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Abstract—Systems and control theory was largely 

responsible for realizing the Industrial Revolution.  We 
believe that systems and control theory will also play a key 
role in the Information Revolution underway.  In particular, 
systems and control theory should have much to offer network 
security.  This paper explores the use of queueing theory and 
logistic regression modeling methods for profiling computer 
users based on simple temporal aspects of their behavior.  The 
goal is to develop profiles for very specialized groups of users, 
who because of the nature of their work would be expected to 
use their computers in a very similar and regular way, e.g., 
bank tellers, insurance adjusters, etc.  Encouraging proof-of-
concept results suggest the potential of both the idea of user 
profiling and the use of simple temporal features for grouping 
users. 

I. INTRODUCTION 

THERE is no question that the systems sciences has 
resulted in very successful technologies for controlling 

all manner of electromechanical systems and played a 
major role in realizing the Industrial Revolution.  We 
believe that the systems sciences will also have much to 
offer for controlling the information technologies that drive 
the current Information Age. 

In recent years there have been many special sessions at 
the major systems conferences (e.g., CDC, ACC, IFAC) 
describing applications of systems and control theory to the 
performance optimization of information (computer) 
networks.  In this paper we explore the application of 
systems and control theory to network security, a much 
more difficult problem than performance optimization. 

In computer networks, malicious software programs can 
spread over the network to “infect” the vulnerable 

computers attached to it.  Nearly every day we hear about, 
or become victim to, a new Internet worm or email virus.  
In fact, even as this paper is being written the SoBigF and 
Blaster worms continue to wreak havoc on the Internet.  In 
addition to malicious software, we also know that there are 
malicious people attempting to “hack” into private 
computers and private computer networks.  It’s unclear 
how many of these attacks succeed because most 
organizations (particularly commercial ones) don’t publicly 
report successful penetration for fear of alarming customers 
[2]. 
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In other work, we have explored the use of feedback 
control theory for controlling the spread of Internet worms 
[19], [20], [11].  This would reduce the number of 
computers that become infected by malicious software.  
However, a comprehensive defense-in-depth security 
system still needs some way to detect and mitigate the 
effects of malicious software and malicious hackers that are 
able to penetrate a networked computer.  Moreover, in 
addition to attacks from the “outside”, there is the even 
more serious problem of “insider” attack, where malicious 
or corrupt people who have legitimate inside access to a 
computer cause damage or steal important data.  It is 
estimated by many computer security professionals that 
insider attack is a much more serious threat than outsider 
penetration.  Insider attack is especially problematic in 
industries such as banking, insurance, and credit cards, 
where identity theft is reaching epidemic proportions (an 
estimated 33 million people have been affected so far [17]).  
Again, fearing customer alarm, only a small fraction of 
these incidents ever become public. 

Detecting penetration from the outside is the goal of 
intrusion detection systems (IDS) and detecting malicious 
software and malicious people working on the inside is the 
goal of misuse detection systems (MDS).  Broadly 
speaking, IDS/MDS are divided into signature-based 
approaches that model the behavior associated with specific 
known attacks and then look specifically for matches to the 
attack models.  The alternative is to model a user’s normal 
behavior and look for anomalous departures from the 
model.  Most IDS/MDS strive to be general purpose, able 
to detect attacks and anomalies in any population of 
computer users and software applications.  This is clearly a 
very hard problem and there are some that argue that in 
trying to live up to this grand challenge IDS/MDS research 



 
 

 

is losing practical relevance [3]. 
Rather than propose a general purpose IDS/MDS, we 

think that much more success can be achieved by focusing 
on detecting anomalies in specific classes of computer 
users who have very well defined roles.  Motivated by the 
growing problem of identity theft, we propose in particular 
to focus on detecting anomalous behavior by users such as 
bank tellers, insurance claims adjusters, and credit card 
transaction processors.  These are the employees who are 
the lowest paid and thus have the most to gain from 
stealing other people’s financial identities.  On the other 
hand, because of the nature of these jobs, the computer 
activities of the people assigned to them should be expected 
to have a high degree of statistical similarity, i.e., because 
all bank tellers are doing the same tasks (handling clients at 
the window), they should all behave in essentially the same 
way.  For detecting anomalous behavior from bank tellers 
and other employees involved in such assembly line 
transaction processing, this paper explores two new 
concepts for IDS/MDS:  the concept of user profiling and 
the concept of queueing system busy period structure for 
selecting the features used for building models of user 
profiles.  For the actual model building process, we use the 
statistical analysis tool logistic regression [18]. 

