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Abstract − This paper presents a model predictive control 
based trajectory optimization method for Nap-of-the-Earth 
(NOE) flight including obstacle avoidance, emphasizing the 
mission objective of low altitude at high speed. A NOE 
trajectory reference is generated over a subspace of the 
terrain. It is then inserted into the cost function and the 
resulting trajectory tracking error term is weighted for 
more precise longitudinal tracking than lateral tracking 
through the introduction of the TF/TA ratio. Obstacle 
avoidance including preclusion of ground collision is 
accomplished through the establishment of hard state 
constraints. These state constraints create a ‘safe envelope’ 
within which the optimal trajectory can be found. Steps are 
taken to reduce complexity in the optimization problem 
including perturbational linearization in the prediction 
model generation and the use of control basis functions. 
Preliminary results over a variety of sample terrains are 
provided to show the mission objective of low altitude and 
high speed was met satisfactorily without terrain or 
obstacle collision, however, methods to preclude or deal 
with infeasibility must be investigated as speed is increased 
to and past 30 knots.   

I. INTRODUCTION 

S URVIVABILITY is a primary research objective for 
unmanned aerial vehicles.  It is inherently obvious that 
as threat exposure increases, so does the probability of 

vehicle attrition. To effectively counter threat exposure, 
suitable guidance and control algorithms can take 
advantage of terrain masking through Nap-of-the-Earth 
(NOE) flight (less than 10m AGL) while simultaneously 
flying as fast as possible to enhance survivability if 
detected. This high speed requirement differentiates our 
research from traditional autonomous NOE flight which 
typically sacrifices velocity to attain fine altitude tracking. 
For such missions that involve cluttered, dangerous terrain, 
our high-speed, NOE flight objective translates to a highly 
constrained control problem. It is assumed that at low 
altitudes, the vehicle will be operating with an incomplete 
obstacle map which will be continuously updated with 
real-time sensor data. This motivates the need for an 
efficient algorithm for introducing new obstacle 
knowledge into the trajectory optimization to allow 
dynamic trajectory replanning. 

To obtain the high accuracy tracking performance 
crucial to survival at the low altitudes defining NOE flight, 
optimal control is a prime candidate for trajectory 

generation. However the high computational burden 
presented by optimal control is a known constraint on this 
control strategy. In attempt to reduce computational burden 
on the optimizer and take advantage of the “look ahead” 
that a human pilot is able to provide, predictive control 
was first proposed as a solution to the terrain following 
control problem in 1989 by [1]. Since then, there have 
been many applications of various forms of model 
predictive control (MPC) reaching beyond the terrain 
tracking problem to issues of trajectory optimization and 
obstacle avoidance, [2] – [4]. Specifically relating to this 
research effort, [3] applied non-linear model predictive 
control (NMPC) to combine the trajectory generation and 
tracking problems. They define a quadratic cost function 
with an output trajectory tracking error term, a control term 
and an additional term, introduced to bound the state 
variables that do not directly appear in the output. This 
cost is minimized subject to input constraints, guaranteeing 
physically realizable trajectories. In a 2-D urban terrain 
guidance and control problem, [4] utilized NMPC with 
hard constraints to accomplish obstacle avoidance. This 
research seeks to take advantage of the obstacle avoidance 
inherent with the application of hard state constraints and 
extend it to ground collision avoidance for NOE flight. It 
also seeks to combine the trajectory generation and 
tracking problems using MPC in a fashion that lends itself 
to real-time implementation and dynamic replanning based 
on sensor updates. 

In the following research, a NOE trajectory reference is 
generated over a sample terrain at a nominal velocity. We 
define a cost function which introduces a Terrain 
Following / Terrain Avoidance (TF/TA) parameter similar 
to that of [5] allowing the user to adjust to what degree the 
reference trajectory is tracked longitudinally at the expense 
of the lateral tracking performance. This cost function is 
minimized by MPC subject to dynamic vehicle constraints, 
output constraints defined by a ‘safe’ envelope in the 
earth-frame and control input constraints. The resulting 
control sequence synthesizes a trajectory at 6 meters above 
the ground, which is guaranteed to preclude obstacle and 
terrain collisions, thus achieving our goal of high-speed, 
low altitude flight. 



