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Abstract— We present an equation-free multiscale com-
putational framework for the design of “coarse” con-
trollers for spatially distributed processes described by mi-
croscopic/mesoscopic evolution rules. In particular, we exploit
the smoothnessin spaceof the process observables to estimate
the unknown coarse system dynamics. This is accomplished
through appropriately initialized and linked ensembles of
microscopic simulations realizing only a small portion of the
macroscopic spatial domain (the so-called gaptooth and patch-
dynamics schemes, [10]). We illustrate this framework by
designing discrete-time, coarse linear controllers for a Lattice-
Boltzmann (LB) scheme modelling a reaction-diffusion process
(a kinetic-theory based realization of the FitzHugh-Nagumo
equation in one spatial dimension).

I. I NTRODUCTION

In recent years, there has been an increasing need for the
development of controllers for the macroscopic, “coarse”
behavior of processes for which physical models are avail-
able at the microscopic/stochastic level (e.g. kinetic Monte
Carlo, Lattice Boltzmann or Molecular Dynamics codes),
but for which no explicit, macroscopic evolutionary partial
differential equation (PDE) description is available in closed
form. When such explicit evolution equations are available,
the “state” whose evolution they describe consists, typically,
of the leading moments of stochastically/microscopically
evolving distributions (e.g. density and momentum in the
case of fluid flow, concentration or surface species coverage
in the case of catalytic chemical reactions). The purpose
of this contribution is to describe and illustrate a sys-
tematic framework that can be used to design controllers
for the macroscopic behavior of such spatially distributed
processes. Circumventing the derivation of explicit closed
equations, we design controllers acting directly on the
microscopic simulator.

Our work follows the “equation-free” approach to
computer-aided modeling of complex, multiscale systems
that we have been developing over the last few years
[24], [10]. In this approach, macroscopic modeling tasks
yielding information overlong time andlarge spatial scales,
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are accomplished through appropriately initialized calls to
the microscopic simulator for onlyshort times andsmall
spatial domains. This constitutes a systems identification
based, “closure on demand” computational toolkit, bridging
microscopic/stochastic simulation with traditional contin-
uum scientific computation and numerical analysis. Other
approaches towards the construction of hybrid multiscale
models include linking molecular dynamics with continuum
conservation equations [13], [2] and the quasicontinuum
method of Phillips, Ortiz and coworkers [15], [16].

The main tool of the equation free approach is the so-
called “coarse time-stepper”.Lifting macroscopic initial
conditions to ensembles of consistent microscopic ones,
evolving based on the microscopic rules, andrestricting
back to macroscopic variables provides an estimate of
the time-stepper of the unavailable macroscopic evolution
equation. The methodology has been described in detail in
a sequence of publications ([24], [5], [10] and references
therein).

Performing such steps for appropriately chosen nearby
initial conditions allows the estimation of the action of the
(slow) linearization of the unavailable coarse model, and can
be integrated in computational algorithms for the location of
unstable coarse fixed points, as well as filter and controller
design. Recently we have been able to design such linear,
discrete-time, coarse controllers for microscopic processes
(kinetic Monte Carlo simulations of surface reactions [22]
as well as Brownian Dynamics simulators of nematic liquid
crystal dynamics [21]). We also demonstrated that, if one
has the computational power to evolve the microscopic
model overmacroscopicspatial domains, the coarse time-
stepper can be used for coarse controller design of spatially
distributed systems [1]. In this case, estimation of the action
of the slow components of the system linearization requires
interfacing with matrix free numerical techniques (such as
the Recursive Projection Method [20], or GMRES [8]).

Other recent approaches to the control of systems de-
scribed by microscopic evolution rules include model re-
duction of a bilinear Master Equation [4] and the design of
observers based on Monte-Carlo simulations and process
measurements followed by controller design [12].

Macroscopic size domains require a formidable, often
prohibitive computational effort to directly evaluate the
coarse time-stepper. The alternative is to exploit the smooth-
ness in macroscopic spaceof the coarse system state,



and estimate the coarse time-stepper through the so-called
gaptoothscheme [10], [6], [19], [18], [9].