A profile is a crude model portraying only the significant 
features common to a specific group of users.  With 
profiling, users (or intruders masquerading as them) would 
be monitored, not by comparing their behavior against 
models of known attacks or a model of their own past 
behavior, but rather by comparing their behavior to their 
group profile, any deviation from which would be cause for 
closer scrutiny. 

The idea of using queueing system busy period structure 
for feature selection comes from the idea that users such as 
bank tellers can be viewed as parallel servers in a queueing 
system.  Customers arrive and choose a teller who services 
their transaction.  Since customer transactions are 
statistically very similar and if we assume the tellers are 
roughly equally utilized, then we could also expect that the 
sample paths (the pattern of busy periods and idle periods) 
generated by the various tellers should be statistically 
similar as well.  Our idea then is to profile users such as 
bank tellers using models constructed from features related 
to the duration of the idle and busy periods and rough 
measures of activity levels during busy periods. 

A key difficulty in computer security research can be 
getting suitable data [2].  However, unable to convince a 
bank to let us monitor their tellers and customers, and 
unable to use the standard data sets commonly used for 
IDS/MDS studies because they lack the time-stamp data 
that we need, we performed a preliminary proof-of-concept 
study using data collected from a number of graduate 
students and their professor.  Of course the behaviors of 

such a population would be expected to differ greatly from 
that of users such as bank tellers.  Even so, because they 
shared common projects, took classes together, and worked 
similar projects in the same laboratory, there were some 
natural groups that our method was able to identify.  We 
were also able to detect structural breaks (statistically 
significant changes in behavior) that occurred for example 
during the Winter intersession when the students were not 
taking classes.  Overall our results corresponded well with 
what we expected to find based on visual analysis of the 
raw data and our knowledge of our user population.  In 
future work we plan to conduct similar experiments using 
actual bank data to assess the efficacy of the idea in the 
real-world setting. 

The remainder of the paper is organized as follows.  The 
next section motivates the use of profiling and queueing 
theory for detecting intrusion and insider misbehavior and 
gives a summary of related work where temporal behaviors 
were used in the IDS-MDS setting.  Section III defines the 
temporal features that we used and describes our data 
collection method.  Section III also contains plots of some 
raw data that we will use to visually confirm the results we 
obtain.  Section IV describes the logistic regression method 
that we use for building models of user profiles.  
Experimental results are summarized in Section V.  The 
paper ends in Section VI with a discussion and conclusions. 

II. MOTIVATION AND RELATED WORK 

A. Motivation 
Politically correct or not, profiling can be very effective 

for detecting anomalous behavior worthy of deeper 
examination.  For example, groups of employees doing the 
same job should have very similar behaviors.  In particular, 
bank tellers and data entry clerks processing insurance 
claims and doing credit checks, should have very similar 
behaviors simply because the transactions they work on are 
generally very similar.  As a result, one might expect, for 
example, a bank teller profile to emerge.  The activities on 
computer accounts belonging to tellers could then be 
compared to this profile of the “stereotypical” teller for 
anomalous behavior that might suggest misuse by an 
insider or intrusion by an outsider. 

Roles like bank tellers are customer service roles.  That 
is, tellers that behave like servers in a queueing system.  A 
queueing system can be characterized by its sample path, 
which describes when the server is idle, when it is busy, 
and the activity level during busy periods.  Viewed as 
servers in a queueing system, one can conjecture that tellers 
should generate sample paths that are statistically similar, 
i.e., there should be some “prototypical” sample path 
against which tellers can be statistically compared.  This 
thinking is the motivation behind building models of user 



 
 

 

behavior from temporal (time-related) features related to 
when someone uses their computer, for how long in one 
session, and roughly how active they are during a session.  
We also remark that in an actual bank setting, teller 
activities could also be correlated with activities in the bank 
lobby, such as the arrival of a customer at the teller’s 
window.  The view of a teller as a server in a queueing 
system makes it clear that these two events should have 
strong positive correlation. 

