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Abstract—Performance and robustness of model-based 

control system are sensitive to the modeling error, especially to 
the dead-time identification error. Support vector machine 
(SVM) employs structure risk minimization principle to 
control model complexity and the upper bound of 
generalization risk. If the seeking dead-time contained in 
training data equals dead time of actual plant, the trained SVM 
will have the lowest complexity. The identification procedure is 
described as follows. Firstly, specify a dead-time seeking range 
based on the prior process knowledge. Secondly, construct 
training data sets from input-output data according to 
different dead times in seeking range and train SVMs 
respectively. Finally, the estimated dead-time can be obtained 
through comparing the numbers of support vectors of all 
trained SVMs. A lot of discrete simulations for the first order 
plus dead-time system have been done to illuminate the 
effectiveness of proposed method. 

I. INTRODUCTION 
ead-time in many industrial processes is a 
well-recognized phenomenon. It may be caused by 
transportation of materials, sampling time, 

requirements for human intervention. As the dead-time of an 
open loop transfer function increases, the crossover 
frequency decreases. If a process has a relatively large 
dead-time compared to the dominant time constant, the 
achievable performance of conventional feedback control 
(e.g. PID control) systems can be significantly degraded. In 
order to enhance the performance of closed loop system, 
dead time compensation may be necessary. The popular 
schemes for such compensation are the Smith Predictor and 
Internal Model Control scheme [1]. They are all model 
based control schemes. Unfortunately, their performance 
and stability are all sensitive to the modeling error, 
especially to the dead-time error. Large dead time modeling 
error can cause the closed loop system unstable. Therefore, 
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it is significant for model based control system to precisely 
identify the process dead-time. 

There are various dead-time identification methods. 
They may be broadly classified into time domain and 
frequency domain techniques. There are three main time 
domain methods: multiple model estimation method, 
gradient method, and experimental open loop method. When 
using frequency domain techniques, one must estimate the 
process frequency response firstly and the use graphical or 
analytical method to obtain the model parameters. [2] 

In this paper, we propose a novel method for process 
dead-time identification: support vector machine approach. 
It belongs to time domain method. Applying the property of 
SVM, the process dead-time can be identified precisely by 
proposed method. The method is composed of three steps. 
Firstly, specify dead-time seeking range and construct 
training data sets from sampling data according to the 
different dead-time in seeking range. Secondly, train SVM 
using the constructed training data sets and obtain a couple 
of trained SVMs. Finally, compare the support vector 
numbers of all trained SVMs and obtain the dead time of 
actual plant. 

This paper is organized as follows: in section 2 basic 
principles of SVM are introduced; the identification 
approach is proposed in section 3; a lot of simulations results 
are proposed in section 4; we draw some conclusions in last 
section. 

II. SUPPORT VECTOR MACHINE (SVM) 
SVM was first suggested by Vapnik in 1960s for 

classification and the whole SVM framework was entirely 
described in 1995. SVM, based on statistical learning theory, 
is a training algorithm for classification, regression, and 
density approximation. It holds the Structural Risk 
Minimization (SRM) principle, which has been shown to be 
superior to traditional Empirical Risk Minimization (ERM) 
principle, employed by conventional neural networks. SRM 
minimizes an upper bound on the VC dimension, as opposed 
to ERM that minimizes the error on the training data [4]. 
This principle incorporates capacity control to prevent over 
fitting. The parameters of SVM are obtained from solving 
optimal problem with a convex objective function. 
Therefore, the local-minimum problem is not existed in 
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SVM training procedure. In addition, the generalization 
ability can be guaranteed when employing small sizes 
sample data to train the SVM. 

It is well known for a given sample size that there exists 
a model of optimal complexity corresponding to the smallest 
generalization error. Then, any approach for learning from 
finite samples needs to have some methods for complexity 
control. VC-theory provides a very general and powerful 
framework for complexity control. For regression problems 
with squared loss function the following bound on 
prediction risk holds with probability 1-η[4]:  
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where R(η) is the generalization error, h is the 
VC-dimension of the set of approximating functions, c and a 
are constants, and n is the sample size. In practical use, a is 
often selected as 1. From (1), we can draw a conclusion that: 
for a given sample set the smaller the h is, the smaller the 
upper bound of generalization risk is. Hence, the 
VC-dimension (complexity) of approximation model 
reflects the generalization errors. 

VC-dimension is defined as: there exists a set of points 
xn such that these points can be separated in all 2n possible 
configurations, and that no set xm exists where m>n 
satisfying this property. For a set of linear functions the 
VC-dimension equals the number of free parameters [4]. 

