

User Profiling for Computer Security
David L. Pepyne, Member, IEEE, Jinghua Hu, and Weibo Gong, Fellow, IEEE

Abstract—Systems and control theory was largely

responsible for realizing the Industrial Revolution. We
believe that systems and control theory will also play a key
role in the Information Revolution underway. In particular,
systems and control theory should have much to offer network
security. This paper explores the use of queueing theory and
logistic regression modeling methods for profiling computer
users based on simple temporal aspects of their behavior. The
goal is to develop profiles for very specialized groups of users,
who because of the nature of their work would be expected to
use their computers in a very similar and regular way, e.g.,
bank tellers, insurance adjusters, etc. Encouraging proof-of-
concept results suggest the potential of both the idea of user
profiling and the use of simple temporal features for grouping
users.

I. INTRODUCTION

THERE is no question that the systems sciences has
resulted in very successful technologies for controlling

all manner of electromechanical systems and played a
major role in realizing the Industrial Revolution. We
believe that the systems sciences will also have much to
offer for controlling the information technologies that drive
the current Information Age.

In recent years there have been many special sessions at
the major systems conferences (e.g., CDC, ACC, IFAC)
describing applications of systems and control theory to the
performance optimization of information (computer)
networks. In this paper we explore the application of
systems and control theory to network security, a much
more difficult problem than performance optimization.

In computer networks, malicious software programs can
spread over the network to “infect” the vulnerable

computers attached to it. Nearly every day we hear about,
or become victim to, a new Internet worm or email virus.
In fact, even as this paper is being written the SoBigF and
Blaster worms continue to wreak havoc on the Internet. In
addition to malicious software, we also know that there are
malicious people attempting to “hack” into private
computers and private computer networks. It’s unclear
how many of these attacks succeed because most
organizations (particularly commercial ones) don’t publicly
report successful penetration for fear of alarming customers
[2].

This work was supported by grants from the U.S. Army Research

Office (contract DAAD19-01-1-0610), the U.S. Air Force Office of
Scientific Research (contract F49620-01-1-0288), and the U.S. Justice
Department, Office of Justice Programs (contract 2000-DT-CX-K001).
All views expressed belong to the authors and do not necessarily represent
the official views of the U.S. Army, U.S. Air Force, or the U.S. Justice
Department.

David L. Pepyne is with the Division of Engineering and Applied
Science, Harvard University, Cambridge, MA 02138 USA (phone: 617-
495-8911; e-mail: pepyne@ hrl.harvard.edu).

Jinghua Hu is with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA 01003 (e-mail:
jhu@ecs.umass.edu).

Weibo Gong is with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA 01003 (e-mail:
gong@ecs.umass.edu).

In other work, we have explored the use of feedback
control theory for controlling the spread of Internet worms
[19], [20], [11]. This would reduce the number of
computers that become infected by malicious software.
However, a comprehensive defense-in-depth security
system still needs some way to detect and mitigate the
effects of malicious software and malicious hackers that are
able to penetrate a networked computer. Moreover, in
addition to attacks from the “outside”, there is the even
more serious problem of “insider” attack, where malicious
or corrupt people who have legitimate inside access to a
computer cause damage or steal important data. It is
estimated by many computer security professionals that
insider attack is a much more serious threat than outsider
penetration. Insider attack is especially problematic in
industries such as banking, insurance, and credit cards,
where identity theft is reaching epidemic proportions (an
estimated 33 million people have been affected so far [17]).
Again, fearing customer alarm, only a small fraction of
these incidents ever become public.

Detecting penetration from the outside is the goal of
intrusion detection systems (IDS) and detecting malicious
software and malicious people working on the inside is the
goal of misuse detection systems (MDS). Broadly
speaking, IDS/MDS are divided into signature-based
approaches that model the behavior associated with specific
known attacks and then look specifically for matches to the
attack models. The alternative is to model a user’s normal
behavior and look for anomalous departures from the
model. Most IDS/MDS strive to be general purpose, able
to detect attacks and anomalies in any population of
computer users and software applications. This is clearly a
very hard problem and there are some that argue that in
trying to live up to this grand challenge IDS/MDS research

is losing practical relevance [3].
Rather than propose a general purpose IDS/MDS, we

