
Adaptive Predictive Control with Neural Prediction for a Class of Nonlinear 
Systems with Time-Delay 

 
Chi-Huang Lu        Ching-Chih Tsai* 

Department of Electrical Engineering National Chung-Hsing University 
250, Kuo-Kuang Road, Taichung, Taiwan. *Email:cctsai@dragon.nchu.edu.tw 

 
 Abstract—This paper presents an adaptive predictive control with 
neural prediction for a class of single-input single- output nonlinear 
systems with known time-delay. The well-known linear dynamic 
modeling approach together with the neural modeling method is 
employed to approximate these nonlinear systems. The predictive 
control law with integral action is derived based on the minimization 
of a generalized predictive performance criterion. A real-time 
adaptive control algorithm, including a recursive least-squares 
estimator and a proposed neural predictor, is successfully applied to 
achieve the control performance specifications. Stability and 
properties of the closed-loop control systems are investigated as well. 
Simulation results reveal that the proposed control gives satisfactory 
tracking and disturbance rejection performance for two illustrative 
time-delay nonlinear systems. Experimental results for a 
variable-frequency oil-cooling control process are performed which 
have shown effectiveness of the proposed method under the 
conditions of set-points and load changes. 
Index Terms: General predictive control, neural networks, nonlinear 
system, variable-frequency oil-cooling machine. 

 
I. INTRODUCTION 

ENERALIZED predictive control (GPC) has been 
extensively used for industrial applications, and the theories 
and design techniques using GPC have been well documented 

in [1-7]. In many industrial processes there usually exhibit 
time-delay and nonlinear dynamical phenomena, and such 
complicated systems may not be easily controlled by the use of 
linear GPC method. Recently, neural networks have been widely 
used as modeling tools as well as controllers for a class of nonlinear 
systems [8-13]. Khalid et al. [8] developed a feedforward multi-layer 
neural controller for an MIMO furnace and compared its 
performance with other advanced controllers. Piché et al. [10] 
established a neural-network-based technique for constructing 
nonlinear dynamic models from their empirical input-output data. 
Shi et al. [11] applied neural networks to build direct self-tuning 
controllers for induction motors. Zhu. et al. [12] developed a robust 
nonlinear predictive control with neural network compensator. Song 
et al. [13] explored a nonlinear predictive control with its application 
to manipulator with flexible forearm, and their nonlinear predictive 
controller was designed on the basis of a neural network plant model 
using the receding-horizon control approach. Furthermore, Tan et al. 
[14] presented neural-network-based d-step-ahead predictors for a 
class of nonlinear systems with time-delay.  

Aside from neural modeling and control, the authors in [15] used 
linear dynamic modeling approach together with the neural 
modeling method to approximate a class of nonlinear systems and 
then developed an adaptive robust model predictive controller to 
achieve their control goals. However, the method proposed by Qin et 

al. [15] is limited to the systems with only one-step time-delay and 
does not have an integral action to eliminate steady-state regulation 
or tracking errors caused by modeling errors or constant external 
disturbances. To overcome such shortcomings, this paper will 
develop a novel adaptive predictive control with neural prediction 
for a class of SISO nonlinear systems with time-delay, in which the 
neural-network-based d-step-ahead predictors are realized by using 
the well-known backpropagation neural network architecture. The 
feasibility and effectiveness of the proposed method will be verified 
through its applications to two nontrivial nonlinear plants and one 
physical variable-frequency oil-cooling process. 

The remaining parts of the paper are outlined as follows. Section 
II presents approximately mathematical models of a class of 
nonlinear systems with time-delay. The predictive control law with 
integral action is derived in Section III. The backpropagation neural 
predictor and the modified least-squares estimator are developed to 
estimate the unknown parameters for the system model in Section IV. 
A real-time adaptive neural predictive control algorithm is proposed 
in Section V. Section VI details the capabilities of the proposed 
algorithm utilizing computer simulations. Two experimental results 
for controlling the oil cooling process to meet the desired 
performance specifications are presented in Section VII. Section VIII 
concludes this paper. 