B. Related Work 
Although most IDS/MDS attempt to classify users and/or 

application programs by parsing the operating system 
commands that they generate, there is also a relatively large 
literature on the use of temporal features in IDS/MDS.  In 
his comprehensive study of intrusion detection methods, 
Denning [4] describes methods that use interval timers and 
event counters to build time-series models.  NIDES [1], 
developed by SRI, uses both rule-based and statistical 
methods for intrusion detection.  The statistical models 
constructed are used to compare short-term behavior with 
long-term historical norms.  Senelyzov [14], [16], [15] 
proposed a temporal event algebra and a temporal 
probabilistic network to handle the temporal regularities in 
audit data.  Lee [9] used data mining techniques to develop 
an anomaly detection method that learns association rules 
incorporating both command names and command timing.  
Li, et al. [10] describe a method that learns temporal 
association rules for different levels of time granularity, an 
idea that provides more flexible and precise descriptions 
than fixed time partitions.  An approach for building 
temporal signatures for software programs from the mean 
and variance of command interarrival times is developed in 
[7].  Other work includes [8], where time signatures were 
used for database security. 

The main difference between the work in this paper and 
the work cited above is that the other work tends to focus 
only on the temporal behavior during busy periods (the 
intra-session behavior), whereas our work also considers 
the temporal behavior between busy periods (the inter-
session behavior).  In other words, we focus on the entire 
busy period structure of the sample paths generated by the 
users, while the other work focuses only on the busy 
periods, largely ignoring the idle periods.  Thus, our 
profiler would immediately flag an anomaly if a teller 
account is active late at night since the profile would 
indicate that the account should be idle when the bank is 
closed.  Unless specifically set up to do so, the other 
methods described above may not flag after hours activity 
as unusual. 

III. EXPERIMENTAL SETUP 

A. Temporal Feature Selection 
As described, our goal in this paper is to develop models 

for the typical behavior of groups of users, such as bank 
tellers, whose role makes them effectively servers in a 
queuing system.  The behavior of servers in queueing 
systems is characterized by the sample paths they generate, 
i.e., by the busy period structure describing when the 
server is idle, when it is busy, and how active it is when 
busy.  With this in mind, we begin with the following 
definition of a session (busy period), 

Definition 3.1:  A session begins with the onset of user 
activity and ends when the user logs out or after 1800 
seconds (3 minutes) of inactivity. 

For each session we generate a single 6-dimensional 
vector consisting of the following temporal features, 

X={interval, length, output, density, timing.day, timing.hour} (1) 

where, 
interval = the time elapsed since the end of the previous 
session; 
length = the duration of the current session; 
output = the number of operating system commands 
generated during the session; 
density = the mean command rate (in commands/minute) 
during the session; 
timing.day = an integer indicating the day of the week 
when the session began; 
timing.hour = an integer indicating the hour of the day 
when the session began. 
In other words, interval captures the length of idle 

periods, length the length of busy periods, density the 
activity level during busy periods, and timing relates busy 
periods to the daily cycles of human and business activity. 

B. Data Set 
A major challenge in computer security is getting good 

data [2].  In particular, we found it very difficult to 
convince a bank to let us collect data from their network.  
We were also not able to use any of the standard data sets 
commonly used for IDS-MDS studies (e.g., the AT&T data 
set [13] and University of Calgary data set [6]), because 
they lack the time-stamp information that we needed. 

Lacking suitable data, we collected our own data set for 
these proof-of-concept studies.  Our data came from the 
Linux command histories (csh/tcsh shell command 
histories) from a number of Univ. of Massachusetts 
(Amherst) graduate students and their professor.  This data 
was collected over a period of 15 weeks during the 2001-
2002 school year.  This 15 week period covered part of the 
2001 Fall semester, the Winter intersession, and part of the 
2002 Spring semester.  We observed that the student’s 
computer use behaviors during the Fall and Spring 
semesters, when they were taking classes, were very 
similar.  And as expected, their behaviors during the 
Winter intersession, when they were not taking classes, was 



 
 

 

much different.  One of our goals was to understand how 
this structural break would impact the model building 
process. 

C. Visual Data Analysis 
Figs. 1(a) and (b) show some of the raw data collected 

for this study.  The plots in Fig. 1(a) show the session data 
for 8 different users for the month of Feb. 2002 (Spring 
semester).  In the plots, the horizontal axis is the time of 
day (24 hour clock), and the vertical axis the day of the 
month.  The dark rectangles show when the users were 
active (busy periods).  The plots in Fig. 1(b) show 
histograms of the session densities of the mean command 
rate in commands per hour (activity level during busy 
periods).  We will refer back to these plots to visually 
confirm the results obtained later in the paper. 

(a)  

(b)  
Fig. 1.  Raw user data for visual analysis of experimental results. 