think that much more success can be achieved by focusing
on detecting anomalies in specific classes of computer
users who have very well defined roles. Motivated by the
growing problem of identity theft, we propose in particular
to focus on detecting anomalous behavior by users such as
bank tellers, insurance claims adjusters, and credit card
transaction processors. These are the employees who are
the lowest paid and thus have the most to gain from
stealing other people’s financial identities. On the other
hand, because of the nature of these jobs, the computer
activities of the people assigned to them should be expected
to have a high degree of statistical similarity, i.e., because
all bank tellers are doing the same tasks (handling clients at
the window), they should all behave in essentially the same
way. For detecting anomalous behavior from bank tellers
and other employees involved in such assembly line
transaction processing, this paper explores two new
concepts for IDS/MDS: the concept of user profiling and
the concept of queueing system busy period structure for
selecting the features used for building models of user
profiles. For the actual model building process, we use the
statistical analysis tool logistic regression [18].

A profile is a crude model portraying only the significant
features common to a specific group of users. With
profiling, users (or intruders masquerading as them) would
be monitored, not by comparing their behavior against
models of known attacks or a model of their own past
behavior, but rather by comparing their behavior to their
group profile, any deviation from which would be cause for
closer scrutiny.

The idea of using queueing system busy period structure
for feature selection comes from the idea that users such as
bank tellers can be viewed as parallel servers in a queueing
system. Customers arrive and choose a teller who services
their transaction. Since customer transactions are
statistically very similar and if we assume the tellers are
roughly equally utilized, then we could also expect that the
sample paths (the pattern of busy periods and idle periods)
generated by the various tellers should be statistically
similar as well. Our idea then is to profile users such as
bank tellers using models constructed from features related
to the duration of the idle and busy periods and rough
measures of activity levels during busy periods.

A key difficulty in computer security research can be
getting suitable data [2]. However, unable to convince a
bank to let us monitor their tellers and customers, and
unable to use the standard data sets commonly used for
IDS/MDS studies because they lack the time-stamp data
that we need, we performed a preliminary proof-of-concept
study using data collected from a number of graduate
students and their professor. Of course the behaviors of

such a population would be expected to differ greatly from
that of users such as bank tellers. Even so, because they
shared common projects, took classes together, and worked
similar projects in the same laboratory, there were some
natural groups that our method was able to identify. We
were also able to detect structural breaks (statistically
significant changes in behavior) that occurred for example
during the Winter intersession when the students were not
taking classes. Overall our results corresponded well with
what we expected to find based on visual analysis of the
raw data and our knowledge of our user population. In
future work we plan to conduct similar experiments using
actual bank data to assess the efficacy of the idea in the
real-world setting.

The remainder of the paper is organized as follows. The
next section motivates the use of profiling and queueing
theory for detecting intrusion and insider misbehavior and
gives a summary of related work where temporal behaviors
were used in the IDS-MDS setting. Section III defines the
temporal features that we used and describes our data
collection method. Section III also contains plots of some
raw data that we will use to visually confirm the results we
obtain. Section IV describes the logistic regression method
that we use for building models of user profiles.
Experimental results are summarized in Section V. The
paper ends in Section VI with a discussion and conclusions.

II. MOTIVATION AND RELATED WORK

A. Motivation
Politically correct or not, profiling can be very effective

for detecting anomalous behavior worthy of deeper
examination. For example, groups of employees doing the
same job should have very similar behaviors. In particular,
bank tellers and data entry clerks processing insurance
claims and doing credit checks, should have very similar
behaviors simply because the transactions they work on are
generally very similar. As a result, one might expect, for
example, a bank teller profile to emerge. The activities on
computer accounts belonging to tellers could then be
compared to this profile of the “stereotypical” teller for
anomalous behavior that might suggest misuse by an
insider or intrusion by an outsider.

Roles like bank tellers are customer service roles. That
is, tellers that behave like servers in a queueing system. A
queueing system can be characterized by its sample path,
which describes when the server is idle, when it is busy,
and the activity level during busy periods. Viewed as
servers in a queueing system, one can conjecture that tellers
should generate sample paths that are statistically similar,
i.e., there should be some “prototypical” sample path
against which tellers can be statistically compared. This
thinking is the motivation behind building models of user

behavior from temporal (time-related) features related to
when someone uses their computer, for how long in one
session, and roughly how active they are during a session.
We also remark that in an actual bank setting, teller
activities could also be correlated with activities in the bank
lobby, such as the arrival of a customer at the teller’s
window. The view of a teller as a server in a queueing
system makes it clear that these two events should have
strong positive correlation.