 
II. APPROXIMATING NONLINEAR MODELS 

The section is devoted to approximating a class of discrete-time, 
single-input single-output nonlinear plants discussed in [12,14]. 
These systems are assumed to have plant inputs as ℜ→⋅ +Zu :)( , 
plant outputs as ℜ→⋅ +Zy :)( , and the nonlinear mappings 

ℜ→ℜ⋅ +−+ 1:)( dnn uyf , and +∈ Zny , +∈ Znu . Furthermore, 
+∈ Zd  represents the time delay of the systems. Generally speaking, 

such systems can be described by the following nonlinear 
autoregressive moving averaging (NARMA) models with given 
time-delay  
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To design the proposed predictive controller, the well-known linear 
dynamic modeling approach together with the neural modeling 
method is employed to approximate these nonlinear systems. Thus, 
we have 
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)( 1−za  and )( 1−zb are two polynomials in the back shifting operator 
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1−z  with ya nn ≤  and )( dnn ub −≤ , and ℜ→ℜ⋅ +−+ 1:)( dnn uyϕ . 

Note that the two polynomials )( 1−za and  )( 1−zb , and the 
nonlinear term )1( −kn  can be identified using the recursive 
least-squares estimator combined with the proposed neural predictor, 
respectively. 

 
III. PREDICTIVE CONTROL LAW WITH INTEGRAL 

ACTION 
  This section is devoted to developing a novel predictive control 
for improving tracking performance and disturbance rejection 
abilities of this type of nonlinear control system. With the shifting 
operator 1−z  and the identified system parameters, the system 
model (2) can be rewritten by  
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  The predictive control law is derived so as to minimize the 
following cost function 
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where )(kr  is an input reference signal, 11 −−=∆ z , and the main 
function of )( 1−zh j  is used to remove the effect of )1( −kn  on the 

closed-loop control system. )( 1−zq j  is a selected weighting 

polynomial and L++= −− 1
1,0,

1)( zqqzq jjj
d

dj zq −+ , . 2N  and uN  
denote the maximum output horizon and the control horizon, 
respectively. 
  To derive the predictive control law, the following two equalities 
are used to solve for )( 1−ze j , )( 1−zf j , and )( 1−zg j , in order to 
find a j  step-ahead predictor of )(ky  
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Thus, the j  step-ahead output prediction of )(ky  is calculated by 

)()()()()( 11 djkuzgkyzfjky jj −+∆+=+ −− .     (7) 
Using (7), the cost function J  in (4) can be equivalently expressed 
in the subsequent quadratic form 

TRMNLUGkFyJ ))(( −+++=  
QUQURMNLUGkFy TT+−+++ ))((      (8) 

where 
[ ]TNdd zfzfzfF )()()( 11

1
1

2
−−

+
−= L  

[ ]TuNkukukuU )1()1()( −+∆+∆∆= L  
[ ])()()()()()( 111

1
1

1
11

22
−−−

+
−

+
−− +++= zhzezhzezhzediagM NNdddd L  

[ ]TNkndkndknN )1()()1( 2 −++−+= L  





















=

−−

++

0,2,1,

0,11,1

0,

222

0
00

NNNNN

dd

d

ggg

gg
g

G

uu
L

MOMM

L

L

 



























−+−

+−

−

=

∑

∑

∑

=

+

=
+

=

2

2
)1(

)1(

)(

1

2
1

1

N

Ni
uN

d

i
d

d

i
d

u

Nikug

ikug

ikug

L
M

 

[ ]TNkrdkrdkrR )()1()( 2++++= L  
[ ])()()( 1

1
1

1
1 −

−+
−

+
−= zqzqzqQ

uNddd L . 
Because the cost function J  is quadratic in U , a minimum 
solution for U  is easily obtained from 

0
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which, by letting uN =1, leads to the following present increment 
control output  
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IV. PARAMETER ESTIMATION AND NEURAL 

PREDICTION  
A. System Parameters Estimation 

This subsection modifies the recursive least-squares estimation 
(RLSE) method to identify unknown system parameters. The 
system model (2) can be rewritten as  