In the gaptooth scheme, macroscopic space is tiled with
teeth and interveninggaps (in one dimension); the teeth
correspond, qualitatively, to the mesh points in a discretiza-
tion of the unavailable macroscopic evolution equation.
The microscopic evolution is performed in the interior of
each tooth only. Clearly, appropriate boundary conditions
have to be provided for the edges of each tooth; these
boundary conditions implementeffective smoothnessof the
macroscopic state profile. These macroscopically inspired,
coarse boundary conditions for the microscopic simulation
are crucial for the success of the scheme, as discussed
extensively in [10]; ways to impose them (such as the
Optimal Particle Controller [11]) have been the subject
of extensive research in computational materials science.
Lifting from macro- to micro-initial conditions, microscopic
evolution, and restriction back to macro-variables occur
only in each tooth. The important new element is that
periodically the computation is stopped, the macroscopic
profile interpolated smoothly from the microscopic runs,
and new boundary conditions computed, allowing thus for
communication between “teeth” (in effect, informing the
“teeth” of the evolution of the macroscopic field in which
they participate). Each “tooth” thus runs coupled with a
macroscopic coarse field arising from the interpolation be-
tween all the (neighboring) teeth, and the gaptooth scheme
is thus related to the so-calledhybrid multiscale schemes
and domain decomposition algorithms. Evolving appropri-
ately chosen initial conditions over a lattice of “teeth” (1D)
or “patches” (higher dimensions) for relatively short times,
coupled with variance reduction and system identification
techniques, provides an estimate of the full-space coarse
time-stepper. A number of computational tasks, such as
coarse projective integration (“patch dynamics”), as well as
coarse stability and bifurcation analysis are thus enabled.

In this work we address the issue of coarse controller
design for spatially distributed processes, where the com-
putational cost associated with full space microscopic sim-
ulations during the identification/controller design step may
be prohibitive (due to the large spatial extent of the sys-
tem). Obtaining a coarse time-stepper through the gaptooth
scheme is used to identify the dominant spatial behavior
of macroscopic distributed processes and design coarse
controllers using well-established methodologies for linear
discrete-time controller design, such as pole placement
and the Riccati Equation. Discrete-time controller design
is validated on a mesoscopic, kinetic theory basedfull
space realization of the FitzHugh-Nagumo PDE, widely
used to describe the formation of patterns in reacting and
biological systems. In the presence of open-loop oscillatory
behavior, the approach stabilizes (both for the continuum
and for the coarse microscopic realizations) the unstable,
nonuniform in space, steady (microscopically stationary)
state. It is interesting to note that this approach, used here
as a “wrapper” around a mesoscopic simulator, can be also

used as a wrapper around black-box proprietary or legacy
large scale simulation codes [23].

II. GAPTOOTH TIME-STEPPERS FOR CONTROLLER

DESIGN

In this section we discuss the construction of linear
discrete-time controllers for spatially distributed processes
using a combination of coarse time-steppers and the gap-
tooth scheme. In previous work, we combined existingfull
spacecoarse time-steppers with the Recursive Projection
Method to identify the slow coarse process behavior and
design coarse linear controllers. Thegaptoothtime-stepper
is repeatedly called as a black box subroutine for short
times, using nearby coarse initial conditions and param-
eter values. These calls are initiated by a computational
superstructure which processes the results, and iteratively
computes a fixed point of the unavailable coarse system
behavior. The computational superstructure thus enables the
time-stepper to perform coarse fixed point computations
(using RPM). An estimate of the coarse slow Jacobian is
a byproduct of RPM upon convergence; if necessary, an
Arnoldi procedure can be used for a refined estimate of
this linearization [3].

In the controller design stage, linear discrete-time con-
trollers are designed based on the identified coarse slow
linear system using pole placement or optimal control
techniques.

Fig. 1. Gaptooth scheme to discretize the spatial domain.

A. Obtaining the coarse slow linearization

For the LB-BGK realization of the FHN equation at
each lattice point the “fine” description is a distribution of
particle density over a discrete velocity space: right-moving,
left-moving and non-moving particles. The sum of these
(the zeroth moment of the discrete distribution) is the coarse
description (details about the LB-BGK scheme can be found
in [17]).

To construct the coarse time-stepper based on the gap-
tooth scheme we select 101 equidistant points, where we
place the center of the “teeth” of the gaptooth time-stepper.
In Figure II the gaptooth discretization scheme is depicted.
The spatial domain is decomposed in a series of teeth
(which represent 10% of the extent of the spatial domain)



and the gaps between these teeth. The microscopic evolu-
tion is simulatedin the interior of each tooth onlywith
appropriate initial conditions for each tooth and boundary
conditions at each tooth edge arising from the macroscopic
spatial profile of the coarse variables.