B. Related Work
Although most IDS/MDS attempt to classify users and/or

application programs by parsing the operating system
commands that they generate, there is also a relatively large
literature on the use of temporal features in IDS/MDS. In
his comprehensive study of intrusion detection methods,
Denning [4] describes methods that use interval timers and
event counters to build time-series models. NIDES [1],
developed by SRI, uses both rule-based and statistical
methods for intrusion detection. The statistical models
constructed are used to compare short-term behavior with
long-term historical norms. Senelyzov [14], [16], [15]
proposed a temporal event algebra and a temporal
probabilistic network to handle the temporal regularities in
audit data. Lee [9] used data mining techniques to develop
an anomaly detection method that learns association rules
incorporating both command names and command timing.
Li, et al. [10] describe a method that learns temporal
association rules for different levels of time granularity, an
idea that provides more flexible and precise descriptions
than fixed time partitions. An approach for building
temporal signatures for software programs from the mean
and variance of command interarrival times is developed in
[7]. Other work includes [8], where time signatures were
used for database security.

The main difference between the work in this paper and
the work cited above is that the other work tends to focus
only on the temporal behavior during busy periods (the
intra-session behavior), whereas our work also considers
the temporal behavior between busy periods (the inter-
session behavior). In other words, we focus on the entire
busy period structure of the sample paths generated by the
users, while the other work focuses only on the busy
periods, largely ignoring the idle periods. Thus, our
profiler would immediately flag an anomaly if a teller
account is active late at night since the profile would
indicate that the account should be idle when the bank is
closed. Unless specifically set up to do so, the other
methods described above may not flag after hours activity
as unusual.

III. EXPERIMENTAL SETUP

A. Temporal Feature Selection
As described, our goal in this paper is to develop models

for the typical behavior of groups of users, such as bank
tellers, whose role makes them effectively servers in a
queuing system. The behavior of servers in queueing
systems is characterized by the sample paths they generate,
i.e., by the busy period structure describing when the
server is idle, when it is busy, and how active it is when
busy. With this in mind, we begin with the following
definition of a session (busy period),

Definition 3.1: A session begins with the onset of user
activity and ends when the user logs out or after 1800
seconds (3 minutes) of inactivity.

For each session we generate a single 6-dimensional
vector consisting of the following temporal features,

X={interval, length, output, density, timing.day, timing.hour} (1)

where,
interval = the time elapsed since the end of the previous
session;
length = the duration of the current session;
output = the number of operating system commands
generated during the session;
density = the mean command rate (in commands/minute)
during the session;
timing.day = an integer indicating the day of the week
when the session began;
timing.hour = an integer indicating the hour of the day
when the session began.
In other words, interval captures the length of idle

periods, length the length of busy periods, density the
activity level during busy periods, and timing relates busy
periods to the daily cycles of human and business activity.

B. Data Set
A major challenge in computer security is getting good

data [2]. In particular, we found it very difficult to
convince a bank to let us collect data from their network.
We were also not able to use any of the standard data sets
commonly used for IDS-MDS studies (e.g., the AT&T data
set [13] and University of Calgary data set [6]), because
they lack the time-stamp information that we needed.

Lacking suitable data, we collected our own data set for
these proof-of-concept studies. Our data came from the
Linux command histories (csh/tcsh shell command
histories) from a number of Univ. of Massachusetts
(Amherst) graduate students and their professor. This data
was collected over a period of 15 weeks during the 2001-
2002 school year. This 15 week period covered part of the
2001 Fall semester, the Winter intersession, and part of the
2002 Spring semester. We observed that the student’s
computer use behaviors during the Fall and Spring
semesters, when they were taking classes, were very
similar. And as expected, their behaviors during the
Winter intersession, when they were not taking classes, was

much different. One of our goals was to understand how
this structural break would impact the model building
process.

C. Visual Data Analysis
Figs. 1(a) and (b) show some of the raw data collected

for this study. The plots in Fig. 1(a) show the session data
for 8 different users for the month of Feb. 2002 (Spring
semester). In the plots, the horizontal axis is the time of
day (24 hour clock), and the vertical axis the day of the
month. The dark rectangles show when the users were
active (busy periods). The plots in Fig. 1(b) show
histograms of the session densities of the mean command
rate in commands per hour (activity level during busy
periods). We will refer back to these plots to visually
confirm the results obtained later in the paper.