)1()()()( −+= knkkky T θζ            (11) 
where 
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Define the error covariance matrix ( ) 1
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for 0≥k . Given )0(θ̂  and )0(P , the least-squares estimate )(ˆ kθ  
then satisfies the following recursive equations 
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where )(kP  denotes a )1()1( ++×++ baba nnnn  symmetric 
matrix and IP δ=)0( , δ  is a positive number and I  is 

)1( ++ ba nn -order unity matrix, and )1(ˆ −kn  is the output of the 
neural predictor. Note that these recursive least-squares estimation 
equations can be easily derived using the least-squares loss function 

( )2)1(ˆ)(ˆ)()(
2
1)( −−−= knkkkykV T θζ in [16]. 

Furthermore, for the system model (11), if the modified RLSE 
equations (12) and (13) are used to identify the model parameter 



vector )(kθ  utilizing appropriate inputs with desired persistent 
excitation conditions, then the estimated parameter )(ˆ kθ  is 
bounded if )1(ˆ −kn  is bounded. 
B. Neural Predictor 

This subsection aims to develop a neural predictor using a 
multiplayer feedforward neural network architecture described in 
[17]. The neural predictor can be trained to learn )1(ˆ −kn  by using 
the input vector  

[ ]Tuy nkudkunkykyx 1)()1()()1( −−−−−= LL .  (14) 
This type of neural predictor has a two-layer perceptron network 
with in  inputs, jn  hidden units, and only one output variable. 
The predictor’s output is denoted by )1(ˆ −kn , and jW  stands for 
the weighting between the hidden and output layers. Mathematically, 
we have  
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where ( )χχ −+=Γ e11)( , 1+−+= dnnn uyi , and ix  represents 
the ith entry of the input vector for the neural predictor. Let ijw s be 
the weightings between the input and hidden layers. To update the 
weightings ijw  of the neural predictor, we define the following 
performance criterion ψ  
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where )()(ˆ)1()(ˆ)()1( 11 dkuzbkyzakykn −−−−=− −− . 
Therefore, the weights can be recursively adjusted in order to 

reduce the cost function ψ  to its minimum value by the gradient 
descent method, and the weights are updated by 
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where η  is so-called learning rate, and )1( −∂∂ kWψ  can be 
calculated as follows; 
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Assume that the weight values )(kwij , )(kW j  for the neural 
predictor (15) are updated using (17), (18) and (19), then the 
predictor (15) will locally converge at an exponential rate, provided 
that the learning rate η  satisfies the following condition: 
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Notice that above statement can be shown by choosing a 
Lyapunov function candidate ( )2)1(ˆ)1(

2
1)( −−−= knknkV  and the 

proof procedure can be referred to [18].  
Using the neural predictor, the j -step-ahead prediction of 

)1(ˆ −kn  can be recursively obtained from employing the following 
input vector  
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where )1(ˆ)()(ˆ)1(ˆ)(ˆ)(ˆ 11 −++−++−+=+ −− mkndmkuzbmkyzamky  and 
dm < . Consequently, the term )1(ˆ −+∆ dkn  in the control 

increment )(ku∆  can be definitely computed utilizing the neural 
predictor. 

 
V. REAL-TIME ADAPTIVE CONTROL ALGORITHM 
To make the controller exhibit adaptive characteristics, we include 

the recursive least-square estimation method in the control loop, and 
propose the sequel real-time adaptive neural control algorithm.  
  Step 1)  Select set-points )(kr . 
  Step 2)  Set d , 2N , 0q , an , bn , yn , un ,  

jn , η , and off-line learn )1(ˆ −kn . 
  Step 3)  Measure the current process output )(ky . 
  Step 4)  Estimate the system parameters )(ˆ 1−za , 

)(ˆ 1−zb  using (12) and (13). 
  Step 5)  Learn )1(ˆ −kn  by the neural network. 
  Step 6)  Compute the increment control output 

)(ku∆  based on (10). 
  Step 7)  Output the control signal )(ku  to the 

control process.  
  Step 8)  Repeat steps 3-7. 