IV. MODEL BUILDING 

A. Logistic Regression 
Logistic regression is a powerful statistics tool for 

determining how multiple factors affect a discrete output 
[18].  In the context of user profiling, the factors are the 
components of the feature vector of observed user behavior 
in Eq. (1) and the output is the profile group that most 
likely generated the feature vector, e.g., either the feature 

vector came from profile i or it came from profile j.  While 
logistic regression can be extended to analyze multiple 
choice data (see [18]), let us explain its use here in terms of 
binary classification.  Specifically, let us use logistic 
regression to build models Mij, where i,j ∈ {A, B,…,H} 
with A, B,…,H the labels assigned to the 8 users in Fig. 1.  
For a given feature vector X the output of model Mij 
corresponds to one of two hypothesis, 

H0 = feature vector X came from user i (null hypothesis), 
H1 = feature vector X came from user j (alternative 
hypothesis). 

A binary logistic regression model has the form, 

log[p/(1−p)] = c0 + CX = c0 + c1x1 + c2x2 + … + c6x6 (2) 

where the input X is the 6-dimensional feature vector from 
Eq. (1), c0 and C are the model coefficients, and the output 
p is the probability that H0 is true (i.e., p = Pr[H0 = true]).  
Decisions are made by comparing the output against a 
threshold parameter 0 < θ < 1 according to the rule, 

If p > θ, accept H0; otherwise, accept H1. (3) 

The model coefficients c0, C are obtained using 
Maximum Likelihood Estimation (MLE). 

Remark:  With a little back of the envelope calculation, 
we can rewrite Eq. (2) as, 

p = 1/(1−e-y), y = c0 + CX = c0 + c1x1 + c2x2 + … + c6x6 (4) 

Fig. 2 shows this equation in “block diagram” form.  The 
astute reader will immediately recognize that the logistic 
model has precisely the same form as a “neuron” in an 
artificial neural network (ANN) [5].  In fact, instead of 
logistic regression, we could use a feedforward ANN in 
conjunction with some standard ANN training rule (e.g., 
error back-propagation).  In doing so, however, we would 
lose the advantages of logistic regression.  In particular, 
logistic regression is statistically rigorous, the results 
quantifiable, and the coefficients statistically meaningful 
(for details, see [18] and the references therein).  For the 
ANN, in contrast, it is often very difficult to interpret the 
meaning of the network’s coefficients. 

B. Training, Testing, and Validation 
Recalling Section III, our data set was collected over a 

15 week period.  The feature vectors collected during the 
first 5 weeks were used for training, and the feature vectors 
from the remaining 10 weeks were used for testing and 
cross validation.  The model coefficients were computed 
using the logistic regression calculation webpage at [12].  
The models were validated using the Chi-Square statistic 
and various other tests of model accuracy.  Lacking space, 
we will not present the testing and validation results here. 
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Fig. 2.  Block diagram of a logistic regression classifier. 

V. PERFORMANCE EVALUATION 

A. The Receiver Operating Characteristic 
As explained in Section IV, our models Mij classify a 

feature vector X (Eq. 1) as belonging to profile i if the 
model output p > θ, and as belonging to profile j otherwise.  
Such a binary classifier is evaluated by its Type I and Type 
II error probabilities, defined in Fig. 3. 

Type I error
(false alarm)

Type II error
(miss)

correct

correct

Accept H1

Accept H0

H0 is true H1 is truetruth
decision

Type I error
(false alarm)

Type II error
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correct

correct

Accept H1

Accept H0

H0 is true H1 is truetruth
decision

 
Fig. 3.  Type I and Type II error probabilities. 
In general, the Type I and Type II error probabilities 

depend on the value of the threshold parameter θ.  In 
particular, if we set θ = 0, then the model accepts H0 as true 
for any input X, in which case the miss probability is 
100%.  Alternatively, if we set θ = 1, then the model 
always accepts H1 as true, in which case the false alarm 
probability is 100%.  Varying θ between 0 and 1 traces out 
the so-called receiver operating characteristic (ROC), see 
Fig. 4.  In the figure Pf(θ) is the false alarm probability and 
Pm(θ) is the miss probability. 
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Fig. 4.  Hypothetical receiver operating characteristic (ROC). 

A classifier with a diagonal ROC gives the same 
performance as simple random guess; a classifier with an 
ROC lying entirely above the diagonal performs worse than 
random guess; and a classifier with an ROC that lies 
entirely below the diagonal performs better than random 
guess.  The closer to the origin the ROC is, the better the 
guess. 