(a)

(b)
Fig. 1. Raw user data for visual analysis of experimental results.

IV. MODEL BUILDING

A. Logistic Regression
Logistic regression is a powerful statistics tool for

determining how multiple factors affect a discrete output
[18]. In the context of user profiling, the factors are the
components of the feature vector of observed user behavior
in Eq. (1) and the output is the profile group that most
likely generated the feature vector, e.g., either the feature

vector came from profile i or it came from profile j. While
logistic regression can be extended to analyze multiple
choice data (see [18]), let us explain its use here in terms of
binary classification. Specifically, let us use logistic
regression to build models Mij, where i,j ∈ {A, B,…,H}
with A, B,…,H the labels assigned to the 8 users in Fig. 1.
For a given feature vector X the output of model Mij
corresponds to one of two hypothesis,

H0 = feature vector X came from user i (null hypothesis),
H1 = feature vector X came from user j (alternative
hypothesis).

A binary logistic regression model has the form,

log[p/(1−p)] = c0 + CX = c0 + c1x1 + c2x2 + … + c6x6 (2)

where the input X is the 6-dimensional feature vector from
Eq. (1), c0 and C are the model coefficients, and the output
p is the probability that H0 is true (i.e., p = Pr[H0 = true]).
Decisions are made by comparing the output against a
threshold parameter 0 < θ < 1 according to the rule,

If p > θ, accept H0; otherwise, accept H1. (3)

The model coefficients c0, C are obtained using
Maximum Likelihood Estimation (MLE).

Remark: With a little back of the envelope calculation,
we can rewrite Eq. (2) as,

p = 1/(1−e-y), y = c0 + CX = c0 + c1x1 + c2x2 + … + c6x6 (4)

Fig. 2 shows this equation in “block diagram” form. The
astute reader will immediately recognize that the logistic
model has precisely the same form as a “neuron” in an
artificial neural network (ANN) [5]. In fact, instead of
logistic regression, we could use a feedforward ANN in
conjunction with some standard ANN training rule (e.g.,
error back-propagation). In doing so, however, we would
lose the advantages of logistic regression. In particular,
logistic regression is statistically rigorous, the results
quantifiable, and the coefficients statistically meaningful
(for details, see [18] and the references therein). For the
ANN, in contrast, it is often very difficult to interpret the
meaning of the network’s coefficients.

B. Training, Testing, and Validation
Recalling Section III, our data set was collected over a

15 week period. The feature vectors collected during the
first 5 weeks were used for training, and the feature vectors
from the remaining 10 weeks were used for testing and
cross validation. The model coefficients were computed
using the logistic regression calculation webpage at [12].
The models were validated using the Chi-Square statistic
and various other tests of model accuracy. Lacking space,
we will not present the testing and validation results here.

Σ

c0

c1

c2

c6

1/(1 + e-y)

1

x0

x1

x6

y p

logistic
X

Σ

c0

c1

c2

c6

1/(1 + e-y)

1

x0

x1

x6

y p

logistic
X

Fig. 2. Block diagram of a logistic regression classifier.

V. PERFORMANCE EVALUATION

A. The Receiver Operating Characteristic
As explained in Section IV, our models Mij classify a

feature vector X (Eq. 1) as belonging to profile i if the
model output p > θ, and as belonging to profile j otherwise.
Such a binary classifier is evaluated by its Type I and Type
II error probabilities, defined in Fig. 3.

Type I error
(false alarm)

Type II error
(miss)

correct

correct

Accept H1

Accept H0

H0 is true H1 is truetruth
decision

Type I error
(false alarm)

Type II error
(miss)

correct

correct

Accept H1

Accept H0

H0 is true H1 is truetruth
decision

Fig. 3. Type I and Type II error probabilities.
In general, the Type I and Type II error probabilities

depend on the value of the threshold parameter θ. In
particular, if we set θ = 0, then the model accepts H0 as true
for any input X, in which case the miss probability is
100%. Alternatively, if we set θ = 1, then the model
always accepts H1 as true, in which case the false alarm
probability is 100%. Varying θ between 0 and 1 traces out
the so-called receiver operating characteristic (ROC), see
Fig. 4. In the figure Pf(θ) is the false alarm probability and
Pm(θ) is the miss probability.