When SVM is applied to solve the regression problem, 
it is called Support Vector Regression (SVR). SVR is 
formulated as follows. Given a set of input-output 
data {( , ), 1,..., }i ix y i n= , where N

ix R∈  is the 
N-dimension input vector and yi is the corresponding system 
output. For linear regression, assume that the estimated 
regression in the set of linear functions is:  

( ) ( )f x w x b= ⋅ +      (2) 
where w  and b are the weight and bias, respectively. The 

weight w has the following form: *
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iα  and *
iα are the Lagrange multipliers and l is the number 

of support vectors. For nonlinear regression, assume that the 
estimated regression in the set of nonlinear functions is: 

( ) ( )f x w x bϕ= ⋅ + , where ( )xϕ is a kind of kernel 
function that satisfies the Mercer’s condition. The weight 

w  has the following form: *

1
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a loss function to obtain the Lagrange multipliers and the 
bias term. The loss function can be defined as quadratic loss 
function, Huber loss function, and є-insensitive loss 
function. In practice, є-insensitive loss function is often 

employed. The parameters can be calculated by the 
following procedure. Transform the original problem to the 
dual problem: Minimize  
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where C is the regulation control parameter and 
pre-specified by user, *ξ andξ are slack variables, and ε is 
the noisy control parameter. If the data is “polluted” by large 
magnitude noise, ε should be selected to be a large one. If 
one chose ε to zero, all the training vectors will be support 
vectors and the generalization ability of SVR will be very 
poor. In order to guarantee the sparseness, ε should not equal 
zero. 

 

III. PROCESS DEAD-TIME IDENTIFICATION THROUGH SVM 
The key purpose in system identification is to find a 

suitable model structure with suitable parameters to 
represent the real process dynamic. It is important to select 
regression vector during the regression estimation.  

In this paper, we study the first order plus dead time 
discrete system:  

( 1) ( ) ( - )y k a y k b u k d+ = ⋅ + ⋅        (5) 
where y(k+1), y(k) are respectively next step predictive 
values of plant output and current plant output, u(k-d) is the 
d step before control input. a and b are the plant parameters. 
d is the delay step. If the sampling period is Ts, the dead-time 
of system will be d·Ts. In discrete system (5), dead-time 
identification is equal to identifying delay step d. 

 The main goal in this paper is to applying SVM to find 
the delay step d. Identification principle will be introduced 
as follows. When we approximate this dynamic system 
using SVM, the first problem is how to construct the training 
data,{( , ), 1,..., }i ix y i n= . From (5), the optimal selection 

of regression vector ix should be [y(k) u(k-d)]T. Then, the 
training data set is composed of regression vectors and 
corresponding plant outputs, {[ y(k) u(k-d)]T, y(k+1) },  
k=d+1, …., d+n. Unfortunately, the dead time of plant is 
unknown. On the other hand, the goal of training SVM is to 
obtain the cause-effect relationships hiding behind the 
training data. In this problem, the “cause” is the regression 
vector, [y(k) u(k-d)]T, and the “effect” is the corresponding 
plant output y(k+1). If we choose a delay step d’ which 
equals the real plant dead time (correct cause) to construct 
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training data set and train SVM, the trained SVM will have 
minimal complexity. Remember that the VC-dimension for 
linear function set equals the number of the free parameters. 
Therefore, for linear SVR the VC-dimension equals l+1 if 
number of support vectors of trained SVR equals l. Then, the 
SVM, trained by appropriate constructed training data, has 
minimal number of support vectors. Otherwise, the SVM 
will increase more complexity (the number of support 
vectors) to fit for the wrong cause-effect relationship hiding 
in the inappropriate constructed training data. According to 
the above explanation, we summary the dead time 
identification procedure as follows. Firstly, specify a dead 
time seeking range [d’

min, d’
max] around the real plant delay 

step and construct different cause-effect training data sets 
according to the different d’ in the seeking range. d’

min and 
d’

max, which are specified by user based on the prior plant 
knowledge, are the lower bound and upper bound of delay 
step, respectively. The constructed training sets have 
following form: {( , ), 1,..., ; 1,..., }k k

i ix y i n k m= = , 
where n and m are the numbers of training data and training 
sets, respectively. Secondly, train the SVM using the m 
different training sets. Finally, compare the numbers of 
support vectors of all the trained SVMs and find the optimal 
SVM with minimal complexity, i.e. minimal number of 
support vectors. Then the delay step d’ corresponding to the 
optimal SVM is the real delay step. 

IV. SIMULATION RESULTS 
In this section, we present eight simulations for a first 

order plus dead time plant with eight different delay steps in 
order to verify the proposed idea. The plant is 

( 1) 0.9512 ( ) 0.07316 ( - )y k y k u k d+ = ⋅ + ⋅     (6) 
The sampling period is 0.1 second. The nine different 
delay steps and corresponding delay step seeking ranges 
are displayed on Table I.  
1) The simulation procedure is described as follows. 
2) Choose a delay step d from Table I. Substitute d to (6). 
3) Employ signal 1+sin(10t+5)+sin(2t+1) as plant input. 