In the context of user profiling, Mij for two users 
belonging to the same profile group should have a near 
diagonal ROC, i.e., the users are indistinguishable.  Users 
belonging to different profile groups should have an “off-
diagonal” ROC, i.e., they should be easy to distinguish.  
Similarly, models of intruders and misbehaving insiders 
should deviate from their “normal” group profile model. 

B. Summary of Main Results 
Figs. 5(a)-(b) show the experimentally obtained ROC 

curves for selected pairs of users.  Fig. 5(a), which 
compares user B with the 7 other users in Fig. 1, shows that 
the temporal behavior profile of user B is most similar to 
that of user C (as suggested by a near diagonal ROC), and 
most different from that of user H (as suggested by an ROC 
that is much closer to the origin).  Visual examination of 
Fig. 1 bears this out. 

Fig. 5(b), which compares user D with the 7 other users 
in Fig. 1, shows that user D’s profile is not similar to any of 
the other 7 users, i.e., D’s profile can be relatively reliably 
identified.  A visual inspection of Fig. 1 reveals that this is 
likely because user D typically starts his work day much 
earlier than everyone else. 

These and our other results provide good evidence that 
the simple temporal features from Eq. (1) can be useful for 
building profiles for users like bank tellers whose computer 
use can be expected to be much more regular than that of 
graduate engineering students and engineering professors. 

(a)  

(b)  
Fig. 5.  ROC curves for selected pairs of users. 

C. Additional Results 
To determine if our approach could detect a change in a 

user’s profile we did a study looking for structural breaks.  
Structural breaks occur when a user’s behavior changes in 
some statistically significant way.  As we had expected, we 
observed a major structural break in the behavior of our 
user population of during the Winter intersession.  The 
significance of our ability to detect this structural break is 



 
 

 

an indicator that the temporal features in Eq. (1) may be 
able to detect the behavioral changes that accompany 
misuse or intrusion, e.g., a bank teller’s account suddenly 
shows activity at night, on weekends, or at activity levels 
much different than usual. 

VI. DISCUSSION AND CONCLUSIONS 
We believe that the concepts, tools, and techniques 

developed by the systems and control community has much 
to offer for computer security.  In this paper we 
demonstrated a proof-of-concept idea on the use of 
profiling, queueing theory, and logistic regression 
modeling for intrusion and misuse detection in a very 
specific target class of computer users, e.g., bank tellers, 
and insurance and credit processing agents.  However, 
similar temporal regularities also likely exist in government 
offices like the social security office, IRS, and so forth.  
Our results, albeit preliminary, were encouraging, 
suggesting that monitoring even very crude behavioral 
features might be effective in detecting intrusions and 
misuse in these specific classes of computer users. 

Our key innovation is simplicity.  Instead of digging 
deep into the OS commands users generate, we instead 
simply look at the busy period structure of the sample path 
they generate, i.e., when they are busy, how long they are 
busy, and roughly how active they are while busy.  This 
leads to a very fast and simple implementation, requiring 
only simple time-stamping and counting.  Being so simple 
and fast, another potential application, outside of user 
profiling, is for making a quick first pass over audit data, 
either throughout the day, or to aid forensic investigation 
after an attack by locating traces for further more detailed 
examination.  We are also the first (as far as we know) to 
demonstrate the usefulness of the powerful statistical 
logistic regression technique in the IDS-MDS setting.  
Logistic regression is very similar to ANNs, which are 
sometimes used for IDS-MDS, but is statistically more 
rigorous and amenable to detailed statistical analysis of 
model quality and sensitivity to various features. 

The approach presented has certain limitations.  First, it 
only explores a very limited portion of the space of 
possible behavior features.  Thus, it is not designed to be 
used standalone to detect computer abuse, but as another 
“sensor” in an integrated, comprehensive defense-in-depth 
security system.  For example, the behavior of a bank teller 
can be correlated with customer arrivals to the bank’s 
lobby.  Another limitation is that the approach does not 
provide real-time detection, since it only makes its 
decisions when a session ends—although by simple 
modification one can imagine a system that dynamically 
comes to a decision as features reveal themselves, e.g., 
while the length of the session is not known until it ends, 
the starting time, day, and interval since the last session are 

known immediately at the session start. 
The main open question to be addressed is to evaluate 

the usefulness of the approach in building profiles for 
groups of users who because of the nature of their work are 
expected to have similar behaviors.  To do these 
experiments we are seeking user data from industries such 
as banking and insurance and from government offices. 
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