Pf(θ)= false alarm probability

P m
(θ

) =
 m

is
s p

ro
ba

bi
lit

y

0,0 1

1

Pf(θ)= false alarm probability

P m
(θ

) =
 m

is
s p

ro
ba

bi
lit

y

0,0 1

1

Fig. 4. Hypothetical receiver operating characteristic (ROC).

A classifier with a diagonal ROC gives the same
performance as simple random guess; a classifier with an
ROC lying entirely above the diagonal performs worse than
random guess; and a classifier with an ROC that lies
entirely below the diagonal performs better than random
guess. The closer to the origin the ROC is, the better the
guess.

In the context of user profiling, Mij for two users
belonging to the same profile group should have a near
diagonal ROC, i.e., the users are indistinguishable. Users
belonging to different profile groups should have an “off-
diagonal” ROC, i.e., they should be easy to distinguish.
Similarly, models of intruders and misbehaving insiders
should deviate from their “normal” group profile model.

B. Summary of Main Results
Figs. 5(a)-(b) show the experimentally obtained ROC

curves for selected pairs of users. Fig. 5(a), which
compares user B with the 7 other users in Fig. 1, shows that
the temporal behavior profile of user B is most similar to
that of user C (as suggested by a near diagonal ROC), and
most different from that of user H (as suggested by an ROC
that is much closer to the origin). Visual examination of
Fig. 1 bears this out.

Fig. 5(b), which compares user D with the 7 other users
in Fig. 1, shows that user D’s profile is not similar to any of
the other 7 users, i.e., D’s profile can be relatively reliably
identified. A visual inspection of Fig. 1 reveals that this is
likely because user D typically starts his work day much
earlier than everyone else.

These and our other results provide good evidence that
the simple temporal features from Eq. (1) can be useful for
building profiles for users like bank tellers whose computer
use can be expected to be much more regular than that of
graduate engineering students and engineering professors.

(a)

(b)
Fig. 5. ROC curves for selected pairs of users.

C. Additional Results
To determine if our approach could detect a change in a

user’s profile we did a study looking for structural breaks.
Structural breaks occur when a user’s behavior changes in
some statistically significant way. As we had expected, we
observed a major structural break in the behavior of our
user population of during the Winter intersession. The
significance of our ability to detect this structural break is

an indicator that the temporal features in Eq. (1) may be
able to detect the behavioral changes that accompany
misuse or intrusion, e.g., a bank teller’s account suddenly
shows activity at night, on weekends, or at activity levels
much different than usual.

VI. DISCUSSION AND CONCLUSIONS
We believe that the concepts, tools, and techniques

developed by the systems and control community has much
to offer for computer security. In this paper we
demonstrated a proof-of-concept idea on the use of
profiling, queueing theory, and logistic regression
modeling for intrusion and misuse detection in a very
specific target class of computer users, e.g., bank tellers,
and insurance and credit processing agents. However,
similar temporal regularities also likely exist in government
offices like the social security office, IRS, and so forth.
Our results, albeit preliminary, were encouraging,
suggesting that monitoring even very crude behavioral
features might be effective in detecting intrusions and
misuse in these specific classes of computer users.

Our key innovation is simplicity. Instead of digging
deep into the OS commands users generate, we instead
simply look at the busy period structure of the sample path
they generate, i.e., when they are busy, how long they are
busy, and roughly how active they are while busy. This
leads to a very fast and simple implementation, requiring
only simple time-stamping and counting. Being so simple
and fast, another potential application, outside of user
profiling, is for making a quick first pass over audit data,
either throughout the day, or to aid forensic investigation
after an attack by locating traces for further more detailed
examination. We are also the first (as far as we know) to
demonstrate the usefulness of the powerful statistical
logistic regression technique in the IDS-MDS setting.
Logistic regression is very similar to ANNs, which are
sometimes used for IDS-MDS, but is statistically more
rigorous and amenable to detailed statistical analysis of
model quality and sensitivity to various features.

The approach presented has certain limitations. First, it
only explores a very limited portion of the space of
possible behavior features. Thus, it is not designed to be
used standalone to detect computer abuse, but as another
“sensor” in an integrated, comprehensive defense-in-depth
security system. For example, the behavior of a bank teller
can be correlated with customer arrivals to the bank’s
lobby. Another limitation is that the approach does not
provide real-time detection, since it only makes its
decisions when a session ends—although by simple
modification one can imagine a system that dynamically
comes to a decision as features reveal themselves, e.g.,
while the length of the session is not known until it ends,
the starting time, day, and interval since the last session are

known immediately at the session start.
The main open question to be addressed is to evaluate

the usefulness of the approach in building profiles for
groups of users who because of the nature of their work are
expected to have similar behaviors. To do these
experiments we are seeking user data from industries such
as banking and insurance and from government offices.