Stimulate the plant and record the input and output data. 
4) Construct d’

max-d’
min training sets according to the 

different d’ within seeking range. Each training set has 50 
elements.  

5) Train SVM with the d’
max-d’

min training sets.  
6) Compare the numbers of support number of trained 

SVMs and obtain the real delay step.  
7) Change the plant delay step and repeat the step 2 to step 6 

till all nine plants are simulated. 
TABLE I 

 DELAY STEP OF PLANT AND THEIR CORRESPONDING SEEKING RANGES 
d 0 4 10 20 30 44 60 80

d’
min 0 0 5 15 25 39 65 75

d’
max 10 10 15 25 35 49 65 85

Note that in SVM framework there are two open 

parameters, ε and regulation parameter C. It means that C 
and ε are selected by users according to the different 
application. In this paper we chose ε=0.01 according to our 
experience. In order to study the influence of C, ten 
simulations have been done for each plant delay step under 
the conditions that C is selected as 0.5, 4, 9, 15, 25, 60, 100, 
500, 1000, infinite. 

The simulations results are shown in appendix table II 
to VIII. Each table contains the results for a plant delay step 
with different C. The elements in the first row of each table 
are the seeking delay steps, while the first column elements 
of each table are the different C. The SV numbers of SVM 
trained by different training sets and different C are shown in 
each table. The least numbers of support vectors are marked 
by bold font. In order to display the results intuitively, Fig.1 
shows the curves of SV numbers in the cases that the real 
plant delay step is 20 and C is set to 25 and 100. 

 From appendix tables and figure 1, we can get that: 

1) The results are stable in respect of C while C is larger 
than 9. When C is smaller than 9, we cannot use this 
method to identify the delay step (dead time).  

2) When the seeking delay step equals real plant dead 
time, the SV number is decreased dramatically. The 
proposed method is sensitive to identifying the delay 
step (dead-time) through detecting the model 
complexity. 

 

V. CONCLUSIONS 
Under SVM frameworks, the SV number reflects the 

model complexity for linear regression. It is important for 
approximating plant model to select appropriate regression 
vectors. Inappropriate selection of regression vector will 
decrease generalization ability of trained model. When the 
delay step of training data does not equal the real plant delay 
step, the SVM has to increase complexity to fit the wrong 

Fig. 1.   Results while actual delay step is 20 (solid line: C=25; dashdoted 
line: C=100) 
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cause and effect relationship. 
The selection of C is robust for proposed method. 

When C varies in a wide range, the proposed method can 
identify the dead time of real plant precisely.  

The proposed method is sensitive to identifying the 
dead time of real plant.  

The novel delay step identification method has been 
verified by lots of simulations. 

 
 
 
 
 
 
 

APPENDIX 

 
TABLE II 

 SIMULATION RESULTS WHERE DELAY STEP OF ACTUAL PROCESS IS 0 

d’ 

C 
0 1 2 3 4 5 6 7 8 9 10

0.5 48 49 49 48 49 46 47 49 48 47 49

4 48 47 47 48 46 47 48 48 48 47 46

9 34 44 47 46 46 45 43 45 46 50 48

15 20 39 43 43 45 41 46 47 49 49 48

25 14 42 42 40 42 40 47 47 44 47 47

60 6 39 39 41 40 39 48 42 43 45 42

100 4 37 39 39 42 40 46 42 46 48 42

500 4 35 40 41 43 39 44 43 47 47 41

1000 4 35 38 41 43 38 44 43 46 46 41

Inf 4 41 36 36 43 44 45 45 46 43 40

 
 

TABLE III 
 SIMULATION RESULTS WHERE DELAY STEP OF ACTUAL PROCESS IS 4 

d’ 
C 0 1 2 3 4 5 6 7 8 9 10

0.5 49 50 48 50 48 49 49 48 49 46 47

4 49 45 49 47 48 47 47 48 46 47 48

9 47 45 42 45 34 44 47 46 46 45 43

15 43 46 40 44 20 39 43 43 45 41 46

25 41 41 38 45 14 42 42 40 42 40 47

60 39 39 41 40 6 39 39 41 40 39 48

100 39 40 42 40 4 37 39 39 42 40 46

500 37 39 43 40 4 35 40 41 43 39 44

1000 37 38 43 39 4 35 38 41 43 38 44

Inf 43 41 37 39 4 41 36 36 43 44 45

 
 