Lifting is performed by initializing the three components
of the distribution at local equilibrium, but different liftings
(e.g. the entire local particle density assigned to right-
moving particles) “heal” quickly, over a small fraction of
the reporting horizon of the coarse time-stepper. Restriction
simply involves computation of the zeroth moments of the
discrete distribution over velocities and averaging over each
tooth. The remaining moment fields (“momentum” field and
“energy” field) evolve very fast to functionals of the smooth
zeroth moment (concentration) field.

Periodically the microscopic computations are stopped,
the macroscopic profile is interpolated from the micro-
scopic runs, and new macroscopic boundary conditions for
the teeth are computed, allowing thus for communication
between “teeth” (in effect, informing the “teeth” of the
evolution of the macroscopic field in which they partici-
pate). It is important that the microscopic simulations be
long enough in time for “healing” to take place before
the communication instance between the teeth, leading to
accurately inferred macroscopic profiles and, by extension,
to effective communication between the teeth. The reporting
horizon for the tooth computation is set to beT = 0.5
for our application, a time interval which lies in the gap
between the fast and the slow dynamics of the FHN
equation (for the process parameters of Table I). In each
tooth, the LB-BGK simulations we employed spanned12
lattice points, while the time step was set toδt = 5×10−6.
The communication time-interval between the teeth was set
to Tcomm = 0.00075.

During the communication operation, the coarse variables
are evaluated at all teeth and the profile of the coarse
variable profiles at the gaps is interpolated in order to
provide the new boundary conditions to the time-steppers
[18], [19].

Open-loop stationary states are located by RPM wrapped
around the coarse gaptooth time-stepper. RPM is based
on a Newton-type iteration on the recursively identified
coarse slow subspace, and can thus be used to locate both
stable and unstable stationary states, perform continuation
and stability analysis tasks and, in general, compute coarse
bifurcation diagrams [24], [5], [10]. The method is partic-
ularly efficient when a large time-scale separation exists
between the system coarse eigenmodes: a relatively small
number of eigenvalues (stable or unstable) lie close to
the imaginary axis, complemented by many strongly stable
eigenmodes in the far left hand plane. Upon convergence
of the RPM to the target stationary state, the effect of
control actuators can be obtained by perturbing the system
and estimating the corresponding coarse derivatives. It is
important to confirm that the “slow manifold” of the open-
loop system remains a good description of the slow response

to these perturbations; else the dimension of the slow
subspace should be augmented. RPM provides an estimate
of the coarse linearized discrete time model (which can
be refined, if necessary, through an Arnoldi procedure).
The slow eigenvalues of the continuous systemλ can be
computed from the discrete linearization “multipliers”µ
through the formulaµi = exp(λiT ), whereT is the time-
stepper reporting horizon.

B. Controller design

The dynamics of the system in the neighborhood of the
steady statexss can be described by the unknown discrete-
time coarse linear model

xk+1 − xss = G(xk − xss) + Huk (1)

with sampling intervalT . Herex ∈ IRN denotes the state
of the coarse linearization,G is the Jacobian matrix at the
target stationary state, andH is anN×k matrix describing
the effect of thek control actuators on the system dynamics.

The discrete-time coarse linear system of Eq.1 can be
equivalently written in the control form

ξk+1 = Gξn + Huk

yc = Cξk

(2)

whereC ∈ IRM×N , ξ = x − xss ∈ IRN is the deviation
from the coarse stationary state, andyc ∈ IRM is the
controlled output vector of dimensionM .