The stability of the adaptive predictive control method relies 
upon convergence of the estimates iâ , ib̂ , )1(ˆ −kn  of system (2) 
by the RLSE method and the neural predictor, respectively. The 
following theorem will state that the aforementioned algorithm has 
zero steady-state tracking errors and is asymptotically stable. 

Theorem 1: Assume that the upper bounds for an , bn , yn , un  
be known, and all set-points )(kr  are set to be constant, i.e. 

rkr =)( . Then the closed-loop system has the following property: 
 { } 0)(lim =−∞→ rkyk .               (22) 

Proof: We substitute the control law (10) into (2) and obtain the 
resultant closed-loop system  
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Theorem 2: Let the error terminal constrain be zero, as can be 

referred to [6] and Theorem 1, and the upper bounds for an , bn , 
yn , un  be known. Then the closed-loop system is asymptotically 

stable. 
Proof: By defining a Lyapunov function candidate 
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which establishes Lyapunov stability of the closed-loop system.. 
 

VI. COMPUTER SIMULATIONS 
  The objective of this simulation is to study the feasibility of the 
adaptive predictive control with neural prediction for the underlying 
two illustrative nonlinear systems. The simulation study also 
includes an investigation of the effect of load disturbances on the 
control system employing the proposed controller. 
A. Example 1 

The following nonlinear system is modified from a model in 
[9]. The simulation was performed for two sets of reference inputs 

)(kr , the time-delay d , and the parameters given by  
)7()2(0036.0)6()1(0088.0)6(0853.0)1(9831.0)( 2 −−+−−−−−−= kukykukykukyky
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Fig. 1 shows the response of the adaptive neural predictive control 
under set-point changes. We observe in Fig. 1 that the proposed 
controller is capable of giving an excellent set-point tracking 
performance. 

In order to investigate disturbance rejection ability of load 
disturbances on the performance of the proposed controller, the 
mathematical model was perturbed to 

)()7()2(0036.0)6()1(0088.0)6(0853.0)1(9831.0)( 2 kvkukykukykukyky +−−+−−−−−−=
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Fig. 2 depicts the simulation result for the proposed controller with 
load disturbances. Consequently, the adaptive predictive control with 
neural networks demonstrated a good disturbance rejection 
capability. 
B. Example 2 

The following modified nonlinear system is taken from [19]. The 
simulation was conducted for two sets of reference inputs )(kr , and 
the time delay d , and the following parameters 

)7()6(5
)1(1

)1()( 2 −+−+
−+

−= kuku
ky

kyky , 












≤<−
≤<
≤<−
≤<

=

800600,1
600400,1
400200,1
2000,1

)(

k
k
k
k

kr  
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Fig. 3 depicts the response of the adaptive neural predictive 

controller under set-point changes. We see in Fig. 3 that the proposed 
controller is capable of giving an excellent set-point tracking 
performance. 

In order to explore the effect of load disturbances on the 
performance of the proposed controller, the model was added with 
an external disturbance, i.e., 

)()7()6(5))1(1/()1()( 2 kvkukukykyky +−+−+−+−=  where 
2.0)( −=kv  at 500300 <≤ k  and 1.0)( =kv  at 500≥k . Fig. 4 

shows the simulation result for the proposed controller with the load 
disturbances. The result reveals that the proposed controller exhibits 
a good disturbance rejection capability. 

 In comparison with the adaptive predictive controller without 
neural predictor, Figs. 5 and 6 show the responses of the proposed 
controller without neural predictor and 150000 =q  for two cases: 
no disturbance 0)( =kv  and perturbed )(kv , respectively. As can 
be seen in Fig. 6, the adaptive predictive without neural predictor 
exhibits a poor performance for the system with the disturbance. 