II. TRAJECTORY OPTIMIZATION USING MODEL 
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Model predictive control (MPC) is a repeating, finite 
horizon optimal control scheme which uses an internal 
model of the plant dynamics (prediction model) to predict 
vehicle response and future states, thus minimizing the 
current error and optimizing the future trajectory within the 
prediction horizon [7, 8]. MPC produces a trajectory of 
control inputs to optimize the system states utilizing a 
quadratic form cost function similar to standard linear 
quadratic tracking.  However, specific to finite horizon 
control, the cost is summed over the finite prediction 
horizon of time length TH = Ts*H, rather than over an 
infinite time horizon. In this MPC formulation, the 
following cost is minimized to determine the optimal 
sequence of commands uk in the prediction horizon length 
H: 
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The optimizer is charged with finding the optimal 
linearized perturbational control, δu, from which u = u0 + 
δu can be found. 

Second, to further decrease complexity, rather than 
explicitly calculating A(x0, u0), B(x0, u0), C(x0, u0) and 
D(x0, u0) for each step along the horizon, an input-output 
mapping is constructed using a set of control basis 
functions, similar to those described in [4]. Control basis 
functions are predefined sequences of controls prescribed 
for the length of the predictive horizon. 

Given these predefined sequences, the complexity of the 
optimization problem can be greatly reduced with 
comparable performance by charging the optimizer to find 
scale factors (α) for the basis functions as opposed to 
finding a separate control for each step along the horizon. 
For this work, we have selected tent functions consisting 
of a positive slope ramp up to a peak followed by a 
negative ramp back down to zero, as plotted in Fig. 1. Two 
second pulse widths were determined by simulation to 
adequately reduce complexity while maintaining 
performance standards. 

( ) ( )∑
−+

=
++++ +−−=

1

1111 ,
Hi

ik
kk

T
kkkk

T
kki uRuryQryJ  (1) 

where yk+1 is the output state at time tk+1, rk+1 is the state 
reference trajectory at time tk+1, and Qk and Rk are the 
tracking and control input weighting matrices in the 
horizon H. Once the control sequence has been 
determined, the first N (where N is a subinterval of H) 
inputs ui through ui+N are applied and the calculation is 
repeated. Thus, the selection of N determines the MPC 
rate. MPC literature has indicated that choosing an 
insufficient prediction horizon length TH leads to 
instability [7, 9]; therefore a sufficiently long horizon (10 
sec) was determined by tests and selected. 

 

In this research, MPC plans trajectories for a 6-degree-
of-freedom (6-DOF) helicopter between an initial and a 
final known set-point following the terrain and 
appropriately avoiding any obstacles encountered. To 
achieve this, some simplifications must be made as online 
optimization, even for a finite horizon, tends to be very 
computationally intensive [10]. To help reduce the 
problem size and alleviate the burden on the optimizer, two 
simplifications have been incorporated into the problem 
definition. 

Fig.1. Sample basis function control sequences for a 10 second prediction 
horizon. 

 

The input-output mapping is created by using the 
linearity between input and output.  The vector δu is 
simply a linear combination of the basis functions: 

First, the prediction model is generated for MPC by 
perturbational linearization of the 6-DOF non-linear model 
about an updating nominal output and control trajectory. 
The nominal control (u0) is set as the trim controls for the 
initial iteration, and for every step thereafter it is updated 
as the output of the previous optimization cycle. The 
nominal output trajectory (y0) is calculated using the 
nonlinear input/output relationship defined in the 
helicopter model by integrating the helicopter equations of 
motion for each step in the horizon length, with initial 
conditions of the current position and the nominal control 
input. 
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With the nominal control and output trajectory 
established, perturbational analysis can be used to linearize 
the model around these trajectories. Perturbing the 
nonlinear model, , the following is obtained:  ),( uxFx =&

      δu     =               Β                         α   (6A) 
 =            [b1, b2 … b5]                 α.  (6B) 
 



Based on our linear model, the output δy would be the 
same linear combination of each basis function output, sn, 
which is simply the vector output of each basis function 
after it has been input to our nonlinear system model.  
Thus as δu = Βα, δy = Sα where S = [s1, s2 … s5]. 