We initially design state-feedback discrete-time Linear
Quadratic Regulators (LQRs) by solving an optimal control
problem with cost function:

J =
∞∑

k=0

yc
∗Qyc +ukRuk =

∞∑

k=0

ξ∗kC∗QCξk +ukRuk (3)

whereQ, R are positive semidefinite matrices;A∗ denotes
the conjugate transpose ofA. The optimal feedback con-
troller gain Pc is computed solving the algebraic Riccati
equation [14]:

P = Q + G∗[P − PH(R + H∗PH)−1H∗P ]G

Pc = −(R + H∗PH)−1H∗PG
(4)

and the control action is given fromuk = Pcξk.
For an output feedback LQR formulation, the discrete-

time system is equivalently written in the form:

yck+1 = CGC⊥yck + CHuk (5)

where C⊥ = C∗(CC∗)−1. A special case isC =
VF (V ∗V )−1V ∗, V ∈ IRN×M is the matrix with columns
the RPM estimated eigenvectors (in descending order of
eigenvalue values) of the firstM coarse slow eigenmodes,
andVF is defined below. In this caseyc ∈ IRM denotes the
projection of the state on the firstM , RPM identified, slow
eigenmodes of the coarse linearization. Furthermore,C⊥ =
V V −1

F andCGC⊥ ∈ IRM×M is the coarse slow Jacobian
matrix at the target stationary state, which is estimated
by RPM. VF is a matrix with columns the eigenvectors



of CGC⊥ in descending order of associated eigenvalue
magnitudes.CH ∈ IRM×k expresses the influence of the
control actuators on the coarse slow dynamics of these
modes.

III. A N ILLUSTRATIVE MODEL : THE

FITZHUGH-NAGUMO EQUATION

The controller design methodology is validated using
a full space Lattice Boltzmann based realization of the
FitzHugh-Nagumo (FHN) equation, a widely used model
of wave behavior in excitable media in biology [7] and
chemistry [24]:

∂v

∂t
=

∂2v

∂z2
+ v − w − v3 + b(z)u(t)

∂w

∂t
= δ

∂2w

∂z2
+ ε(v − p1w − p0)

(6)

with boundary conditions:

∂v

∂z
|0 =

∂v

∂z
|L = 0,

∂w

∂z
|0 =

∂w

∂z
|L = 0 (7)

and initial condition

v(0, z) = v0(z), w(0, z) = x0(z) (8)

wherev(t, z), w(t, z) ∈ IR are the system variables,u(t) ∈
IRm is the array of manipulated variables,t is the time,z
is the spatial coordinate,b(z) is a row vector describing the
control actuators,ε, δ, p1, p0 are process parameters andL
is the length of the spatial domain. We assume that three
control actuators are available:

b(z) = [g(z, 0.25L) g(z, 0.50L) g(z, 0.75L)]

whereg(z, ζ) = exp(−0.3(z−ζ)2); note that this choice of
actuator influence functions extends over the entire spatial
domain of the process. In the simulations that are presented,
unless otherwise noted, the initial condition wasv0 =
0.5cos(πz/L) andw0 = 0.5cos(πz/L).

TABLE I

PROCESS PARAMETERS

L 20 δ 4.0 p1 2.0
T 0.5 ε 0.017 p0 -0.03

The FHN exhibits multiple steady solutions (spatially
uniform as well as nonuniform ones) and spatially nonuni-
form periodic solutions, depending on the values of the
process parameters. For the parameter values of Table I,
the system has four spatially nonuniform and three spatially
uniform steady-states, presented in Figures 2a and 2b for
v and w respectively. Linearizing the discretized FHN in
the neighborhood of the steady-states and computing the
eigenvalues we conclude that the system is locally unstable
in the neighborhood of steady states one, two and three,
and locally stable in the neighborhood of steady states
four, five, six and seven. Furthermore, simulating Eq.6 with
u(t) ≡ 0 and initial conditions far from the stable steady-
states, we observe the locally stable, spatially nonuniform
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Fig. 2. Open-loop unstable steady states of (a)v, (b) w.

periodic orbit shown in Figures 3a and 3b forv(t) andw(t)
respectively.

Representing the system in discrete time, with sampling
time T = 0.5, in the neighborhood of the first steady-state,
depicted as thick lines in Figures 2a and 2b forv and w
respectively (denoted asxss,1 for the rest of the section),
we observe in Table II, that there is a finite number of
eigenvalues close to the unit circle, while an infinite number
of them (in the limit of infinite discretization points) lie
close to zero. Moreover we observe that a large spectral
gap exists between two consecutive eigenvalues. This time-
scale separation implies that a few dominant modes may be
able to accurately parameterize the long term dynamics of
the open-loop process.