 
VII. APPLICATION TO A VARIABLE- FREQUENCY 

OIL-COOLING PROCESS  
A. Brief Description of a Variable-Frequency Oil-Cooling Machine  

The temperature control system for the variable-frequency 
oil-cooling machine has been extensively used in the manufacturing 
industry. The oil cooling process developed in [20-21] is composed 
of a compressor driven by a variable-frequency induction motor, a 
condenser, an expander, an evaporator, a pumps and a heat 
exchanger. The dynamics of such a system is highly nonlinear and 
very difficult to obtain its exact mathematical model. The controller 
consists of two platinum temperature sensing modules with an 
accuracy of Co1.0±  of the resistance-to-voltage (R-V) transducers 
and the AD/DA board inserted in the slot of the personal computer 
(PC). There are 32-channel 12-bit analog-to-digital converters and 
2-channel 12-bit digital-to-analog converters ranging from 0 to 5V. 
The 586 compatible PC is responsible for editing, compiling, and 
running the C program codes for the controller. The sampling period 
in this temperature control system is 3 seconds. Fig. 7 shows a 
schematic diagram of the PC-based temperature control system. 
B. Experimental Results and Discussion 

The aims of the temperature control system are to reach the 
set-points during startup as rapidly as possible while avoiding large 
overshoot, and to track the set-points with least errors in the presence 
of set-point changes and load disturbances. Hence, the controller is 
required to meet the following performance specifications: the 
overshoot must be less than Co5.0  and the steady-state error in the 

temperature zone must remain within Co2.0±  for any arbitrary 
constant step commands and disturbances. The following 
experiments were performed to observe whether these goals were 
achieved. In all these experiments, the real-time adaptive control 
algorithm presented in Section V was implemented using the 
PC-based controller. 

The first experiment was adopted to test the set-point tracking 
capability of the proposed method. The appropriate values of the 
maximum output horizon 2N  and the weighing value 0q  were 
carefully chosen so as to enable the overall system to meet the 
required performance specifications. This controlled experiment was 



conducted with the following parameter settings 
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Figs. 8 and 9 display the set-point tracking response and the control 
signal of the PC-based temperature control system. The resultant 
maximum overshoot was less than Co5.0  and the steady-state 
errors remained within Co2.0± . 

The second experiment was performed to examine tracking and 
disturbance rejection capabilities of the designed controller in the 
presence of a heat load change of 1000 Watts for the time duration 

820410 ≤≤ k . Figs. 10 and 11 show the temperature response and 
control signal of the proposed controller with the setpoint 

Ckr o20)( =  for the temperature control system. We observe in Fig. 
10 that the steady-state temperature errors remained within 

Co2.0± , and the proposed adaptive neural predictive control would 
exhibit acceptable disturbance rejection ability. 

 
VIII. CONCLUSIONS 

  This paper has presented a systematic design methodology to 
develop an adaptive neural predictive control with integral action for 
a class of nonlinear SISO systems with time-delay. Such systems are 
assumed to be well approximated by combining linear system 
models with nonlinear time-varying terms. The set-point tracking 
and load disturbance rejection capabilities of the proposed method 
can be improved by slightly modifying the performance criterion 
function. The stability and properties of the overall closed-loop 
system are investigated as well. The proposed real-time control 
algorithm, consisting of the recursive least-squares estimator, the 
neural predictor, and the modified generalized predictive control law, 
has been successfully applied to achieve the performance 
specifications for two illustrative highly nonlinear systems and one 
physical variable-frequency oil-cooling process. Through computer 
simulations and experimental results, the proposed method has been 
proven useful and effective under the conditions of set-points and 
constant load changes.  
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Fig. 1. Set-point tracking simulation result for the adaptive predictive 

controller with neural prediction 
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Fig. 2. Simulation result for the controller in the presence of load disturbances. 
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Fig. 3. Set-point tracking simulation result for the adaptive predictive 

controller with neural prediction. 
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Fig.4. Simulation tracking result for the proposed controller in the presence of 

the load disturbances 
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Fig. 5. Set-point tracking simulation result for the adaptive predictive 

controller without neural prediction 
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Fig. 6. Poor tracking result for the proposed controller without neural 

prediction for the load disturbances 
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Fig. 7. A schematic diagram of the PC-based temperature control system 
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Fig. 8. Set-point tracking response of the adaptive predictive controller with 

neural prediction 
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Fig. 9. Control signal of the controller 
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Fig. 10. Temperature response of the controller with the load changes 
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Fig. 11. Control signal of the controller with the load disturbances 
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