The cost function can then be described in terms of the 
nominal and perturbed states: y = Sα + y0 and u = Βα + u0 
yielding: 
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This will be revisited in section V which discusses the 
implementation of the reference trajectory and 
performance objectives within the cost. 

Fig.2. Constraint application method for obstacle avoidance where yLOW(t) 
and yUP(t) are the lower and upper bounds set on y in the MPC loop at 
time t. III. TERRAIN FOLLOWING REFERENCE TRAJECTORY 

GENERATION  

the closest upper obstacle is set as the upper limit for that 
particular point and the closest lower obstacle is set as the 
lower limit, (Fig. 2, t = t1). When obstacles requiring a 
longitudinal response are detected within the prediction 
horizon radius (TH*VNOM meters), the obstacle height plus 
safety margin is set as a lower bound for that point, no 
lateral constraints are imposed. If no longitudinal-response 
obstacles are detected, the minimum allowable altitude 
above ground is set to preclude ground collision.  For the 
purposes of this application, a hard upper limit for altitude 
is never set although a threat defined maximum altitude 
limit similar to the lateral map limits could easily be 
imposed.  Soft constraints in the cost function stipulate that 
the optimizer maintain reference altitude which can be 
weighted for more precise longitudinal tracking than 
lateral tracking through the TF/TA ratio, discussed in 
detail in section V.  

To establish the reference trajectory from which the 
actual trajectory will be subtracted in the cost function, we 
follow what is typical to most terrain following systems 
and start with an initial waypoint and a final waypoint, 
using a straight line path between the two as our first guess 
at a nominal 2D trajectory. The z-dimension is inserted 
from elevation data corresponding to each (x,y) reference 
coordinate. The terrain following reference path is set at 
the desired distance, 6 meters for this case, above the 
ground level along our 2D trajectory. Finally, the complete 
reference trajectory is synthesized by sampling our 3D 
reference trajectory at the simulation rate assuming the 
nominal velocity selected for the simulation. In addition to 
the earth frame reference trajectory including x, y and z, a 
Ψ reference was added to assert vehicle attitude. 

IV. CONSTRAINT BASED OBSTACLE AVOIDANCE We convert the output spatial constraints into 
constraints on the control scale factors, α.  Since the 
optimizer is being charged to find scale factors for each 
control basis function, the relationships derived in section 
3;  u = Bα+u0 and y = Sα+y0, are inserted to express all 
output, state and control input constraints in terms of 
α. This yields the traditional form: 

Recent obstacle avoidance strategies make use of two 
main ideas: reference trajectory modification to produce or 
enhance obstacle avoidance response [4,11] and/or 
definition of ‘safe envelope’ (either by hard or soft 
constraints) within which the new trajectory is to be 
planned, [4,5,6]. Our method uses the ‘safe envelope’ idea. 
To handle obstacles, we define a constraint free, convex 
feasible space that excludes the obstacle and terrain spaces 
and constrain the optimizer to produce the sequence of 
controls (H-interval long) that produce spatial trajectories 
within this feasible solution space. This assures obstacle 
and terrain collision avoidance. In addition to the terrain 
itself, this research deals with two types of obstacles: trees 
which require the helicopter to fly around them, and utility 
wires which require overflight. (For this study, flight under 
wires is not considered a feasible solution.) Laterally, the 
convex feasible set is defined to constrain the optimizer to 
search for a path in an obstacle free subspace by setting an 
upper and/or lower bound determined from the location of 
the closest obstacles in range, (Fig. 2, t = t3). If multiple 
obstacles are detected within this radius for a given point,  
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V. MISSION OBJECTIVE INCLUSION INTO THE COST 
FUNCTION MINIMIZATION 

The performance objectives of low altitude and high 
speed are folded into the optimization problem through the 
desired reference trajectory (r), however, note this is also 
enforced through the selection of TF/TA ratio, ω, within 
the state weighting term, Q. Within Qk, set for each time-
step k along the prediction horizon, the x, y and Ψ weights 
are set to 1 and the z weight is set to ω:  Qk = [1, 1, ω, 1]. 
A high value for ω here will allow little deviation from the 
set altitude about ground while allowing the xy-track to  
 



meander. A smaller value will emphasize lateral tracking 
while not attending as highly to maintaining the precise 
distance above ground, (a safety margin will be enforced 
by constraints in either case). It is worth noting 
additionally that any performance objectives could be 
folded in here, making MPC online optimization a very 
versatile and effective way to deal with real-time 
reconfiguration and control needs. When the cost function 
described in (7) is minimized subject to the constraints 
defined in the previous section, the resulting scaled 
controls synthesize a trajectory with minimal deviation 
from the reference trajectory while avoiding encountered 
obstacles and terrain features.  