In [1], using RPM methodology with time-steppers based
on either the discretized PDE orfull space LB-based
simulations we are able to locate target unstable spatially
nonuniform fixed points and identify low-dimensional slow
linearizations of the system with the intention to design
linear discrete time controllers that enforce closed-loop sta-
bility. In the current work, we show that using the proposed
gaptooth discretization with kinetic theory based LB-BGK
scheme in the teeth, we can circumvent the computational
costs associated with full spatial domain simulation. We
constructed a coarse time-stepper with a time-reporting
horizon of T = 0.5 and 101 teeth, that computes the
zeroth moment fields that approximately satisfy the FHN
equation (this time-stepper is denoted as GT for the rest of
the section).

Specifically, in each tooth, the time-stepper combined lift-
ing, from zeroth moment fields to full LB state fields (em-
ploying a local equilibrium assumption), LB-BGK “meso-
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Fig. 3. Open-loop stable periodic orbit of (a)v, (b) w.

scopic” evolution, and restriction back to zeroth moments
corresponding to the local values ofv andw. The LB-BGK
based simulators employed by the 101 teeth represented a
total 10% of the spatial domain of the process; the lattice
size of 12 points was chosen to accurately capture the
process behavior in the teeth. With set time integration
step to δt = 5 × 10−6 and communication time-interval
of Tcomm = 0.00075 between the teeth, the coarse time-
stepper was able to accurately capture the spatiotemporal
profiles of the coarse variables.

The constructed controllers were then applied to a kinetic
theory based full-space LB-BGK realization of the FHN
equation [17], [24]. The combination of proposed gaptooth
time-stepper with RPM located the target coarse stationary
state, inferred its coarse stability properties through esti-
mates of the leading coarse eigenvalues/vectors, and led
to a third order approximate linear discrete-time coarse
slow subsystem in its neighborhood. Using as an initial
guess the stable coarse stationary profile atε = 0.1 and
ε = 0.11 we converged on the unstable nonuniform coarse
stationary profile at the target value ofε = 0.017 beyond the
Hopf bifurcation atε = 0.019. We also approximated the
coarse slow eigenvalues, their respective eigenvectors and
the JacobianCGC⊥ in Eq.5 of the coarse slow subsystem.
In Table II we present the open-loop eigenvalues of the
coarse gaptooth LB system (denoted as GT), and compare
with the ones calculated based on the coarse full space
LB realization (denoted as LB). This comparison partially
corroborates the correspondence between the coarse LB-
RPM model and the Gaptooth LB-RPM model.

Following the coarse open-loop analysis we computed
the coarse gaptooth process model response to actuators’

perturbations, and subsequently obtained a linearized ex-
pression of their effect on the slow discrete-time subsystem
(matrix CH of Eq.5). Two eigenvalues of the identified
local coarse slow linear system lie outside the unit circle in
the complex plane (Table II). As a result, for the LQR to
stabilize the system atxss,1, our control objective becomes
the placement of the closed-loop eigenvalues corresponding
to the unstable slow eigenmodes within the unit circle. To
retain the time-scale separation between the slow and the
fast subsystems, the resulting closed-loop eigenvalues are
set inside but close to the unit circle.

We designed an LQR discrete-time controller for the
identified discrete-time coarse linear model solving the
Riccati equation with cost function weights in Eq.3Q =
0.5I3×3, andR = 10I3×3.

In Table II we present the eigenvalues of the closed-
loop full-space LB model in the neighborhood ofxss,1

and compare them with the eigenvalues when no control
is used. We observe that that LB model is stabilized in
closed loop, and the time-scale separation between the
slow eigenmodes and the fast ones persists (only four
fast eigenvalues were identified using an Arnoldi scheme):
spillover did not change the dimension of the slow closed-
loop subsystem. We also observe that the controller fails to
assign all the eigenvalues at the desired locations, in part
due to spillover, and in part due to the inaccuracy of coarse
slow eigenvalue/eigenvector estimates (which, however, can
be refined).

