds. If the ratio tr  is 
bigger than A , we conclude that the attack is js . 

Conversely, if tr  is smaller than B , we conclude that the 



attack is ks . If  tr  is smaller than A  but bigger than B , 
we continue to receive new observations until the ratio 
passes across the threshold A  or B . Though the 
probability ( )jt: s|op 1  can be recursively computed and 
derived from Equation (7), in most case, we don’t know its 
analytical form of probability distribution (For example, 
how to compute ( )jt: s|op 1  was referred as “Problem 1” of 
HMM in [14]).  Therefore we cannot use Neyman-Pearson 
detection theory to conclude the related false alarm rate and 
misdetection rate. Denote the false alarm rate as 

)Ar(p t
ss k

>= =α , i.e. the attack is ks  but the ratio tr  is 
bigger than A . Similarly denote the misdetection rate as 

)Br(p t
ss j

<= =β . Based on the result of sequential 

analysis [15], we can have the following inequalities: 
αβ A≥−1 and B)( αβ −≤ 1 .  

Both the Kalman Filter linear model and HMM have 
been applied to model the dynamic process of attacks or 
normal software behaviors. Based on epidemic models and 
observations data of a fast-spreading worm, Zou et.al.[16] 
use a linear model to describe the dynamic process of worm 
propagation and deploy a Kalman Filter to predict worm 
propagation in real-time. Warrender and Forrest [17] use 
training data to learn a HMM to represent normal software 
behavior. However, usually it’s difficult to get accurate 
parameters for these models and we are developing 
nonparametric weak models and algorithms for temporal-
based event correlation [18].   

V. JOINT TEMPORAL and SPATIAL CORRELATION 
As mentioned in Section II, evidence of attacks against a 

network are scattered over events across observation space 
and time. As illustrated in Figure 3, it is important to 
integrate spatial and temporal event correlation together for 
intrusion detection. Assume that an attack process can be 
observed in three observation spaces. Each observation 
space can correlate its events along the time with a process 
model. At each time t , the events from these three 
observation spaces should be correlated spatially. There are 
several approaches to integrate the temporal and spatial 
correlation methods. 
 

 
Figure 3: Temporal and spatial correlation 

A.  Deterministic Correlation  

As shown in Figure 3, multiple observation spaces can 
correlate their temporal events along the time 
independently. The result of each temporal correlation 
could indicate “normal” or “abnormal” behavior of that 
specific observation space. With the results from multiple 
observation spaces, a codebook or Integer Programming 
approach can be used to correlate these results from 
temporal correlation spatially as described in Section III. 

Several states in a dynamic process could lead to a same 
observation. Therefore the hidden state underlying an 
observation is unobservable. For example, HMM has an 
emission matrix. In temporal-based correlation, a sequence 
of observations could originate from many hypotheses of 
the hidden state sequences. With multiple observation 
spaces, at each time t , we can use a codebook approach to 
distinguish hidden states instead of attack scenarios. 
Theoretically as long as we add enough observation spaces 
with distinguishable features in the correlation matrix as 
shown in Table 1, we can make each state observable. In 
this case, a temporal correlation process can directly map a 
sequence of observations to a sequence of states. However, 
in most case, we don’t need to distinguish each state for 
every observation since we can conclude the sequence of 
hidden states based on the state transition property of the 
process model [18]. Currently we are developing theory to 
address how to configure observation spaces to make 
hypothesis size manageable (not exponential).        

B. Probabilistic Correlation 
Denote the state of a dynamic attack process as X . 

Denote the state X  up to time t  as tx,,x,x �21 . Assume 
that we have two observation spaces O  and Q  to detect 
this attack process. Denote the observations of O  up to 
time t  as ( )tt: o,,o,oo �211 =  and the observations of Q  
up to time t  as ( )tt: q,,q,qq �211 = . At each time t , 
spatial and temporal events can be correlated together if we 
have the posterior probability ( )t:t:t q,osp 11 . However, 
according to Equation (4) and (7), usually it’s very difficult 
to compute the joint probabilities. But if the two 
observation spaces are independent, we can compute 

( )t:t:t q,osp 11  with the following three steps: 
Step 1: At each time t , for each observation space, 

according to Equation (7), we correlate temporal events and 
compute ( )t:t osp 1  and ( )t:t qsp 1 , respectively.   

Step 2: According to Equation (5), we correlate spatial 
events and compute ( )t:t:t q,osp 11  with ( )t:t osp 1  and 

( )t:t qsp 1  from Step 1. ( )tsp  can be recursively computed.  

Step 3: ( )t:t:t q,osp 11  replaces ( )t:t osp 1  and ( )t:t qsp 1 . 
1+= tt   and go to Step 1.   

Theoretically even if the observation spaces O  and Q  
are dependent, we can add another dimension to the 
measurement equation in (9) and correlate events by one 
temporal correlation process, i.e.   



 
Figure 4: The architecture of PQS 
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In discrete case, as we discussed in subsection A, multiple 
observation spaces could help to distinguish hidden states 
and lead to a sparser emission matrix in HMM. For 
detection problem, we can use the same approach as we 
discussed in inequality (10).  

With more evidence exploited from distributed events, 
we would expect that a joint signature with temporal and 
spatial patterns should lead to a better detection accuracy 
and a lower false-alarm rate. The challenge of this approach 
is that we need enough knowledge to build the joint 
signature. Currently we are developing ten types of sensors 
and twelve attack scenarios to verify the proposed concept 
here. These sensors include Internet-based, local network-
based and host-based sensors. 

VI. PROCESS QUERY SYSTEM 
A Process Query System (PQS) has been implemented 

using these correlation methods to scan and correlate 
distributed events. The PQS system allows users to          
fine process signatures at a high level of abstraction and 
submit the signatures as queries to the correlation system. 
The system scans and correlates distributed events 
according to the signatures in real time. Our current PQS 
only supports temporal-based correlation.  

As shown in Figure 4, the PQS consists of three major 
components: User Interface, TRAFEN correlation engine 
and Message Oriented Middleware (MOM). Network 
events are published into a MOM with specific topics such 
as “Network Latency”. With a front-end user interface, 
users can define a process signature with high-level 
abstraction such as a HMM. The process signature and the 
topics of event subscription are submitted to the back-end 
TRAFEN correlation engine. TRAFEN engine parses the 
query and subscribes events from MOM with user-specified 
topics. Then MHT algorithms are invoked with user-
defined process models to scan and correlate incoming 
events. During event correlation, MHT algorithms 
recursively calculate the probability of how likely the new 
event is associated with existing hypotheses. The new event 
is added into the hypothesis with the maximum likelihood 
and the set of hypotheses are updated. The submitted 
process model is used to compute the conditional 
probability of how likely a new event is associated with the 
existing hypotheses.    

Based on ICMP unreachable messages collected from 
several routers, our PQS has been successfully used for 

Internet worm detection [19]. However, the current PQS 
implementation only supports temporal-based event 
correlation. In future work, the temporal and spatial event 
correlation technology analyzed in this paper will be 
implemented in the next version of PQS.       
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