REFERENCES
[1] D. Anderson, T.G. Lunt, H. Javitz, A. Tamaru, and A. Valdes,

“Detecting Unusual Program Behavior using the Statistical
Components of the Next-Generation Intrusion Detection Expert
System (NIDES),” Computer Science Laboratory, SRI-CSL-95-06,
May 1995.

[2] R. Clandos, “Eye on Cybercrime,” IEEE Security & Privacy
Magazine, Vol. 1, No. 4, July/August 2003.

[3] G. Cybenko, “Boiling Frogs,” IEEE Security & Privacy Magazine,
Vol. 1, No. 4, pg. 5, July/August 2003.

[4] D. Denning, “An Intrusion Detection Model,” IEEE Trans. on
Software Engineering, Vol. 13, No. 2, pp. 222-232, 1987.

[5] L. Fausett, Fundamentals of Neural Networks: Prentice Hall, 1994.
[6] S. Greenberg, “Using UNIX: Collected Traces of 168 Users,”

Research Report 88-333-45, Dept. of Computer Science, University
of Calgary, Calgary, Canada, 1988.

[7] A. Jones and S. Li, “Temporal Signatures for Intrusion Detection,”
17th Annual Computer Security Applications Conference
(ACSAC’01), New Orleans, LA, December 2001.

[8] V.C.S. Lee, J.A. Stankovic, and S.H. Son, “Intrusion Detection in
Real-Time Database Systems via Time Signatures,” Proc. of the 6th
IEEE Real-Time Technology and Applications Symposium
(RTAS’01), 2001.

[9] W. Lee and S.J. Stolfo, “A Framework for Constructing Features and
Models for Intrusion Detection Systems,” ACM Trans. on
Information and System Security, Vol. 3, No. 4, 2000.

[10] Y. Li, N. Wu, X. Wang, and S. Jajodia, “Enhancing Profiles for
Anomaly Detection using Time Regularities,” Proc. of the 1st ACM
Workshop on Intrusion Detection Systems, Athens, Greece, 2000.

[11] D. Pepyne, W. Gong, and Y. Ho, “Modeling and Simulation for
Network Vulnerability Assessment,” presented at the 40th U.S. Army
Ops. Research Symposium (AORS), Fort Lee, VA, October 9-11,
2001.

[12] J.C. Pezzullo, Logistic Regression Calculating Page,
http://members.aol.com/johnp71/logistic.html.

[13] M. Schonlau, “Masquerading User Data,”
http://www.schonlau.net/intrusion.html, 1998.

[14] A. Seleznyov, O. Mazhelis, and S. Puuronen, “Learning Temporal
Regularities of User Behavior for Anomaly Detection,” International
Workshop MMM-ACNS, St. Petersburg, Russia, 2001.

[15] A. Seleznyov and S. Puuronen, “Anomaly Intrusion Detection
Systems: Handling Temporal Relations between Events,” Recent
Advances in Intrusion Detection (RAID’99), 1999.

[16] A. Seleznyov, T. Terziyam, and S. Puuronen, “Temporal
Probabilistic Network Approach for Anomaly Intrusion Detection,”
1st Conf. on Comp. Security Incident Handling and Response, 2000.

[17] “Stop Thieves from Stealing You,” Consumer Reports, pp. 12-17,
October 2003.

[18] J. Whitehead, “An Introduction to Logistic Regression,”
http://personal.ecu.edu/whiteheadj/data/logit/.

[19] C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and Early
Warning for Internet Worms,” University of Massachusetts, Elec.
and Comp. Eng. Tech. Rpt TR-CSE-03-01, 2003.

[20] C. Zou, W. Gong, and D. Towsley, “Code Red Worm Propagation
Modeling and Analysis,” Proceedings of CCS’02, Washington D.C.,
November, 2002.

http://personal.ecu.edu/whiteheadj/data/logit/

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeM11.2
	Page0: 982
	Page1: 983
	Page2: 984
	Page3: 985
	Page4: 986
	Page5: 987