VI. SIMULATION 

A. Vehicle Model 
The vehicle selected for this research is the Yamaha R-

50 helicopter. Standard helicopter non-linear equations of 
motion were obtained and R-50 mass properties were 
inserted. These equations were linearized for use within 
MPC as the prediction model described in section II.  In 
simulation, the resulting MPC trajectory/constraint 
generator and controller were applied to the non-linear 
dynamics; however, no outside disturbances (wind, 
weather, failures) have been simulated so far. Thus for the 
results presented, the only difference between the internal 
model and the actual plant are the errors in perturbational 
linearization. Future work will include application of these 
algorithms to a high fidelity helicopter model.  For this 
simulation, the MPC loop was run at 2 Hz to compute the 
20 Hz controls. We assume full state feedback, eliminating 
the need for an estimator.  In future work, disturbance 
rejection and the effects of state estimation will be 
investigated as well as the possible addition of an inner 
loop stability augmentation system.  

The control constraints that were placed on the vehicle 
(and converted to constraints on the scaling factors, α) are 
the following: 

  0G  ≤    Main Rotor Thrust ≤   3½G 
-20˚ ≤     Pitch Cyclic  ≤   20˚  
-20˚ ≤     Roll Cyclic   ≤   20˚ 
-½G   ≤    Tail Rotor Thrust  ≤   ½G 

B.  Specific Problem Definition 
In this simulation, our optimizer choice, SQOPT 

(software available at http://www.sbsi-sol-optimize.com/), 
was charged with finding the optimal control trajectory 
(using control basis function scale factors) to fly the 
helicopter down two different terrain cross sections taken 
from the area around Mt. Adams in Washington State, 
appropriately avoiding any obstacles detected along the 
way. From the input latitudinal and longitudinal 
coordinates, the appropriate portion of the online Digital 
Terrain Elevation Data (DTED) Level 0 map was extracted 
and interpolated to 12.5 meter resolution. Ultimately it is 
expected that this information will be augmented with real- 
time terrain sensor feedback data which will replace our 
 

interpolation. The interpolated data is then converted to 
Cartesian coordinates with the origin set at the initial 
waypoint, and (x,y,z) corresponding to (latitude, longitude, 
altitude). Then at each timestep, through the Euler angles, 
the body velocities are rotated to the earth-frame allowing 
the reference of 6 meters above terrain to be specified and 
tracked in the earth-frame. We set the TF/TA ratio ω = 10 
to enforce the desired altitude reference. 

C.  Obstacles 
The interpolated terrain was populated randomly with 

the two different types of obstacles; lateral obstacles (trees, 
poles, etc.), modelled as cylinders which require ‘go-
around’ obstacle avoidance response, and longitudinal 
obstacles (utility wires, etc.), modelled as walls which 
require ‘go-over’ obstacle avoidance response.  For this 
study, it is assumed that sensor information is preprocessed 
to provide MPC with obstacle location and size 
information (including the discernment between lateral or 
longitudinal required obstacle responses) within a 150 
meter radius of our vehicle.   