TABLE IV 
SIMULATION RESULTS WHERE DELAY STEP OF ACTUAL PROCESS IS 10 

d’
C  5 6 7 8 9 10 11 12 13 14 15

0.5 50 49 50 48 50 48 49 49 48 49 46

4 47 49 45 49 47 48 47 47 48 46 47

9 47 47 45 42 45 34 44 47 46 46 45

15 45 43 46 40 44 20 39 43 43 45 41

25 44 41 41 38 45 14 42 42 40 42 40

60 44 39 39 41 40 6 39 39 41 40 39

100 42 39 40 42 40 4 37 39 39 42 40

500 44 37 39 43 40 4 35 40 41 43 39

1000 45 37 38 43 39 4 35 38 41 43 38

Inf 40 43 41 37 39 4 41 36 36 43 44

 
 

TABLE V 
SIMULATION RESULTS WHERE DELAY STEP OF ACTUAL PROCESS IS 20 

d’
C 15 16 17 18 19 20 21 22 23 24 25

0.5 50 49 50 48 50 48 49 49 48 49 46

4 47 49 45 49 47 48 47 47 48 46 47

9 47 47 45 42 45 34 44 47 46 46 45

15 45 43 46 40 44 20 39 43 43 45 41

25 44 41 41 38 45 14 42 42 40 42 40

60 44 39 39 41 40 6 39 39 41 40 39

100 42 39 40 42 40 4 37 39 39 42 40

500 44 37 39 43 40 4 35 40 41 43 39

1000 45 37 38 43 39 4 35 38 41 43 38

Inf 40 43 41 37 39 4 41 36 36 43 44

 
 

TABLE VI 
SIMULATION RESULTS WHERE DELAY STEP OF ACTUAL PROCESS IS 30 

d’
C 25 26 27 28 29 30 31 32 33 34 35

0.5 50 49 50 48 50 48 49 49 48 49 46

4 47 49 45 49 47 48 47 47 48 46 47

9 47 47 45 42 45 34 44 47 46 46 45

15 45 43 46 40 44 20 39 43 43 45 41

25 44 41 41 38 45 14 42 42 40 42 40

60 44 39 39 41 40 6 39 39 41 40 39

100 42 39 40 42 40 4 37 39 39 42 40

500 44 37 39 43 40 4 35 40 41 43 39

1000 45 37 38 43 39 4 35 38 41 43 38

Inf 40 43 41 37 39 4 41 36 36 43 44
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TABLE VII 

SIMULATION RESULTS WHERE DELAY STEP OF ACTUAL PROCESS IS 44 

d’ 
C 39 40 41 42 43 44 45 46 47 48 49

0.5 50 49 50 48 50 48 49 49 48 49 46

4 47 49 45 49 47 48 47 47 48 46 47

9 47 47 45 42 45 34 44 47 46 46 45

15 45 43 46 40 44 20 39 43 43 45 41

25 44 41 41 38 45 14 42 42 40 42 40

60 44 39 39 41 40 6 39 39 41 40 39

100 42 39 40 42 40 4 37 39 39 42 40

500 44 37 39 43 40 4 35 40 41 43 39

1000 45 37 38 43 39 4 35 38 41 43 38

Inf 40 43 41 37 39 4 41 36 36 43 44

 
 

TABLE VIII 
SIMULATION RESULTS WHERE DELAY STEP OF ACTUAL PROCESS IS 60 

d’ 
C 55 56 57 58 59 60 61 62 63 64 65

0.5 50 49 50 48 50 48 49 49 48 49 46

4 47 49 45 49 47 48 47 47 48 46 47

9 47 47 45 42 45 34 44 47 46 46 45

15 45 43 46 40 44 20 39 43 43 45 41

25 44 41 41 38 45 14 42 42 40 42 40

60 44 39 39 41 40 6 39 39 41 40 39

100 42 39 40 42 40 4 37 39 39 42 40

500 44 37 39 43 40 4 35 40 41 43 39

1000 45 37 38 43 39 4 35 38 41 43 38

Inf 40 43 41 37 39 4 41 36 36 43 44

 
 

TABLE IX 
SIMULATION RESULTS WHERE DELAY STEP OF ACTUAL PROCESS IS 80 

d’ 
C 75 76 77 78 79 80 81 82 83 84 85

0.5 50 49 50 48 50 48 49 49 48 49 46

4 47 49 45 49 47 48 47 47 48 46 47

9 47 47 45 42 45 34 44 47 46 46 45

15 45 43 46 40 44 20 39 43 43 45 41

25 44 41 41 38 45 14 42 42 40 42 40

60 44 39 39 41 40 6 39 39 41 40 39

100 42 39 40 42 40 4 37 39 39 42 40

500 44 37 39 43 40 4 35 40 41 43 39

1000 45 37 38 43 39 4 35 38 41 43 38

Inf 40 43 41 37 39 4 41 36 36 43 44
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