The effect of the coarse three-dimensional “3:GT-RPM
LQR” on the full space LB dynamics is shown in the
simulation of figure 5a where the time-profile of theL2

norm of the coarse state of the LB-BGK model converges
to the stationary value rapidly and smoothly. Figures 6a
and 6b present the spatiotemporal profiles of the zeroth
moments of the full space LB that correspond tov(z, t)
and w(z, t) respectively. In Figure 5b we also present the
time-profile of the coarse control action. We observe that
the control action tends to zero as time progresses, and it
achieves coarse stabilization of the LB-BGK model atxss,1

without chattering.
To test the basin of attraction of the closed-loop LB-

BGK coarse stationary state under the designed controller,
we simulated the system for an initial condition on the
stable limit cycle, activating the controller at different time-
instants. In Figure In Figures 7a and 7b we present the
spatiotemporal profiles of the moments corresponding to
v and w, respectively, when the 3:GT-RPM controller is
activated at a particular point on the limit cycle. We see
that both coarse fields asymptotically approach the open-
loop unstable stationary-state profiles ofxss,1 smoothly.
The control action action for the specific simulation tends
to zero as time progresses, with a smooth time-profile (no
chattering).

In Figure 4 we present a phase portrait in terms of the
zeroth Fourier modes of the coarse fields corresponding tov
andw multiplied by the square root of the domain size; the



TABLE II

EIGENVALUES OF LINEARIZED DISCRETE-TIME FHN IN THE NEIGHBORHOOD OFxss,1 .

Open-loop Closed-loop [LQR] Closed-loop [PPC]
LB-Arnoldi LB-RPM GT-Arnoldi GT-RPM [3:GT-RPM] Objective [3:GT-RPM] [3:LB-RPM]

1.000 + 0.0237i 0.9989 + 0.0249i 1.004 + 0.0207i 1.00 + 0.0237i 0.9457 0.980 0.9836 0.9836
1.000− 0.0237i 0.9989− 0.0249i 1.004− 0.0207i 1.00− 0.0237i 0.9455 0.970 0.9673 0.9673

0.9297 0.9297 0.9304 0.9457 0.876 + 0.033i 0.930 0.9439 0.9295
0.8054 − 0.8086 − 0.876− 0.033i − 0.8776 0.8076

zeroth Fourier modes represent the average of these fields in
the spatial domain. The dotted black lines denote the system
evolution when the 3:GT-RPM LQR is activated with the
system on the open-loop stable limit cycle. We observe that
the designed 3:GT-RPM LQR achieves driving the closed-
loop system toxss,1 for all initial positions on the coarse
limit cycle that we have tested.
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Fig. 4. Phase portrait projection of open loop (blue solid line) and closed-
loop (dotted lines) system evolution on the zeroth Fourier modes ofv(z, t)
andw(z, t) multiplied by

√
20.

We also designed a third order controller, denoted PPC,
using pole placement techniques [14] on the same coarse
linear model. The objective eigenvalues are presented in
Table II; they are placed to values less than unity (for
stability) but large enough to retain the time-scale separa-
tion. We observe that the coarse eigenvalues of the closed-
loop system were close to the objective ones, and that the
time scale separation was not perturbed. For comparison
purposes we present a controller derived using the full space
LB realization of the FHN equation. We observe that the
two controllers have similar success in assigning the closed-
loop eigenvalues at the desired location, while the spillover
effect is minimal in both cases.

IV. CONCLUSIONS

We have extended our equation-free coarse controller de-
sign framework to allow for gaptooth coarse time-steppers
(microscopic simulation over only part of the spatial do-
main). The method operates at the coarse level as if closed
macroscopic equations were available; but the quantities
necessary during computation, instead of being evaluated
using a macroscopic equation, areestimatedusing short
bursts of appropriately initialized calls to the alternative,
microscopic evolution description. These computations are
performed over “teeth” (parts of the spatial domain) sep-
arated by “gaps”, where no simulation is performed; the

teeth are connected via effective smoothness boundary con-
ditions. The approach was illustrated by stabilizing through
linear, discrete-time coarse feedback control a spatially
nonuniform coarse stationary state of a kinetic theory based
LB “fine” model motivated by the FHN PDE in one
dimension.
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Fig. 5. Time profiles: (a)L2 norm of closed-loop LB-BGKFHN
under 3:GT-RPM LQR, (b) control action of 3:GT-RPM LQR (v0 =
0.5cos(πz/L), w0 = 0.5cos(πz/L))

a)
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Fig. 6. Closed-loop LB-BGKFHN evolution under 3:GT-RPM LQR
(v0 = 0.5cos(πz/L), w0 = 0.5cos(πz/L)). (a) v and (b)w.
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Fig. 7. Closed-loop LB-BGKFHN evolution (a)v and (b)w, under
3:GT-RPM LQR (tact = 265; initial condition on periodic orbit).
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