VII. RESULTS 

A. Tracking 
As mentioned in the problem definition, tracking 

performance was evaluated in this research over a range of 
terrain sections.  These sections were selected measuring 
their relative difficulties by the change in required flight 
path angles commanded over the prediction horizon. The 
first piece of terrain selected for investigation is marked by 
relatively low maximum flight path angle magnitudes 
(maximum of 40º) and little overall deviation in the terrain 
slope.  Fig. 3 shows the simulation data plotted against the 
actual terrain at 10 and 20 knot nominal velocities and Fig. 
4 exhibits the respective tracking errors, defined to be the 
difference between the achieved position and the reference 
position. Predictably, given their linear references, the 
lateral tracking shows average tracking errors in X and Y 
of approximately 1 meter with maximum errors of 3 
meters. Doubling the nominal velocity from 10 to 20 knots 
does not significantly attenuate the tracking performance, 
however, when the terrain severity increases with the 
second terrain section, we expect to see a degradation of 
performance with increase in nominal velocity.  Though it 
is not immediately clear in the 3D plot of the trajectory, the 
error plot shows clearly that longitudinal (Z) reference 
tracking is very accurate even at nominal velocities of 20 
knots, with an average tracking error of approximately 1 
meter with a maximum error of less than 3 meters. These 
higher altitude tracking errors entered in the steepest climb 
and descent phases of the terrain traversing the slopes near 
the end of the reference path.  As for the higher nominal 
velocities of 25 and 30 knots, the optimization became 
infeasible when the helicopter encountered required flight 
path angles greater than ~30º in the reference terrain. This 

http://www.sbsi-sol-optimize.com/


Fig. 3.  Terrain Section 1 plotted with simulation data at 10 and 20 knot 
nominal velocities.  White line = 10 knots, Black dashed line = 20 knots.  

 

 
Fig. 5.  Terrain Section 2 plotted with simulation data at 10 and 20 knot 
nominal velocities.  White line = 10 knots, Black dashed line = 20 knots. 

 
Fig. 6.  Terrain Section 2 reference tracking errors in X, Y and Z for 10 
and 20 knot nominal velocities. 

Fig. 4.  Terrain Section 1 reference tracking errors in X, Y and Z for 10 
and 20 knot nominal velocities.  

  

This shows that the choice of TF/TA ratio was effective as 
when longitudinal tracking approached the constraints, 
lateral tracking which remained relatively unconstrained, 
was sacrificed to maintain feasibility. The altitude tracking 
errors approach but never exceed the hard ground 
constraint, therefore the application of hard minimum 
altitude constraints has proven to be effective to prevent 
ground collision. In actual application of this constraint, a 
safety margin allowing for the size of the vehicle should be 
added to the actual terrain height. 

is not entirely unexpected as we observe an increase in 
tracking error as the nominal velocity increased. This 
becomes more pronounced as the more severe cross 
section is traversed. We hypothesize that at the higher 
flight path angles, we approach the limits of the helicopter 
maneuverability at high speeds. The published helicopter 
limits show that helicopter maneuverability crests at a 
certain operational speed then rapidly decays due to 
quicker vehicle control saturation associated with increase 
in speed. We believe that increasing the prediction horizon 
via an increased sensor range at these higher velocities 
would aid in preventing this infeasibility. 

As with terrain section 1, nominal velocities of 25 and 
30 knots aborted their optimizations due to infeasibility as 
they met the more severe flight path angle requirements. 
As an extension of this paper, the next area of our research 
will involve infeasibility investigation and formulation of 
formal tuning suggestions for MPC parameters (horizon 
lengths and cost weightings) in order to achieve desired 
performance over extreme changes in required flight path 
angle. 

The second terrain section was selected due to its 
extreme (increasing steadily in magnitude to ~60˚) flight 
path angle requirements.  Fig. 5 shows simulation data 
plotted against the actual terrain at 10 and 20 knot nominal 
velocities and Fig. 6 shows a plot of the tracking error for 
each axis, X, Y, and Z, as previously defined. As expected, 
this terrain resulted in degraded tracking performance in all 
three axes compared to the first terrain section. Lateral 
tracking exhibited higher errors overall, specifically in the 
sections when altitudes approached the hard constraints. 
 

B. Obstacle Avoidance 
The helicopter successfully avoided all obstacles without 

violation of the set safety margins at the nominal velocities 



Fig. 7:  Y Position vs. X Position Close-up of Lateral Obstacle Avoidance 
and Reference Regeneration with varying speeds 

 
Fig. 8: Altitude vs. X Position Close-up of Longitudinal Obstacle 
Avoidance with Varying speeds 
  

tested. The reference trajectory was redrawn successfully 
in the lateral obstacle case so that the new shortest distance 
between the endpoint and the current position became the 
updated reference track. Fig. 7 shows a bird’s eye view of 
the lateral obstacle avoidance and reference regeneration. 

to investigate the sensitivities of performance in the 25 
knot to 60 knot range to these four parameters. 
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